
Situation Calculus Based Specifications of
Action and Change

Leopoldo Bertossi
Carleton University

School of Computer Science

2

The Situation Calculus

A family of languages of many–sorted predicate logic

Widely used in logic based knowledge representation in AI

Introduced in the 60’s by John McCarthy to represent know-
ledge and reason about dynamic domains

Domains subject to the execution of actions and discrete chan-
ge

3

Regained popularity in the 90’s due mainly to the work of
Raymond Reiter:

A simple solution to the frame problem in the SC

Given a specification in terms of preconditions for and
effects of actions

How to obtain a compact, succinct specification of the
many things that are not changed by action executions

Extensions of SC and Reiter’s formalism to: cognitive ac-
tions, explicit time, natural and physical phenomena, con-
current actions, etc.

4

The Situation Calculus Languages

Domain individual, states and actions at the same first–order
object level

First–order quantifications on all these sorts of individuals are
possible: ∀x̄, ∀a, ∀s

Domain dependent elements:

- Action Names, e.g. promote(x, p)

- Fluents (evolving predicates, with one state argument)

Think of database base tables, e.g. Enrolled(x, p, s)

- Names for domain individuals, e.g. john

- Other predicates, e.g. state independent

5

Some fixed ingredients:

- S0 denotes the initial state

- A function name do:

do(a, s) denotes the successor state that results from exe-
cuting action a at state s

- Predicate Poss:

Poss(a, s) says that action a is possible at state s

6

Foundational Axioms for the SC

Unique Names Axioms for Actions: Ai(x̄) 6= Aj(ȳ), for all dif-
ferent action names Ai, Aj

Example: delete(id) 6= classifyBook(isbn, id′)

Unique Names Axioms for States:

S0 6= do(a, s)

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

7

For some reasoning tasks the
Induction Axiom on States (IA):

∀P (P (S0) ∧ ∀s∀a (P (s) → P (do(a, s))) → ∀s P (s))

IA restricts the domain of situations to S0 plus the situations
obtained by executing actions

We are usually interested in reasoning about states that are
accessible from S0 by executing a finite sequence of legal ac-
tions

Accessibility relation on states, ≤, can be defined from the IA
plus the conditions:

¬s < S0

s < do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′

8

An Example: Specifying DB Updates

A Bibliographical Database:

Predicate:

• BooksInPrint(isbn, title, author, editor, year, edition) :

Fixed table containing all printed books (that may be ordered)

Tables (Fluents):

• Unclassified(isbn, copies, s) :

Contains books that have been ordered, but not classified yet

9

• Classified(isbn, id, s) :

Contains an entry for each copy of a book

Each copy has its own internal classification number id

• Stock(isbn, copies, s) :

Contains an entry for each classified book, indicating how many
copies there exist

10

Stock (isbn, copies)classify (isbn, id)

Classified (isbn, id)

BooksInPrint (isbn, author, title, year, edition)

order (isbn, copies)

Unclassified (isbn, copies)

11

Example Continued: Actions

Update Actions (atomic actions):

• order(isbn, copies) :

Orders an item from BooksInPrint and adds it into
Unclassified

• classifyBook(isbn, id) :

Deletes an isbn from Unclassified, it assigns an id to it, and
adds the tuple formed this way into Classified

It also updates Stock incrementing by one the number of co-
pies

12

• deleteBook(id) :

Deletes a book corresponding to id from Classified

It also decreases the number of copies in Stock

13

Action Precondition Axioms:

• Poss(order(isbn, copies), s) ≡ ∃ title, author, editor, year, edition

BooksInPrint(isbn, title, author, editor, year, edition)

• Poss(classifyBook(isbn, id), s) ≡
¬(∃ isbn′) Classified(isbn′, id, s) ∧

(∃ copies) Unclassified(isbn, copies, s)

14

Example Continued: Effect Axioms

Effect Axioms for Classified:

• Poss(deleteBook(id), s) ∧ Classified(isbn, id, s) →
↑

¬Classified(isbn, id, do(deleteBook(id), s))

↑
2 The precondition for the action (specified before)

2 The (pre)condition on the world at execution state
(aka. fluent precondition)

2 The effect at the successor state

In this case, a negative effect axiom

• Poss(classifyBook(isbn, id), s) →

Classified(isbn, id, do(classifyBook(isbn, id), s)

A positive effect axiom

15

Effect Axioms for Stock:

• Poss(classifyBook(isbn, id), s) ∧
((Stock(isbn, copies, s) ∧ copies′ = copies+ 1) ∨

(¬Stock(isbn, copies, s) ∧ copies′ = 1)) →
Stock(isbn, copies′, do(classifyBook(isbn, id), s))

• Poss(classifyBook(isbn, id), s) ∧ Stock(isbn, copies, s) →

¬Stock(isbn, copies, do(classifyBook(isbn, id), s))

A negative and a positive effect axiom for Stock

16SCDBR: A Pre-Specification

User’s pre-specification given to the system:

1. Similarity type of the FOL: names for fluents, predicates,
actions, distinguished individuals,

2. For each action:
ACTION Action

PRECONDITION ActionPrecondition

EFFECTS StateCondition1 : EffectPolarity1 Fluent1
...
StateConditionn : EffectPolarityn Fluentn

Action affects either positively (+) or negatively (-) the Fluenti (at the

successor state) if the StateConditioni (on the fluent) holds (at the

current state)

Like a possibly “sparse matrix” of Actions vs. Fluents, with entries +,

−, or, most of them, empty

3. A set of formulas about the initial state (the initial data-
base)

17

Successor State Axioms

So far: Specifications of things that change when actions are
executed

Frame Problem: How to specify the (many!) things that do
not change

Solution (R. Reiter 1991): Generate a new specification from
the previous one, indicating exactly under which conditions
each fluent becomes true at an arbitrary successor state (SS)
do(a, s)

For each fluent R(s), consider all its effect axioms (EAs), ne-
gative and positive

Apply metalevel assumption: EAs axioms provide all the con-
ditions under whichR becomes true or false, resp., at a legal SS

18

So, construct an axiom of the form

∀a∀s Poss(a, s) → [R(do(a, s)) ≡ γ+R(a, s) ∨ (R(s) ∧ ¬γ−R(a, s))]

γ+R (a, s): actions and their conditions, retrieved from EAs,
that make R true

γ−R (a, s): actions and their conditions, retrieved from EAs,
that make R false

That is: R is true at a successor state iff it is made true or it
was already true and it is not made false

SSAs can be automatically computed from the effect axioms!

19

This solution relies on the possibility of quantifying over actions

This solution works for deterministic actions only

With this transformation, the commonsense (nonmonotonic)
metalevel assumption was materialized into a full first–order
formalism

The formula on the RHS of [...] does not contain do(a, s), but
only s

20

Example Continued: A SSA

∀a∀s Poss(a, s) →
(Stock(isbn, j, do(a, s))≡
a = delete book(id) ∧

(Classified(isbn, id, s) ∧
∃i (Stock(isbn, i, s) ∧ i > 1∧ j = i− 1)) ∨

a = classify book(isbn, id) ∧
(∃i (Stock(isbn, i, s) ∧ j = i+ 1) ∨

¬∃i (Stock(isbn, i, s)) ∧ j = 1) ∨
Stock(isbn, j, s) ∧ ¬(

a = delete book(id) ∧
Classified(isbn, id, s) ∧

Stock(isbn, j, s) ∨
a = classify book(isbn, id) ∧

Stock(isbn, j, s)))

21

SCDBR: More SSA’s

SCDBR computes the SSA for Stock:
| ?- ssa(stock, A),p_i(A, R).

R = (forall(a):

(poss(a,s) =>

(stock(isbn1,i,do(a,s)) <=>

(exists(id) : (a eq delete_book(id) &

classified(isbn,id,s) &

exists(j) : (stock(isbn,j,s) &

j>1 & i eq j-1)) v

exists(id) : (a eq classify_book(isbn,id) &

(exists(k) : (stock(isbn,k,s) &

i eq k+1) v

forall(k) : (neg stock(isbn,k,s)) &

i eq 1))) v

stock(isbn,i,s) &

neg (exists(id) : (a eq delete_book(id) &

classified(isbn,id,s) &

stock(isbn,i,s)) v

exists(id) : (a eq classify_book(isbn,id) &

stock(isbn,i,s)))))) ?

22

An Example (Cont’d): Obtaining the SSA’s

The result provided by the system when asked for the successor
state axiom for the fluent Classified is

| ?- ssa(classified, A),p_i(A, R).

R = (forall(a) : (poss(a,s) =>

(classified(isbn1,id1,do(a,s)) <=>

a eq classify_book(isbn1,id1) v

classified(isbn1,id1,s) &

neg a eq delete_book(id1)))) ?

This PROLOG term represents the desired SSA

∀a∀s (Poss(a, s) → [Classified(isbn, id, do(a, s)) ≡

a = classifyBook(isbn, id)
∨

Classified(isbn, id, s) ∧ ¬a = deleteBook(id)])

23

SCDBR: The Specification Language

Formulas of specification language L are:

internally represented by Prolog ground terms

written in prefix notation

processed by Prolog procedures

In consequence, the system uses two kinds of variables:

usual Prolog variables (starting with upper-case letters)

variables of the language L, starting with lower–case let-
ters, (treated as constants by Prolog)

24

The system contains procedures for translating formulas in pre-
fix notation into infix notation:

p i(·,·)

and in the other direction with

i p(·,·)

25

Generating the SSA’s

We know the general syntactic form of the successor state
axioms:

Poss(a, s) ⊃ [R(do(a, s)) ≡ γ+R (a, s) ∨ (R(s) ∧ ¬γ−R (a, s))].

This structure is represented by the PROLOG procedure:

ssa(R, all(a,

implies(poss(a, STATE_VAR),

iff(RSS, or(PGR,

and(RS, not(NGR))))))):- ...

R, RSS, PGR, RS, NGR represent the fluent, the fluent at the
successor state, the formula γ+R , the fluent at the current state
and the formula γ−R , respectively.

26

By means of unification, the PROLOG call ssa(fluent,A)

will leave in A a formula instantiated with concrete values for
RSS, PGR, RS, NGR, which are obtained by executing the pro-
cedures in the body of the clause.

27

The Regression Operator

Introduced by Ray Reiter (1991)

Crucial for most of the reasoning tasks

E.g. it can be used for:

• Testing legality of transactions: do([T1, . . . , Tn], S0)

• Queries to a virtually updated DB: ϕ(do([T1, . . . , Tn], S0) ?

• Basis for planning

• ...

After successive applications, an arbitrary L-formula can
be “regressed” to a logically equivalent formula that does
not mention the do(a, s) operation, but only state varia-
bles and state S0.

28

The regression operator uses the successor state axioms
in an essential way:

∀a∀s Poss(a, s) ⊃ (F (do(a, s)) ≡ ΦF (a, s))

Remember that formula ΦF (a, s) does not mention states of
the form do(a, s)

Each application of the operator replaces, for each fluent F ,
the occurrences of R(do(a, s)) by ΦF (a, s)

29

An Example: Applying the Regression Operator

We can invoke the regression operator on the formula

LostBook(′10′, do(deleteBook(′11′), S0))

where we find the fluent LostBook in a successor state

| ?- reg(lost_book(’10’,

do(delete_book(’11’),s0)),F),p_i(F,R).

R = lost_book(’10’,s0) &

neg delete_book(’10’) eq delete_book(’11’)

The result is stored in variable R and represents the following
formula:

LostBook(′10′, S0) ∧ ¬(deleteBook(′10′) = deleteBook(′11′))

30

Checking Legality of Transactions

Is the following transaction legal at the initial state S0:

[order(isbn, copies), classifyBook(isbn, id)]?

Check possibility of order at S0 and the possibility of classifyBook
at the state that results from executing order at S0:

Poss(order(isbn, copies), s0) ∧

Poss(classifyBook(isbn, id), do(order(isbn, copies, s0)))?

We may consider the equivalent formula

(∃ title, . . .) BooksInPrint(isbn, title, . . .) ∧
(∃ copies) Unclassified(isbn, copies, do(order(isbn, copies), s0)) ∧

¬(∃ isbn′) Classified(isbn′, id, do(order(isbn, copies, s0))) (*)

31

Applying regression to (*), we may transform it into an equi-
valent formula that only mentions the initial state S0

The transaction is legal if and only if the regressed formula
follows from the initial database (plus unique names axioms)

SCDBR applies regression to generate the formula to be chec-
ked against the IDB

32

When formulas are regressed to the initial database, compari-
sons between actions and comparisons between individuals in
the domain are generated

SCDBR has three pruning operators that simplify formulas on
the basis of the unique name axioms for actions, states and
objects, obtaining logically equivalent formulas:

Puna, Puns, Puno

33

Example: Checking Legality of Transactions
Is the following transaction legal at S0

[deleteBook(13), deleteBook(12)] ?

With SCDBR:

| ?-

al([delete_book(’13’),delete_book(’12’)],F),

p_l(F,prune_una,F1),p_l(F1,prune_uno,F2),

p_i(F,R),p_i(F1,R1),p_i(F2,R2).

R = [lost_book(’13’,s0), lost_book(’12’,s0) &

neg delete_book(’13’) eq delete_book(’12’)],

R1 = [lost_book(’13’,s0), lost_book(’12’,s0) &

neg ’13’ eq ’12’],

R2 = [lost_book(’13’,s0), lost_book(’12’,s0)] ?

This means that the transaction is legal if

DS0
|= LostBook(13, S0) ∧ LostBook(12, S0)

34

Planning and Regression

The planning task is about constructively proving that

Spec |= ∃s(S0 ≤ s ∧G(s)),

where G(s) is a goal formula with only s as a free and situa-
tional variable

A plan can be syntactically synthesized by applying the regres-
sion operator to G(s) producing a formula to be evaluated
against the initial situation

If there is a such a situation s, it will be constructed in the
regression process as a history of action executions (each of
them possible at the execution situation)

And a plan is a history of action executions!

Exercise: Illustrate this kind of planning with a simple example

35

An Overview of SCDBR

Specification
Pre-Proto-

Specification

User’s
Queries

USER SCD

Interface

BR

Consulting
Initial

Database

DBMS

RETTO

Constraints
Integrity

Database
Initial

Consulting ProvingProving
Integrity

Constraints

Consulting
Historical
Queries

ROLOGP

Consulting
Historical
Queries

)FD

Initial
Database

Consulting
Historical
Queries

Consulting

LRR

(PLC

Architecture of SCDBR

36

Example: Simplify the formula we obtained before by appli-
cation of the regression operator.

| ?- i_p(lost_book(’0-7167-8162-X’,s0) &

neg delete_book(’0-412-14930-3’) eq

delete_book(’0-7167-8162-X’),F),prune_una(F,A),

prune_uno(A,B),p_i(A,A1),p_i(B,B1).

A1 = (lost_book(’0-7167-8162-X’,s0) &

neg ’0-412-14930-3’ eq ’0-7167-8162-X’),

B1 = lost_book(’0-7167-8162-X’,s0)

37

Modifying the Specification: State Constraints

How to modify the specification in order to entail desired state

constraints

Sentences that have to be true in all (admissible or legal) sta-
tes of the world

They are of the form: ∀s(ϕ(s)

Example: ∀s∀x∀y¬(Classified(x, y, s) ∧ Unclassified(x, s))

It should hold: Spec. in terms of SSAs |= ∀sϕ(s)

BUT, if we missed something when writing down the axiom
precondition and/or effect axioms, this may not be true

38

What to do? Instead of starting from scratch, figuring out
what went wrong or missing?

Impose the state constraints on the existing specification and
recompile the effect axioms (ramifications) or precondition axioms
(qualifications)

39

Modifying the Specification: Ramifications

First attempt: modify the effect axioms (or SSAs)

A form of solution to the ramification problem: include the side
effects of actions into the specification

General solution is an open problem

Pinto gives a solution for binary ICs: ∀s ≥ S0 ϕ(s), with ϕ(s)
of the form:

[¬]F1(~x1, s) ∨ [¬]F2(~x2, s) ∨ ψ

Functional dependencies are a special case

40

Example: Delete the following effect axiom from the library
specification

Poss(classifyBook(isbn, id), s) ∧ Stock(isbn, quantity, s) ⊃
¬Stock(isbn, quantity, do(classifyBook(isbn, id), s))

A new, but semantically incorrect, specification is obtained:
the modified specification does not satisfy the functional de-
pendency (binary IC):

¬Stock(isbn, quantity1, s) ∨ ¬Stock(isbn, quantity2, s)
∨ quantity1 = quantity2

The SCDBR procedure ramification generates a new speci-
fication that entails the functional dependency

41

| ?- i_p(neg stock(isbn1,int1,s) v

neg stock(isbn1,int2,s) v int1 eq int2, R1),

ramification(R1,R2),p_i(R2,R3).

R2 contains the new effect axioms. It recovers the missing effect
axiom

42

Modifying the Specification: Qualifications

Lin and Reiter: alternative and general methodology for em-
bedding ICs into a specification that entails them:

Modifying the action precondition axioms

Further constraints on the actions that qualify to be executed

Given an action A, with precondition axiom ΠA(s), and an IC,
ϕ(s), to be sure that ϕ(s) will hold after A, replace ΠA(s) by
ΠA(s) ∧ ϕ(do(A, s))

To avoid the occurrences of both s and do(A, s), apply the
regression operator

43

New precondition becomes ΠA(s) ∧R[ϕ(do(A, s))]

This is done for each named action A

The IC will hold after executing any legal action (now, satisf-
ying the new preconditions)

44

Example: Replace the precondition axiom for classifyBook by:

Poss(classifyBook(isbn, id), s) ≡

(∃copies)Unclassified(isbn, copies, s)

Now specification is incorrect: there may appear two different
books with the same id

Specification does not entail the FD:

Classified(isbn1, id, s) ∧ Classified(isbn2, id, s)

⊃ isbn1 = isbn2

The new specification can be computed:

45

| ?- i_p(forall(isbn1) : forall(isbn2) : forall(id1) :

(classified(isbn1,id1,s) & classified(isbn2,id1,s)

=> isbn1 eq isbn2), F), qualification(F,R).

The new set of axioms is stored in R

Predicate qualification automatically simplifies the formu-
la resulting from the regression according to the unique names
axioms for actions

We obtain:

Poss(classifyBook(isbn, id), s) ≡

∃copies Unclassified(isbn, copies, s) ∧

∀isbn2 (classified(isbn2, id, s) ⊃ isbn = isbn2)

46

In essence, the new axiom adds to the fact that classifyBook
can be executed if, among other conditions, every time we try
to classify a copy of a book, with an id that was used before,
then we must be classifying the same copy

