
Semantic Constraints for
Data Quality Assessment and

Cleaning
Leopoldo Bertossi
Carleton University
Ottawa, Canada

(Faculty Fellow IBM CAS)



2

Characterizing Consistent Data wrt ICs

A database may not satisfy a given set of integrity constraints

What is the consistent data in an inconsistent database?

What are the consistent answers to a query posed to an incon-
sistent database?

A mathematically precise definition was needed

In (Arenas,Bertossi,Chomicki; PODS99) such a characterization was
provided

Intuitively, the consistent data in an inconsistent database D is
invariant under all minimal ways of restoring D’s consistency

That is, consistent data persists across all the minimally repaired
versions of the original instance: the repairs of D



3

Example: For the instance D that violates
FD : Name → Salary

Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of
whole tuples are allowed: D1, resp. D2

Employee Name Salary

page 5K
smith 3K
stowe 7K

Employee Name Salary

page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not; actually it participates in the violation of
FD



4

A consistent answer to a query Q from a database D is an
answer that can be obtained as a usual answer to Q from every
possible repair of D wrt IC (a given set of ICs)

• Q1 : Employee(x, y)?

Consistent answers: (smith, 3K), (stowe, 7K)

• Q2 : ∃yEmployee(x, y)?

Consistent answers: (page), (smith), (stowe)

CQA may be different from classical data cleaning!

However, CQA is relevant for data quality; an increasing need
in business intelligence

It also provides concepts and techniques for data cleaning



5

Next DBMSs should provide more flexible, powerful, and user
friendlier mechanisms for dealing with semantic constraints

In particular, they should allow to be posed queries requesting
for consistent data; and answer them

query pre processor ?

Select ...
From ...
...

Cons/W ...

Select ...
From ICsFrom ...
...

Why not an enhanced SQL?

SELECT Name, Salary
FROM Employee
CONS/W FD: Name -> Salary;

(FD not maintained by the DBMS)

Paradigm shift: ICs are constraints on query answers, not on
database states!



6

Depending on the ICs and the queries, tractable and intractable
cases for CQA have been identified

For some tractable cases, query rewriting algorithms have been
developed

Q(x, y) : Employee(x, y) �→
Q′(x, y) : Employee(x, y) ∧ ¬∃z(Employee(x, z) ∧ z �= y)

For higher-complexity cases, specifications of repairs by means
of logic programs with stable model semantics can be used

CQA becomes querying (as usual) a logic program, say a Datalog
program with possible complex extensions



7

There are some implemented systems for CQA

• FO query rewriting (when possible)

• Graph-theoretic algorithmic methods

Repairs can be implicitly represented as, e.g. maximal in-
dependent sets in a conflict graph or hypergraph

• Based on optimized (disjuntive) logic programs with stable
model semantics (plus DLV)

More recently: Increasing interest in computing a single, “good”
repair, or even an approximate repair

As a form of data cleaning wrt IC violation or semantic problems



8

DBM S

Global Query (SQL):

         SELECT   ...
         FRO M       ...
         W H ERE    ...
         CONSISTENT W ITH .....

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

A natural application: Virtual data integration

No way to enforce consistency on the sources

Inconsistencies have to be solved on-the-fly, at query time



9

Many problems in CQA addressed in the last few years

• Query rewriting mechanisms

• Compact representations of all DB repairs: Graph-theoretic,
logic programs with stable model semantics, disjunctive
databases, models of theories in non-classical logics, etc.

• Identification of tractable vs. non-tractable cases

• Applications in virtual data integration, PDMS, etc.

• Implementations



10

Published in 2011:

CM& Morgan   Claypool Publishers&

SYNTHESIS LECTURES ON DATA MANAGEMENT

M. Tamer Özsu, Series Editor

Database Repairing
and Consistent Query
Answering

Leopoldo Bertossi



11

New Kinds of Constraints: Data Quality

Integrity constraints (ICs) have been around for a long time

They are used to capture the application semantics in the data
model and database

They have been studied in general and have wide application in
data management

A large body of research has been developed, in particular fun-
damental research

Methodologies for dealing with ICs are quite general and have
broad applicability

Database repairing and CQA are newer contributions in this
direction



12

On the other side:

Data quality assessment (DQ) and data cleaning (DC) have
been mostly: Ad-hoc, rigid, vertical, and application-dependent
activities

There is a lack of fundamental research in data quality assess-
ment and data cleaning

Things are starting to change ...

Recently, DQ constraints have been proposed and investigated

They provide generic languages for expressing quality concerns

Suitable for specifying adaptive and generic DQ/C mechanisms

Proposed and studied by the Edinburgh DB group around Wenfei
Fan



13

Conditional Dependencies (CDs)

Example: Database relation with FDs:

FD1 : [CC ,AC ,Phone] → [Street ,City ,Zip]

FD2 : [CC ,AC ] → [City ]

CC AC Phone Name Street City Zip

44 131 1234567 mike mayfield NYC EH4 8 LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

FDs are satisfied, but they are “global” ICs

They may not capture natural data quality requirements, as
related to specific data values (important in data quality assess-
ment and data cleaning)

What about a conditional functional dependency (CFD)?



14

CFD1 : [CC = 44,Zip] → [Street ]

Conditional in that the FD of Street upon Zip applies when the
country code is 44

Not satisfied anymore, and data cleaning may be necessary ...

More generally, CDs are like classical ICs with a tableau for
forced data value associations

CFD2 :
[CC = 44,AC = 131,Phone] → [Street ,City= ‘EDI ′,Zip]

When CC = 44,AC = 131 hold, the FD of Street and Zip
upon Phone applies, and the city is ‘EDI’

Not satisfied either ...

CQA and database repairs have been investigated for CFDs
[Kolahi, Lakshmanan], [Beskales, Ilyas, Golab], ...



15

Conditional Inclusion Dependencies:

Order(Title,Price,Type = ‘book ′) ⊆ Book(Title,Price)

It can be expressed in classical FO predicate logic:

∀x∀y∀z(Order(x, y, z) ∧ z = ‘book′ → Book(x, y))

Still a classic flavor ...

And semantics ...



16

Matching Dependencies (MDs)

MDs are related to Entity Resolution (ER)

ER is a classical, common and difficult problem in data cleaning

It is about discovering and matching records that represent the
same entity in the application domain

Again, several ad hoc mechanisms have been proposed

ER, and DC in general, are fundamental for data analysis and
decision making in BI

Particularly crucial in data integration, and even more in virtual
data integration (VDI)

In VDI, DC and ER have to be made on-the-fly, at query time



17

MDs express and generalize ER concerns

They specify attribute values that have to be made equal under
certain conditions of similarity for other attribute values

Example: Schema R1(X,Y ), R2(X,Y )

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] −→ R1[Y1]
.
= R2[Y2])

When the values for attributes X1 in R1 and X2 in R2 in two tu-
ples are similar, then the values in those two tuples for attribute
Y1 in R1 and Y2 in R2 must be made equal (matched)

(R1 and R2 can be same predicate)

≈: Domain-dependent similarity relation

Introduced by W. Fan et al. (PODS 2008, VLDB 2009)



18

Although declarative, MDs have a procedural feel and a
dynamic semantics

An MD is satisfied by a pair of databases (D,D′):

D satisfies the antecedent, and D′, the consequent, where the
matching is realized

But this is local, one-step satisfaction ...



19

Our research: [ICDT’11, KR’12, ..., LID’11, SUM’12, DATALOG 2.0’12]

• Alternative, refined semantics for MDs

• Investigation of the dynamic semantics

• Definition and computation of clean instances
(there may be several of them)

• Definition of “clean query answering”, and computational
methods to obtain them

• Comparisons between clean instances wrt MDs and
database repairs wrt FDs

• Query rewriting methodologies for clean query answering
(in Datalog plus aggregation)

• ASP-based specification of clean instances



20

MDs as originally introduced do not say how to identify values

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] −→ R1[Y1]
.
= R2[Y2])

We have considered the two directions:

• With matching functions (MFs) (ICDT 2011, etc.), and

• Without MFs (LID 2011, etc.)



21

Matching Dependencies with MFs

“similar name and phone number ⇒ identical address”
D0 name phone address

John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓
D1 name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

A dynamic semantics!

maddress(MainSt .,Ottawa , 25MainSt .) := 25MainSt .,Ottawa

Addresses treated as strings or objects, i.e. sets of pairs
attribute/value

(Join work with Solmaz Kolahi and Laks Lakshmanan)



22

Semantics of MDs: [W. Fan et al., VLDB’09]

ϕ : R1[X1] ≈ R2[X2] → R1[Y1]
.
= R2[Y2]

(D,D′) |= ϕ if for every R1-tuple t1 and R2-tuple t2:

t1[X1] ≈ t2[X2] in D =⇒ t1[Y1] = t2[Y2] in D′

t1[X1] ≈ t2[X2] in D′

D′ is stable if (D′, D′) |= Σ (a set of MDs)

Dirty instance D ⇒ D1 ⇒ D2 ⇒ . . . . . . ⇒ D′

stable, clean instance!
↑

• How are the MDs enforced?

• Can we expect that (D,D′) |= Σ? (too strong)



23

Matching Functions: Some ingredients

• Set of MDs Σ

• For every attribute A with DomA

– A similarity relation ≈A ⊆ DomA × DomA

reflexive and symmetric

– A matching function
mA : DomA × DomA → DomA

idempotent, commutative, and associative

Induces a semilattice with partial order defined as

a 
A a′ ⇐⇒ mA(a, a
′) = a′

Least upper bound operator coincides with matching function

lub{a, a′} = mA(a, a
′)



24

a 
A a′ can be thought of in terms of information contents

A semantic-domination lattice is created (... “domain theory”)

• Domain-level lattice

25 Main St., Ottawa

Main St., Ottawa 25 Main St.

Main St.

[5,10]

[5,8] [7,10]

[7,8]

�

part-time full-time

⊥

• Tuple-level partial order:
t1 
 t2 ⇐⇒ t1[A] 
A t2[A] (f.a. A)

• Relation-level partial order
D1 � D2 ⇐⇒ ∀t1 ∈ D1 ∃t2 ∈ D2 t1 
 t2



25

Instances can be “reduced” by eliminating tuples that are dom-
inated by others

Theorem: The set of reduced instances with � forms a lattice

Relevant for comparison of sets of query answers seen as
instances ...



26

Clean Instances:

ϕ : R1[X1] ≈ R2[X2] → R1[A1]
.
= R2[A2]

One step of chase: Enforcing ϕ on D ⇒ D′

• In D, t1[X1] ≈ t2[X2], but t1[A1] = a1 �= t2[A2] = a2

• In D′, replace them with mA(a1, a2)

Clean instance: Stable instance resulting from chase

D0 ⇒ D1 ⇒ . . . ⇒ Dclean

Theorem: Matching functions idem, comm, assoc give us:

(a) Chase termination after polynomial number of steps

(b) D0 � D1 � . . . � Dclean



27

In general:

• There could be multiple clean instances

• It may not hold (D0, Dclean) |= Σ

For two special cases:

• Similarity-preserving matching functions

a ≈ a′ =⇒ a ≈ mA(a
′, a′′)

• Interaction-free MDs

- There is a unique clean instance Dclean , and

- (D0, Dclean) |= Σ



28

Clean answers to a query Q: (two bounds)

• Certain answers: glb�{Q(D) | D clean instance}
• Possible answers: lub�{Q(D) | D clean instance}

Assume only these two clean instances:

D′ name address

John Doe 25 Main St., Ottawa
J. Doe 25 Main St., Ottawa
Jane Doe 25 Main St., Vancouver

D′′ name address

John Doe Main St., Ottawa
J. Doe 25 Main St., Vancouver
Jane Doe 25 Main St., Vancouver

Query Q : π
address

(σ
name=“J. Doe”

(R))

Certain = {25 Main St.}
Possible = {25 Main St., Ottawa , 25 Main St., Vancouver}

Theorem: Computing certain clean answers is coNP-complete



29

Monotonicity?

D � D′ is not set-inclusion

A query Q is monotone if: D � D′ =⇒ Q(D) � Q(D′)

Why not taking advantage of lattice-theoretic domain structure
when posing queries?

Proposition: A positive relational algebra query composed of
π,×,∪, σ

a�A
, σ

A1��A2
is monotone, where

t ∈ σ
a�A

(D) :⇐⇒ a 
 t[A]

t ∈ σ
A1��A2

(D) :⇐⇒ glb{t[A1], t[A2]} �= ⊥
We obtain monotone queries



30

Monotonicity and clean query answering?

The two clean instances:

D′ name address
John Doe 25 Main St., Ottawa
J. Doe 25 Main St., Ottawa
Jane Doe 25 Main St., Vancouver

D′′ name address
John Doe Main St., Ottawa
J. Doe 25 Main St., Vancouver
Jane Doe 25 Main St., Vancouver

Query Q : πname (σ“25 Main St.”�address
(R)) (is monotone)

Q(D′) = {John Doe, J. Doe, Jane Doe}

Q(D′′) = {J. Doe, Jane Doe}

Certain(Q) = {Jane Doe}
We have: Q(glb�{D′, D′′}) = Certain(Q)



31

In general, for the class D of clean instances

Proposition: For a monotone query:

D↓ certain

Q(
︷ ︸︸ ︷

glb�{D | D ∈ D}) �
︷ ︸︸ ︷

glb�{Q(D) | D ∈ D}

lub�{Q(D) | D ∈ D}
︸ ︷︷ ︸

� Q(lub�{D | D ∈ D}
︸ ︷︷ ︸

)

possible D↑

• Under-approximate certain answers by Q(D↓)

• Over-approximate possible answers by Q(D↑)

Adding heuristics to chase to obtain approximations to D↓, D↑?



32

Ongoing Research

•Make query posing/answering sensitive to semantic-domination
lattice

• Approximate query answering based on relaxation using
semantic domination lattice

• Computing clean answers from data subject to MDs
(without physically cleaning it)

Query rewriting, approximations, ...

• Logic programs (ASPs) for clean QA in presence of MDs

LPs specify clean instances

LP-based declarative formulations of known ER algorithms,
e.g. Swoosh



33

Look Ahead ...

Declarative specifications for ER could be compiled into query
answering!

For different applications

Virtual data integration is a
natural application scenario

On-the-fly ER! Mediator

Global Schema

Sources

Query

R1(A,B)        R2(C,D)

R1[X1] R2[X2]   R1[Y1] R2[Y2])



34

Also data exchange under schema mappings:

Source Instance

I

Target Instance (to be)

Schema S Schema T

Schema Mappings

st

tJ

MDs?

Traditionally: Materialize a (good) target instance J with:

(I,J ) |= Σst and J |= Σt

Now: also apply MDs when shipping data from I to J
ER at data exchange time ...



35



36

Extra Slides

On MDs:

• Under-approximate certain answers by Q(D↓)

• Over-approximate possible answers by Q(D↑)

Adding heuristics to chase to obtain D↓, D↑?

Under cleaning: not enforcing interacting MDs

Over cleaning: assuming matching functions are similarity pre-
serving

Computing or approximating those two instances usingD alone?



37

Associativity of MF is a natural assumption, not only because
without it we can’t have a lattice and termination of chase, etc.,
but also because it makes sense in any entity resolution process
such as ours

That is, when during the process we identify three or more data
values that are representing the same entity, the result of col-
lapsing them into one value should not depend on the order in
which we visit those values

If the aggregate function to be used is not associative, e.g.
the average, we can always use union, and apply the aggregate
function at the very end (average for instance)


