
Obtaining Consistent Answers from
Databases

Leopoldo Bertossi

School of Computer Science

Carleton University

bertossi@scs.carleton.ca

www.scs.carleton.ca/∼bertossi

1



The Context

We need to live with databases that are inconsistent

With information that contradicts given integrity constraints

There are many reasons, among them

• Inconsistency wrt integrity constraints that current commercial
DBMS cannot check or maintain

• User constraints than cannot be checked

A user wants or needs to impose his/her view of the world
(semantics) on data that is out of his/her control

2



• Legacy data on which we want to impose (new) semantic
constraints

• Integration of independent data sources

Each data source may be consistent and have an IC checking
mechanism

But the integrated (possibly virtual, mediated) global system
not ...

3



It may be impossible/undesirable to repair the database (to restore
consistency)

• No permission

• Inconsistent information can be useful

• Restoring consistency can be a complex process

4



The Problem

The inconsistent database can still give us “correct” answers to
certain queries!

Not all data participates in the violation of the ICs

What is “correct” (“consistent”) information in an inconsistent
database?

In particular, when we query the DB: what are the “correct
answers”?

5



The research problem requires

• A precise characterization of consistent answers to a query in
an inconsistent database

• Mechanisms for retrieving such consistent information from the
the database

Without changing the database ...

6



DBMS

New Query ( enh'd  SQL):

         SELECT   ...
         FROM      ...
         WHERE    ...

CONSIS WITH ICs

Query (SQL):

         SELECT   ...
         FROM      ...
         WHERE    ...
          .....ICs

?????Query
Preprocessor

7



Consistent Answers

Given a database instance r, a query Q, and a set of ICs IC

Tuple t̄ is a consistent answer to query Q in r wrt IC whenever t̄
is an answer to Q in every repair of r

Where: a repair of a database instance r is a database instance
r′

• over the same schema and domain

• satisfies IC

• differs from r by a minimal set of changes (insertions/deletions
of whole tuples)

8



Intuitively, consistent answers are invariant under minimal ways of
restoring consistency

We use repairs as an auxiliary concept, but we are not
interested in repairs per se

We want to compute consistent answers, ideally without
computing all repairs, but by querying the original instance r

[Arenas, Bertossi, Chomicki. ACM PODS’99]

9



Example: r inconsistent wrt Name → Salary

Employee Name Salary

V .Smith 3,000

P .Jones 5,000

P .Jones 8,000

M .Stowe 7,000

Repair1 Name Salary Repair2 Name Salary

V .Smith 3,000 V .Smith 3,000

P .Jones 5,000 P .Jones 8,000

M .Stowe 7,000 M .Stowe 7,000

In r it is consistently true that

• Employee(M.Stowe, 7,000)

• Employee(P .Jones, 5,000) ∨ Employee(P .Jones, 8,000)

• ∃XEmployee(P .Jones , X)

10



Addressing the Problem I

A computational mechanism to compute consistent answers

Does not produce the repairs

It queries the only explicitly available database instance

Query is transformed and posed as new query

Implementation on top of XSB, a deductive database system,
connected to DB2 via ODBC

Input is an SQL query, the algorithm (implemented in XSB)
produces a new SQL query that is posed to the DB2 DB

11



DBMS

New Query:

         SELECT   ...
         FROM      ...
         WHERE    ...

Query (SQL):

         SELECT   ...
         FROM      ...
         WHERE    ...
          .....

ICs
XSB

Consistent
  Answers

XSB
Environment

12



Example: The FD: Name → Salary can be written

∀XY Z (¬Employee(X,Y ) ∨ ¬Employee(X,Z) ∨ Y = Z)

Query: Employee(X,Y )?

Consistent answers: (V .Smith, 3,000), (M .Stowe, 7,000) (but
not (J .Page, 5,000), (J .Page, 8,000))

Can be obtained by means of the transformed query

T (Employee(X,Y )) := Employee(X,Y ) ∧
∀Z (¬Employee(X,Z) ∨ Y = Z)

... those tuples (X,Y ) in the relation for which X does not have
and associated Z different from Y ...

13



SELECT  Name, Salary

FROM      Employee

CONSISTENT WITH 

           FD(Name;Salary) r

SELECT  Name, Salary

FROM      Employee  E

WHERE   Not exists (

          SELECT E.Salary

          FROM     E

          WHERE  E.Name = Name

              AND  E.Salary <> Salary)

r

14



Ordinary answers to new query are the consistent answers to the
original query

[Arenas, Bertossi, Chomicki. PODS’99]

[Celle, Bertossi. DOOD’2000]

Methodology based on query transformation restricted to:

• Certain SQL queries, essentially conjunctions of DB tables

• Certain ICs, essentially universal ICs

This covers most ICs found in DB praxis, except for referential
ICs

• More expressive queries? Referential ICs?

15



Addressing the Problem II

Represent in a compact form the collection of all database repairs

Use disjunctive logic (answer set) programs

Repairs correspond to certain distinguished models of the program

To obtain consistent answers to a FO SQL query:

• Transform (internally) the query into a logic program
(standard)

• Run that program together with the program that specifies the
repairs

16



Can be implemented on top of DLV, a logic programming system
with essentially a stable models semantics that computes the
desired models

[Arenas, Bertossi, Chomicki. TPLP 2003]

[Barcelo, Bertossi. NMR’02, PADL’03]

17



DBMS

Query (Logic) Program:

Ans (x)  :-   .....
....        :-   .....
....        :-   .....

Query (SQL):

         SELECT   ...
         FROM      ...
         WHERE    ...
          .....

DLV

ICs

Specification of Repairs:

....     :-   ....

....     :-   ....

....     :-   ....

Consistent Answers

18



Example: Full inclusion dependency

IC : ∀x̄(P (x̄) → Q(x̄))

Inconsistent instance r = {P (c̄), P (d̄), Q(d̄), Q(ē)}
The programs use annotation constants

Annotation Atom The tuple P (ā) is...

td P (ā, td) a fact of the database

fd P (ā, fd) a fact not in the database

ta P (ā, ta) advised to be made true

fa P (ā, fa) advised to be made false

t� P (ā, t�) true or becomes true

f� P (ā, f�) false or becomes false

t�� P (ā, t��) it is true in the repair

f�� P (ā, f��) it is false in the repair

19



Repair program Π(r, IC ):

1. P (c̄, td) ←
P (d̄, td) ←
Q(d̄, td) ←
Q(ē, td) ←

Whatever was true (false) or becomes true (false), gets annotated
with t� (f�):

2. P (x̄, t�) ← P (x̄, td)

P (x̄, t�) ← P (x̄, ta)

P (x̄, f�) ← not P (x̄, td)

P (x̄, f�) ← P (x̄, fa)

... the same for Q ...

20



3. P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t�), Q(x̄, f�)

One rule per IC; that says how to repair the IC

Passing to annotations t� and f� allows to keep repairing the
DB wrt to all the ICs until the process stabilizes

Repairs must be coherent: use denial constraints at the program
level, to prune some models

4. ← P (x̄, ta), P (x̄, fa)

← Q(x̄, ta), Q(x̄, fa)

Finally, annotations constants t�� and f�� are used to read off the
literals that are inside (outside) a repair

21



5. P (x̄, t��) ← P (x̄, ta)

P (x̄, t��) ← P (x̄, td), not P (x̄, fa)

P (x̄, f��) ← P (x̄, fa)

P (x̄, f��) ← not P (x̄, td), not P (x̄, ta). ... etc.

Used to interpret the models as database repairs

The program has two stable models (and two repairs):

{P (c̄, td), ..., P (c̄, t�), Q(c̄, f�), Q(c̄, ta), P (c̄, t��), Q(c̄, t�),
Q(c̄, t��), ...} ≡ {P (c̄), Q(c̄), P (d̄), Q(d̄), Q(ē)}

{P (c̄, td), ..., P (c̄, t�), P (c̄, f�), Q(c̄, f�), P (c̄, f��), Q(c̄, f��),
P (c̄, fa), ...} ≡ {P (d̄), Q(d̄), Q(ē)}

22



Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program Π(r, IC ) together with query program

Ans(x̄) ← P (x̄, t��), Q(x̄, f��)

Answer: Ans = ∅

Query: Ans(x̄) ← P (x̄, t��)

Answer: Ans = {d}

23



Data Integration

Given a collection of (materialized) data sources S1, . . . ,

Sn, and a global, virtual database G, that integrates the data
sources

Given a (global) query Q to G, one can generate a query plan that
extracts and combines the information from the sources

Usually one assumes that certain ICs hold at the global level, and
they are used in the generation of the query plan

24



DBMS

Global Query (SQL):

         SELECT   ...
         FROM      ...
         WHERE    ...
          .....

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query
Plan

MEDIATOR

global ICs??

25



BUT, how can we be sure that such ICs hold?

They are not maintained at the global level

A natural scenario for applying our methodology: retrieve only
information from the global database that is consistent with IC

New issues appear:

• What is a repair of the global, virtual database?

• How to retrieve consistent information from the global, virtual
DB G?

At query time ...

26



DBM S

Global Query (SQL):

         SELECT   ...
         FRO M       ...
         W H ERE    ...
         CONSISTENT W ITH .....

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

27



A Solution for Data Integration

• Global schema R
• Local Sources V

– Local Schemas

– Type: open, closed

– Contents v

• Mapping:

– Global-as-View (GAV)

– Local-as-View (LAV)

28



• Global-as-View (GAV): the global schema relations are
described as views of the local relations

YearMovie(Title, Year) ←BD1(Title, Director , Year)

YearMovie(Title, Year) ←BD2(Title, Director , Year)

MovieReview(Title, Director , Review) ← BD1(Title, Director , Year),

BD3(Title, Review)

• Local-as-View (LAV∗): each local source is described as a
view of the relations of the global schema

V1 : BD1(Title, Year , Director) ←Movie(Title, Year , Director , Genre),

Canadian(Director),

Year ≥ 1960, Genre = Comedy

V2 : BD2(Title, Review) ←Movie(Title, Year , Director , Genre),

MovieReview(Title,Review), Year ≥ 1990

29



A source can be:

• open: the source is incomplete

• closed: the source is complete (but may not be sound)

• clopen: the source is complete and sound

V1 : BD1(Title, Y ear, Director) ←Movie(Title, Y ear, Director, Genre),
Canadian(Director),

Y ear ≥ 1960, Genre = Comedy

The Legal Global Instances are the ones that satisfy the mappings
of the sources

The Certain Answers to a global query are those that can be
obtained as answers from every legal instance

30



Example: Global system G1 sources

V1(X,Y ) ← R(X,Y ) with v1 = {(a, b), (c, d)}
V2(X,Y ) ← R(Y,X) with v2 = {(c, a), (e, d)}

Legal instance: D = {(a, b), (c, d), (a, c), (d, e)}
• v1 ⊆ ϕ1(D) = {(a, b), (c, d), (a, c), (d, e)}
• v2 ⊆ ϕ2(D) = {(b, a), (d, c), (c, a), (e, d)}

Supersets of D are all legal global instances; no subset of D is

Query Q: R(X,Y )? ⇒ CertainG(Q) = {(a, b), (c, d), (a, c), (d, e)}

Local FDs V1 : X → Y , V2 : X → Y are satisfied in the sources

But the global FD R : X → Y is not satisfied by legal instance
D = {(a, b), (c, d), (a, c), (d, e)}
Only (c, d), (d, e) should be consistent answers

31



Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog )

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

32



Repair Program for running Example:
domd(a). domd(b). domd(c). %begin subprogram for minimal instances

domd(d). domd(e). v1(a,b).

v1(c,d). v2(c,a). v2(e,d).

R(X,Y,td) :- v1(X,Y).

R(Y,X,td) :- v2(X,Y).

R(X,Y,ts) :- R(X,Y,ta), domd(X), domd(Y). %begin repair subprogram

R(X,Y,ts) :- R(X,Y,td), domd(X), domd(Y).

R(X,Y,fs) :- domd(X), domd(Y), not R(X,Y,td).

R(X,Y,fs) :- R(X,Y,fa), domd(X), domd(Y).

R(X,Y,fa) v R(X,Z,fa) :- R(X,Y,ts), R(X,Z,ts), Y!=Z, domd(X),domd(Y),domd(Z).

R(X,Y,tss) :- R(X,Y,ta), domd(X), domd(Y).

R(X,Y,tss) :- R(X,Y,td), domd(X), domd(Y), not R(X,Y,fa).

:- R(X,Y,fa), R(X,Y,ta).

Ans(X,Y) :- R(X,Y,tss). %query subprogram

The consistent answers obtained for the query Q: R(X,Y ),
correspond to the expected, i.e., {(c, d), (d, e)}

33



In [Bravo, Bertossi. IJCAI’03]:

It is assumed:

• LAV mapping

– More challenging

– Inconsistency issues are more interesting

• Open Sources

Methodology works for first-order queries (and Datalog extensions),
and universal ICs combined with referential ICs

We are already extending it to consider clopen and closed sources

34



Ongoing and Future Work

• Several implementation issues, in particular in the case of most
common SQL queries and constraints

Specially those that are not maintained by commercial DBMSs

• Research on many issues related to the evaluation of logic
programs for consistent query answering (CQA) in the context
of databases

– Optimization of the logic programs for CQA

– Optimization of the access to the DB, to the relevant
portions of it ...

– Generation of “partial” repairs, relative to the ICs that are
“relevant” to the query at hand

35



– Magic sets (or similar query-directed methodologies) for
evaluating logic programs for CQA

– Efficient integration of databases (DB2) and logic programs
(XSB, DLV)

∗ Some related research is being carried out in this direction
by the developers of DLV (Vienna, Calabria, Roma)

36




