
Consistent Query Answering in Databases

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

bertossi@scs.carleton.ca
www.scs.carleton.ca/∼bertossi

Simon Fraser University, March 2005.

2

The Context

There are situations when we want/need to live with inconsis-
tent information in a database

With information that contradicts given integrity constraints

The DBMS does not fully support data maintenance or
integrity checking/enforcing

The consistency of the database will be restored by exe-
cuting further transactions

Delayed updates of a datawarehouse

Integration of heterogeneous databases without a cen-
tral/global maintenance mechanism

3

Inconsistency wrt “soft” integrity constraints we hope to
see satisfied, but do not prevent transactions from execu-
tion

User constraints than cannot be checked

Legacy data on which we want to impose semantic con-
straints

It may be impossible/undesirable to repair the database (to
restore consistency)

No permission

Inconsistent information can be useful

Restoring consistency can be a complex and non deter-
ministic process

4

The Problem

Not all data participate in the violation of the ICs

The inconsistent database can still give us “correct” or consis-
tent answers to queries!

We want to:

Give a precise definition of consistent answer to a query
in an inconsistent database

Find mechanisms for obtaining such consistent informa-
tion from the inconsistent database

Study the computational complexity of the problem

5

Example

A database instance D

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

FD : Name → Salary

D violates FD , by the tuples with J .Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

6
D1

Employee Name Salary
J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

D2

Employee Name Salary
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

(M .Stowe, 7, 000) persists in all repairs, and it does not par-
ticipate in the violation of the FD

(J .Page, 8, 000) does not persist in all repairs, and it does
participate in the violation of FD

7

Repairs and Consistent Answers

Fixed: DB schema and (infinite) domain; a set of first order
integrity constraints IC

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A repair of a database instance D is a database instance D′

over the same schema and domain

satisfies IC

differs from D by a minimal set of changes (insertions or
deletions of tuples) wrt set inclusion

8

Given a query Q(x̄) to D, we want as answers all and only
those tuples obtained from D that are “consistent” wrt IC
(even when D globally violates IC)

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A tuple t̄ is a consistent answer to query Q(x̄) in D iff
t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |= KQ[t̄] :⇐⇒ D′ |= Q[t̄] for every repair D′ of D

A model theoretic definition ...

9

Example

Inconsistent DB instance D wrt FD : Name → Salary

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

Repairs D1, resp. D2

Employee Name Salary

J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

Employee Name Salary

J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

D |= K Employee(M.Stowe, 7, 000)

10

D |= K (Employee(J .Page, 5, 000) ∨Employee(J .Page, 8, 000))

D |= K ∃XEmployee(J .Page, X)

We can see this is not the same as getting rid of the data that
participates in the violation of the IC

Some information is preserved ...

11

Computing Consistent Answers

So far: a semantic notion of consistent answer from an incon-
sistent database

We want to compute consistent answers

But not by computing all possible repairs and checking answers
in common to all of them

Retrieving consistent answers via computation of all database
repairs is not possible/sensible/feasible

12

Example: A database instance that is inconsistent wrt
FD : X → Y

r X Y
1 0
1 1
2 0
2 1
· ·
n 0
n 1

has 2n possible repairs!

13

Query Transformation

First-Order queries and constraints

Idea:

Do not compute the repairs

Query only the available inconsistent database instance

Transform the query and pose the new query (as usual)

(Arenas, Bertossi, Chomicki; PODS 99)
(Celle, Bertossi; DOOD 00)

14

DBMS

New Query (enh'd SQL):

 SELECT ...
 FROM ...
 WHERE ...

CONSIS WITH ICs

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...
 ICs

?????Query
Preprocessor

15

Given a query Q to the inconsistent DB D, qualify Q with
appropriate information derived from the interaction between
Q and the ICs

To locally satisfy the ICs

To discriminate between tuples in the answer set

Inspired by “Semantic Query Optimization” techniques

Consistent answers to Q(x̄) in D??

Rewrite query: Q(x̄) �−→ Q′(x̄)

Q′(x̄) a new first order query

Retrieve from D the (ordinary) answers to Q′(x̄)

16

Example

IC : ∀x(P (x) → Q(x)) D = {P (a), P (b), Q(b), Q(c)}

1. Query to D: Q(x)?

If Q(x) holds in D, then P (x) → Q(x) holds in D

Elements in Q do not participate in a violation of IC

2. Query: P (x)?

If P (x) holds in D, then Q(x) must hold in D in order to
satisfy P (x) → Q(x)

17

An answer x to “P (x)?” is consistent if x is also in table Q

Transform query 2. into: P (x) ∧Q(x)?

Pose this query instead

Q(x) is a residue of P (x) wrt ∀x(P (x) → Q(x))

Residue can be obtained by resolution between the query literal
and the IC

Posing new query to D we get only answer {b}

For query Q(x)? there is no residue, i.e. every answer to query
Q(x)? is also a consistent answer, i.e. we get {b, c}

18

3. Query ¬Q(x)? (not safe, just for illustration)

Residue wrt ∀x(P (x) → Q(x)) is ¬P (x)

New query: ¬Q(x) ∧ ¬P (x)

Answers to this new query (in the active domain): ∅

No consistent answers ...

19

Example

FD : ∀XY Z (¬Employee(X,Y) ∨ ¬Employee(X,Z) ∨
Y = Z)

Query: Employee(X,Y)?

Consistent answers: (V .Smith, 3,000), (M .Stowe, 7,000)
(but not (J .Page, 5,000), (J .Page, 8,000))

Can be obtained by means of the transformed query

T (Q(X,Y)) := Employee(X,Y) ∧
∀Z (¬Employee(X,Z) ∨ Y = Z)

... those tuples (X,Y) in the relation for which X does not
have and associated Z different from Y ...

20

SELECT Name, Salary

FROM Employee

CONSISTENT WITH

 FD(Name;Salary) r

SELECT Name, Salary

FROM Employee E

WHERE Not exists (

 SELECT E.Salary

 FROM E

 WHERE E.Name = Name

 AND E.Salary <> Salary)

r

Again, the residue ∀Z (¬Employee(X,Z) ∨ Y = Z) can be
automatically obtained by applying resolution to the query and
the FD

In general, T is an iterative operator

21

Example

IC : {R(x) ∨ ¬P (x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}

Query: Q(x)

T1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P (x)) ∧ P (x)

Apply T again, now to the appended residues

T2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P (x))) ∧ T (P (x))

T2(ϕ(x)) = Q(x) ∧ (R(x) ∨ (¬P (x) ∧ ¬Q(x))) ∧ P (x)∧
(R(x) ∨ ¬Q(x))

And again:

22

T3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P (x) ∧ T (¬Q(x)))) ∧
P (x) ∧ (T (R(x)) ∨ T (¬Q(x)))

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain

T3(Q(x)) = T2(Q(x))

A finite fixed point! Does it always exist?

In general, an infinitary query: Tω(ϕ(x)) :=
⋃

n<ω

{Tn(ϕ(x))}

In the example, Tω(Q(x)) = {T1(Q(x)), T2(Q(x))}

Always finite?

23

Some Results

There are sufficient conditions on queries and ICs for soundness
and completeness of operator T (ABC; PODS 99)

Soundness: every tuple computed via T is consistent in
the semantic sense

D |= Tω(ϕ)[t̄] =⇒ D |= Kϕ[t̄]

Completeness: every semantically consistent tuple can be
obtained via T

D |= Kϕ[t̄] =⇒ D |= Tω(ϕ)[t̄]

Natural and useful syntactical classes satisfy the conditions

But incomplete for full FO queries and ICs

24

There are necessary and sufficient conditions for syntactic
termination

In the iteration process to determine Tω(Q) nothing
syntactically new is obtained beyond some finite step

There are sufficient conditions for semantic termination

From some finite step on, only logically equivalent formu-
las are obtained

In these favorable cases, a FO SQL query can be translated into
a new FO SQL query that is posed as usual to the database

25

Some Limitations

First order query rewriting based approach has limitations
(most of them apply to the one based on operator T and to
any other; see later ...)

T is defined and works for some special classes of queries
and integrity constraints

ICs are universal, which excludes referential ICs; and queries
are quantifier-free conjunctions of literals

T does not work for disjunctive or existential queries, e.g.
∃Y Employee(J .Page, Y)?

26

FO query reformulation has been slightly extended using other
methods

Hypergraph representation of the DB (the vertices) and
its semantic conflicts (the hyperedges)

Graph based algorithms on original query can be translat-
ed into SQL queries (Chomicki, Marcinkowski, Staworko;
software demos at EDBT 04)

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

27

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)

• Derive algorithms for consistent query answering

Consistent query answering is non-monotonic; then a non-
monotonic semantics for Spec is expected

28

Specification in Annotated Logic

We want to specify database repairs, by means of a consistent
theory

The database instance D (seen as a set of ground atomic for-
mulas) and the set of integrity constraints IC are mutually
inconsistent

Use a different logic, that allows generating a consistent theory!

Use annotated predicate calculus (APC)
(Kifer, Lozinskii; J. Aut. Reas. 92)

Inconsistent classical theories can be translated into consistent
annotated theories

29

Usual annotations: true (t), false (f), contradictory (�),
unknown (⊥)

Atoms in an APC theory are annotated with truth values, at
the object level, e.g.
Employee(V .Smith, 3000):t, Employee(V .Smith, X):f

Embed both D and IC into a single consistent APC theory
(Arenas, Bertossi, Kifer; DOOD 00)

ICs are hard, not to be given up

Data is flexible, subject to repairs

Choose an appropriate truth values lattice Lat:

30

Database values: td, fd

Constraint values: tc, fc

Advisory values: ta, fa They advise to solve conflicts
between d-values and c-values in favor of c-values

⊥

fc td fd tc

fa f t ta

�

31

Intuitively, ground atoms A for which A:ta or A:fa become
true are to be inserted into, resp. deleted from D

Generate an APC theory Spec embeddingD and IC into APC:

Translate the constraint:

¬Employee(X,Y) ∨ ¬Employee(X,Z) ∨ Y = Z

into

Employee(X,Y):fc ∨ Employee(X,Z):fc ∨ Y = Z:t

Translate database facts, e.g. Employee(J .Page, 5, 000)
into Employee(J .Page, 5, 000):td

Plus axioms for unique names assumption, closed world
assumption, ...

32

Navigation in the lattice plus an adequate definition of APC
formula satisfaction help solve the conflicts between database
facts and constraint facts

For every s ∈ Lat, ⊥ ≤ s ≤ �
lub(t, f) = �, lub(tc, fd) = ta, etc.

Use Herbrand structures, i.e sets of ground annotated
atoms

Formula satisfaction: I a structure, s ∈ Lat, A a clas-
sical atomic formula

I |= A:s iff there exists s′ ∈ Lat such that A:s′ ∈ I
and s ≤ s′

33

It can be proved that the database repairs correspond to the
models of Spec that make true a minimal set of atoms anno-
tated with ta, fa

Change a minimal set of database atoms!!!

From the specification Spec algorithmic and complexity results
for consistent query answering can be obtained

Most importantly, this approach motivated a more general and
practical approach to specification of database repairs based on
logic programs

34

Specifying Repairs with Logic Programs

The collection of all database repairs can be represented in a
compact form

Use disjunctive logic programs with stable model semantics
(Barcelo, Bertossi; PADL 03)

Repairs correspond to distinguished models of the program,
namely to its stable models

Example: Full inclusion dependency IC : ∀x̄(P (x̄) → Q(x̄))

Inconsistent instance D = {P (c̄), P (d̄), Q(d̄), Q(ē)}

35

The programs use annotation constants in an extra attribute
in the database relations

Annotation Atom The tuple P (ā) is ...
td P (ā, td) a fact of the database
fd P (ā, fd) a fact not in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false
t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

36

Repair program Π(D, IC):

1. The original data: P (c̄, td) ←
P (d̄, td) ←
Q(d̄, td) ←
Q(ē, td) ←

2. Whatever was true (false) or becomes true (false), gets
annotated with t� (f�):

P (x̄, t�) ← P (x̄, td)

P (x̄, t�) ← P (x̄, ta)

P (x̄, f�) ← not P (x̄, td)

P (x̄, f�) ← P (x̄, fa)

... the same for Q ...

37

3. There may be interacting ICs (not here), and the repair
process may take several steps, changes could trigger oth-
er changes

We need annotation constants for the local changes (ta, fa),
but also annotations (t�, f�) to provide feedback to the
rules that produce local repair steps

P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t�), Q(x̄, f�)

One rule per IC; that says how to repair the IC in case of
a violation

Passing to annotations t� and f� allows to keep repairing
the DB wrt to all the ICs until the process stabilizes

38

4. Repairs must be coherent: use denial constraints at the
program level to prune undesirable models

← P (x̄, ta), P (x̄, fa)

← Q(x̄, ta), Q(x̄, fa)

5. Annotations constants t�� and f�� are used to read off
the literals that are inside (outside) a repair

P (x̄, t��) ← P (x̄, ta)

P (x̄, t��) ← P (x̄, td), not P (x̄, fa)

P (x̄, f��) ← P (x̄, fa)

P (x̄, f��) ← not P (x̄, td), not P (x̄, ta). ... etc.

39

The program has two stable models (and two repairs):

{P (c̄, td), ..., P (c̄, t�), Q(c̄, f�), Q(c̄, ta), P (c̄, t��), Q(c̄, t�),
P (d, t��), Q(d, t��), . . . , Q(c̄, t��), ...} ≡

{P (c̄), Q(c̄), P (d̄), Q(d̄), Q(ē)}

... insert Q(c̄)!!

{P (c̄, td), ..., P (c̄, t�), P (c̄, f�), Q(c̄, f�), P (c̄, f��), Q(c̄, f��),
P (d, t��), Q(d, t��), . . . , P (c̄, fa), ...} ≡

{P (d̄), Q(d̄), Q(ē)}

... delete P (c̄)!!

40

To obtain consistent answers to a FO SQL query:

1. Transform or provide the query as a logic program (this
is standard methodology)

2. Run the query program together with the specification
program

... under the skeptical or cautious stable model semantics
that sanctions as true of a program what is true of all its
stable models

41

Example: (continued)

Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program Π(D, IC) together with query program

Ans(x̄) ← P (x̄, t��), Q(x̄, f��)

The two previous stable models become extended with ground
Ans atoms

None of them in the intersection of the two models

In consequence, under the skeptical SMS, Ans = ∅, i.e. no
consistent answers, as expected ...

42

Remarks:

This is general methodology that works for general FO
queries, universal ICs and referential ICs (without cycles)

One to one correspondence between repairs and stable
models of the program

Existential ICs, like referential ICs, can be handled, with
different repair policies, e.g. introduction of null values,
cascaded deletions, ...
(Barcelo,Bertossi,Bravo; LNCS 2582)
(Bravo,Bertossi; CASCON 04)

The same repair program can be used for all the queries,
the same applies to the computed stable models

The query at hand adds a final layer on top (obtaining a
split program)

43

The program can be optimized in several ways; e.g. avoid-
ing materialization of CWA (Barcelo,Bertossi,Bravo; LNCS
2582), and annotations of DB facts

We have successfully experimented with the DLV system
for computing the stable models semantics
(N. Leone et al.; ACM Transactions on Comp. Logic)

Related methodologies:
(Arenas, Bertossi, Chomicki; TPLP 03)
(Greco, Greco, Zumpano; IEEE TKDE 03)

44

DBMS

Query (Logic) Program:

Ans (x) :-
.... :-
.... :-

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DLV

ICs

Specification of Repairs:

.... :-

.... :-

.... :-

Consistent Answers

45

Aggregation Queries

We have presented first order queries only

What about aggregation queries?

They are natural and usual in DBs, and part of SQL

They are crucial in scenarios where inconsistencies are
likely to occur, e.g. data integration, in particular, dataware-
housing

We will see that aggregation is challenging for consistent an-
swers

46

A restricted scenario:

Functional dependencies

Standard set of SQL-2 scalar aggregation operators:
MIN, MAX, COUNT(*), COUNT(A), SUM, and AVG

Atomic queries applying just one of these operators

47

Redefining Consistent Anwers

Example: A database instance and the FD : Name → Amount

Salary Name Amount
V .Smith 5000
V .Smith 8000
P .Jones 3000
M .Stone 7000

The repairs:

Salary Name Amount Salary Name Amount
V .Smith 5000 V .Smith 8000
P .Jones 3000 P .Jones 3000
M .Stone 7000 M .Stone 7000

Query: MIN(Amount)?

48

We should get 3000 as a consistent answer: MIN(Amount)

returns 3000 in every repair

Query: MAX(Amount)?

The maximum, 8000, comes from a tuple that participates in
the violation of FD

MAX(Amount) returns a different value in each repair: 7000 or
8000

There is no consistent answer as previously defined

Modify the definition of consistent answer:

49

Definition: A consistent answer to an aggregate query Q in
the database instance D is a numerical interval that contains
all the answers to Q obtained from the repairs of D

An optimal consistent answer to is the smallest interval
[a, b] such that ...

In the example:

[6000, 9000] is a consistent answer to the query MAX(Amount)

[7000, 8000] is an optimal consistent answer to MAX(Amount)

(Arenas, Bertossi, Chomicki; ICDT 01)

50

Problems: Find and determine

Algorithms for computing the optimal bounds:

−−−−
a

| − − −−−−−−
b

| − − −−
• a: the max-min answer; and
• b: the min-max answer

By querying D only!

Computational complexities

We need the right tools to attack these problems ...

51

Graph Representation of Repairs

For both purposes it was crucial to appeal to a graph repre-
sentation of repairs

Given a set of FDs FD and an instance D, the conflict graph
CGFD(D) is an undirected graph:

Vertices are the tuples t̄ in D

Edges are of the form (t̄1, t̄2) for which there is a depen-
dency in FD that is simultaneously violated by t̄1, t̄2

52

Example: Schema R(A,B) FDs : A→ B and B → A

Instance D = {(a1, b1), (a1, b2), (a2, b2), (a2, b1)}

(a1, b1) (a1,b2)

(a2, b1) (a2, b2)

Each repair of D corresponds to a maximal independent set in
CGFD(D)

... or to a maximal clique in the complement graph

53

Some Complexity Results

MAX(A) can be different in every repair

Maximum of the MAX(A)’s is MAX(A) in D

Then computing the min max-answer to MAX(A) from D

is direct −−−−−−−
b

| −−
Computing directly fromD the minimum of the MAX(A)’s,
i.e. the maximal min-answer to MAX(A), is not that im-

mediate −−
a

| − − −−−−

But still, computing the maximal min-answer to MAX(A)
for one FD F is in PTIME (in data complexity)

54

For more than one FD, the problem of deciding whether
the maximal min-answer to MAX(A) ≤ k is NP-complete

(reduction from SAT)

Even for one FD, the problem of deciding if the maximal
min-answer to COUNT(A) ≤ k is NP-complete

(reduction from HITTING SET)

55

In general:

maximal min-answer minimal max-answer

|FD | = 1 |FD | ≥ 2 |FD | = 1 |FD | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A) PTIME NP-complete PTIME NP-complete

AVG(A) PTIME NP-complete PTIME NP-complete

(Arenas,Bertossi,Chomicki,He,Raghavan,Spinrad; Th. Comp. Sci.
03)

56

We have identified normalization conditions, e.g. BCNF, (and
other conditions) on the DB under which more efficient algo-
rithms can be designed

However, improvements are not impressive

CQA for aggregate queries is an intrinsically complex problem

It seems necessary to approximate optimal consistent answers
to aggregate queries, but “maximal independent set” seems to
have bad approximation properties ...

57

Complexity of CQA

When the first order query rewriting approach works (correct
and terminating), consistent answers to FO queries can be ob-
tained in PTIME (data complexity)

Graph theoretic techniques for CQA for aggregate queries were
extended (hypergraphs now) to:

Extend the PTIME computation to other classes of FO
queries, e.g. with very restricted forms of projection (ex-
istential quantifiers), but denial constraints

Study the complexity of CQA for FO queries for wider
classes of integrity constraints, e.g. including referential
ICs (but only deletions for repair)

(Chomicki, Marcinkowski; Inf. Comp., to appear)

58

Some Complexity Results

In those cases where CQA can be done in PTIME, the problem
of repair checking can be solved in PTIME

Repair checking is also PTIME for arbitrary FDs and acyclic
inclusion dependencies (deletions only)

However: (deletions only)

For arbitrary FDs and inclusion dependencies, repair check-
ing becomes coNP-complete

For arbitrary FDs and inclusion dependencies, CQA, i.e.
deciding if a tuple is CA, becomes ΠP

2 -complete

(Query answering from disjunctive logic programs under
skeptical stable models semantics is also ΠP

2 -complete!!)

59

More complexity theoretic results:
(Cali, Lembo, Rosati; PODS 03)

Among others:

For arbitrary FDs and inclusion dependencies (in particu-
lar, referential ICs), CQA becomes undecidable

Issues?

Inclusion dependencies repaired through insertions

Cycles in the set of inclusion dependencies

Infinite underlying domain that can be used for insertions

60

Remarks:

Complexity of query evaluation from disjunctive logic pro-
grams (DLPs) coincides with the complexity of CQA

From this point of view the problem of CQA is not being
overkilled by the use of the DLP approach

However, it is known that for wide classes of queries and
ICs, CQA has a lower complexity, e.g. in P time
(Chomicki, Marcinkowski; Inf. Comp., to appear)
(Fuxman, Miller; ICDT 05)

It becomes relevant to identify classes of ICs and queries
for which the DLP can be automatically “simplified” into,
e.g. a FO query

Or can be evaluated according to the Well-Founded Se-
mantics ...

61

Discussion

The area of CQA in databases is an active area of research now

Many advances have been achieved since 1999

Many open problems are still open or are subject of ongoing
research

Several implementation issues, in particular in the case of
most common SQL queries and constraints

Specially for ICs that are not maintained by commercial
DBMSs

Research on many issues related to the evaluation of logic
programs for consistent query answering (CQA) in the
context of databases

62

• Existing implementations of stable models semantics
are based on grounding the rules

In database applications, this may lead to huge ground
programs

• Implementations are geared to computing (some) sta-
ble model(s) and answering ground queries

For database applications, posing and answering open
queries is more natural

• Computing all the the stable models completely is
undesirable

Better try generation of “partial” repairs, relative to
the ICs that are “relevant” to the query at hand

63

• Query evaluation based on skeptical stable model se-
mantics should be guided by the query and its rele-
vant information in the database
(Eiter, Fink, G.Greco, Lembo; ICLP 03)

• Magic sets (or similar query-directed methodologies)
for evaluating logic programs for CQA
(S.Greco et. al)

• Optimization of the access to the DB, to the relevant
portions of it

• Efficient integration of relational databases and an-
swer set programming environments

64

Application Scenario: Virtual Data Integration

Consider a mediator-based virtual data integration system (VDIS)
G, integrating a collection of material data sources S1, . . . , Sn

Each data source has a local schema and is assumed to be
consistent wrt local ICs

System G offers a database-like interaction schema, but data
remains at the sources

Queries can be posed to G: Given a (global) query Q to G,
a “query plan” is generated that extracts and combines infor-
mation from the sources

Usually one assumes that certain ICs hold at the global level,
and they are used in the generation of the query plan

65

DBMS

Global Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query
Plan

MEDIATOR

global ICs??

66

BUT, how can we be sure that such ICs hold?

They are not maintained at the global level

A natural scenario for applying CQA: retrieve only information
from the global database that is consistent with IC

New issues appear:

What is a repair of the global, virtual database?

What is a CQA?

How to retrieve consistent information from the global,
virtual DB G? At query time ...

67

DBM S

Global Query (SQL):

 SELECT ...
 FRO M ...
 W H ERE ...
 CONSISTENT W ITH

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

68

Work in this direction:

(Bravo, Bertossi; IJCAI 03)
(Bravo, Bertossi; J. Appl. Logic, to appear)

Extension to open, closed and clopen sources
(Bertossi, Bravo; LNCS 3300)

Consistency handling, repairs and different semantics for
CQA under GAV
(Lembo, Lenzerini, Rosati; KRDB 02)
(Cali, Lembo,Rosati; IJCAI 03)

There are clear connections between query answering in
VDISs and query answering in peer-to-peer data exchange
systems

69

Peers exchange data at query answering time according
to certain data exchange constraints or data exchange
mappings

No central data repository; no centralized management;
data resides at peers’ sites ...

Relevant literature:

• (Halevy, Ives, Suciu, Tatarinov; ICDE 03)
• (Bertossi, Bravo; P2P&DB 04)
• (Calvanese, De Giacomo, Lenzerini, Rosati; PODS
04)

• (Franconi, Kuper, Lopatenko, Zaihrayeu; P2P&DB
04)

• (Fuxman, Kolaitis, Miller, Tan; PODS 05)

