
The Ontological
Multidimensional Data Model

in Datalog±

Leopoldo Bertossi
Carleton University
Ottawa, Canada

Join work with Mostafa Milani (McMaster University, Hamilton, Canada)

Our Initial Motivation: Contexts

• Given a data source, we may want to:

• Analyze, understand, make sense of the data, etc.

• Assess the data quality

• All this is a formal setting in which the data is embedded

• Contexts were introduced in previous work for data quality
assessment and quality-data extraction (LB et al., VLDB’10 BIRTE WS)

Specified as a separate relational database or a (virtual) data
integration system

• D can be mapped into the context

• Quality criteria imposed at contextual level

2

C

S

D

DP1
S

?

schema
context

mapping

under assessment
DP2

DP3

class D of intended instances

instance

‘

‘

‘

• Through the context, alternative
clean versions of D can be
specified, computed, compared
(with each other and D), queried, etc.

Depending on the mapping and context’s ingredients

• Data dimensions were not introduced, but they are crucial for many
data analysis and management problems

• The Ontological Multidimensional Data Model (OMD model)
provides formal contexts for the above tasks, with explicit
dimensions

3

Example: Doctor requires temperatures taken with oral thermometer,
expecting data to correspond to this requirement

Table has no elements for this
assessment

An external context can provide
them

We may be missing “dimensions” above, something intrinsically
“contextual”

The context could be a (multi-)dimensional database, or a dimensional
ontology

4

A MD data model/instance

A hospital guideline

As a rule or a constraint

“Take patients’ temperatures in standard care units with
oral thermometers”

Can be taken advantage of through/after upward navigation in the
hierarchical, dimensional hospital structure

5

• A MD context would enable contextual, dimensional navigation,
roll-up & drill-down

To access and generate missing data at certain levels (as in example
above)

• Idea: Embed Hurtado-Mendelzon (HM) MD data model in contexts

• Go beyond: Enrich it with additional, dimension-related data, rules
and constraints

An ontological, multidimensional context!

6

Ontological Contexts with Dimensions

New ingredients in MD contexts: (RuleML’15)

• A (relational reconstruction of) the HM model

• Categorical relations: Generalize fact tables

Not necessarily numerical values, linked to different levels of
dimensions, possibly incomplete

• Dimensional rules: generate data where missing, enable
navigation

• Dimensional constraints: on (combinations of) categorical
relations, involving values from dimension categories

7

Example:

• Categories Ward and Unit in
Hospital dimension

• UnitWard(unit,ward): parent/child
relation

• PatientWard: categorical relation

Ward and Day categorical attributes
take values from categories

• Categorical relations are subject to dimensional constraints

• Need rules for dimensional navigation

What language to express all this? Datalog± (Gottlob et al., ∞)

8

Datalog± MD Ontologies

Dimensional Constraints:

• A referential constraint restricting units in PatientUnit to
elements in the Unit category, as a negative constraint

⊥ ← PatientUnit(u, d ; p),¬Unit(u)

• “All thermometers used in a unit are of the same type” :

t = t′ ← Thermometer(w , t ;n),Thermometer(w ′, t ′;n ′),

UnitWard(u,w),UnitWard(u,w ′) An EGD

Thermometer(ward , thermometertype;nurse) is categorical relation,
t, t′ for categorical attributes

9

• “No patient in intensive care unit on August /2005”:

⊥ ← PatientWard(w , d ; p),UnitWard(Intensive, w),

MonthDay(August/2005, d) An NC
Dimensional Rules:

• Data in PatientWard generate data about patients for higher-
level categorical relation PatientUnit

PatientUnit(u, d ; p) ← PatientWard(w , d ; p), UnitWard(u,w)

To navigate from PatientWard.Ward up to PatientUnit.Unit via
UnitWard A TGD

Once at the level of Unit, take advantage of guideline (a rule):

“Temperatures of patients in a standard care unit are taken with oral
thermometers”

Data at Unit level that can be used there and at Ward level

10

• Data in categorical relation WorkingSchedules generate data in
categorical relation Shifts

WorkingSchedules

Unit Day Nurse Type

Intensive Sep/5 Cathy cert.

Standard Sep/5 Helen cert.

Standard Sep/6 Helen cert.

Standard Sep/9 Mark non-c.

↘

Shifts

Ward Day Nurse Shift

W4 Sep/5 Cathy night

W1 Sep/6 Helen morning

W4 Sep/5 Susan evening

∃z Shifts(w , d ;n, z) ← WorkingSchedules(u, d ;n, t),UnitWard(u,w)

Captures guideline: “If a nurse works in a unit on a specific day, she
has shifts in every ward of that unit on the same day”

Existential variable z for missing values for the non-categorical shift
attribute

Rule for downward- navigation and value invention, with join via
categorical attribute between categorical and parent-child predicate

11

Properties of MD Ontologies

• With reasonable and natural conditions, Datalog± MD ontologies
become weakly-sticky Datalog± programs [Cali et al., AIJ’12]

Important that join variables in TGDs are for categorical attributes
(with values among finitely many category members)

• The chase (that enforces TGDs) may not terminate

Weak-Stickiness guarantees tractability of conjunctive QA: only a
“small”, initial portion of the chase has to be queried

Boolean conjunctive QA is tractable for weakly-sticky (WS) Datalog±

ontologies

12

• Separability condition on the (good) interaction between TGDs and
EGDs becomes application dependent

If EGDs have categorical head variables (as in page 9), separability
holds

Separability guarantees decidability of conjunctive QA, etc.

Next goals were:

(a) Develop a practical QA algorithm for WS Datalog±

(b) Optimization of ontologies (as programs)

13

Query Answering on WS MD-Ontologies

• There was a non-deterministic PTIME algorithm for WS Datalog±

(Cali et al., AIJ’12)

• Our goal was to develop a practical chase-based QA algorithm

• Apply magic-sets techniques to optimize QA

There is such a technique (MS) available for (a class of) “existential
programs” (∃-Datalog) (Alviano et al., Datalog 2.0’12)

• WS Datalog± is not closed under MS

• We extended WS Datalog± to a still tractable class of
Joint-Weakly-Sticky programs, which is closed under magic sets

We proposed a QA algorithm (Milani & Bertossi, RR’16, AMW’15)

14

Discussion

• Datalog± is an expressive and computationally nice family of
existential programs (with constraints)

• We have used Datalog± to create multidimensional ontologies

They can be seen as logic-based, relational extensions of MD
DBs

• The OMD data model considerably extends the HM MD data
model

OMD includes general TGDs, EGDs and NCs

A (relational reconstruction of the) HM model, data and queries
are seamlessly integrated into a uniform logico-relational
framework

15

• The usual constraints considered in the HM model are specific
for the dimensional structure of data

Most prominently, to guarantee summarizability (i.e. correct
aggregation, no double-counting)

In the HM model we find constraints enforcing strictness and
homogeneity

Strictness: Every category element rolls up to a single element
in a parent category

In OMD can be expressed by EGDs

Homogeneity: Category elements have parent elements in parent
categories

In OMD can be expressed by TGDs

16

• OMD supports general, possibly incomplete categorical relations

Not only complete fact tables linked to bottom categories

• Our MD ontologies belong to well-behaved classes of Datalog±

• We proposed chase-based QA algorithms for (extensions of) WS
Datalog±

• We are working on the implementation of the QA algorithm

• We applied magic-sets techniques

• MD ontologies were motivated by data quality concerns

They are interesting by themselves

QA can be used to extract quality data from dirty data (RuleML’15)

17

• Open problems in our setting:

- Sometimes we have to deal with closed predicates, e.g.
categories

- Inconsistency tolerance

What if constraints are not satisfied?

Next some more specific technical issues
...

18

Downward Navigation and Categorical Attributes

• TGDs as in page 11 can be used for “deterministic” downward
navigation: only values for non-categorical attributes are created,
with determinism wrt. the categories involved

• In some applications there may be incomplete data about
categorical attributes

Existential quantifications over categorical variables may be needed

19

Categorical relation DischargePatients, linked to Institution, with data
about patients leaving the hospital

DischargePatients

Inst. Day Patient

H1 Sep/9 Tom Waits

H1 Sep/6 Lou Reed

H2 Oct/5 Elvis Costello

−→

Query on PatientUnit about the dates
that ‘Elvis Costello’ was in a unit at
institution ‘H2’

No answer directly from PatientUnit (as derived from PatientWard)

If each patient is in a (only one) unit, DischargePatient can generate
data downwards for PatientUnit

Knowledge about lower-level unit (category value) is uncertain:
∃u InstitutionUnit(i,u),PatientUnit(u,d; p) ← DischargePatients(i,d; p)

20

• With rules of this kind, an MD ontology is still weakly-sticky

In particular only a limited number of nulls can be generated
with the chase

• EGDs with only categorical attributes in heads do not guarantee
separability anymore, and becomes application dependent

21

Going Not-Too-Far Beyond WS Ontologies

Sticky W-Sticky
?

tractable QA closed under MS

X

• WS Datalog± is a syntactic class
defined by a combination of:

- The notion of finite-rank position
(predicate/attribute) found in
weakly-acyclic TGDs (ΠF in data exchange)

- A variable-marking procedure developed for sticky Datalog±, to
keep track of value propagation via joins

(A better-behaved, less expressive subclass of WS Datalog±)

• It captures “finite positions”: finitely many nulls in them during
the chase (not necessarily all finite positions, which is undecidable)

A “selection function”, Srank , of finite positions via finite-rank
positions

22

SƎ
All

computable non-computable

Srank

selecting finite positions
• We started investigating more general

selections functions (AMW’15, RR’16)

• Determining a new, syntactic, computable
selection function: Srank ⊆ S∃

• S∃ uses:

- Existential-dependency graph (Krötzsch & Rudolph, IJCAI’11)

- Marking procedure via join variables in TGDs (neglected by Srank)

• We identified and characterized via S∃ the Joint-Weakly-Sticky
(JWS) class

A syntactic class with tractable QA that extends WS Datalog± and
is closed under MS!

23

Joint-Weak-Stickiness

Set of TGDs Σ: p(X̂, Ŷ), u(Ŷ) → ∃Z p(Y, Z)

u(X), p(X, Ŷ), p(Ŷ , Ŵ) → t(X)Marks body variables that either:

(a) do not appear in heads, e.g. X in the first rule, and Y in the second, or

(b) occur in heads only in positions of marked variables (maybe another rule), e.g. Y
in first rule (Y occurs in p[1] in the head, where marked variable Y appears in
the body of second rule)

• Srank(Σ) = ΠF (Σ) = {u[1]}

• With marked variables as for WS programs

• Σ is WS if marked join variables appear in some “finite position”

• Join variable Y appears in p[1], p[2] 6∈ Srank(Σ) Σ is not WS!

• Σ is JWS: S∃(Σ) = {p[1], p[2], u[1], t[1]}

24

•We proposed a PTIME chase-based QA algorithm for JWS Datalog±

For QA a finite initial fragment of the chase is good enough

• The (generic) algorithm takes into account during the chase if a
position is finite or not

As determined by the selection function (which acts as an oracle)

And behaves accordingly

• As such it can be applied both to WS and JWS, but some finite
positions will be missed when applied to WS

25

QA Algorithm

p(X̂, Y) → ∃Z p(Y, Z)

u(X̂), p(X̂, Y), p(Y, Ŵ) → t(Y)

• Σ :

• Σ is JWS: X appears in S∃(Σ) = {u[1]}

• Algorithm with D = {p(a, b), u(b)} and Q : ∃Y t(Y)

- Initialize I := D, and apply first TGD, creating p(b, ζ1)

- First TGD cannot be applied again: p(ζ1, ζ2) homomorphic to
p(b, ζ1)

- No applicable rules

- Resume with frozen ζ1 (as a constant, relevant for homo tests)

26

- As many resumptions as existentials in query (one here)

p(X̂, Y) → ∃Z p(Y, Z)

u(X̂), p(X̂, Y), p(Y, Ŵ) → t(Y)

D = {p(a, b), u(b)}
Q : ∃Y t(Y)

- Algorithm continues

- Apply first and second TGDs, creating p(ζ1, ζ2) and t(ζ1), resp.

- No applicable rules (due to homo test), no more resumptions

- The algorithm stops with instance I = D ∪ {p(b, ζ1), p(ζ1, ζ2), t(ζ1)}
- I |= Q, so answer is true in Σ ∪D

Algorithm stops, producing a query-dependant, initial, finite portion
of the regular chase, and is good enough to answer the query

27

Magic-Sets Rewriting

• We consider a magic-sets rewriting method (MS) for Datalog∃

[Alviano et al., Datalog 2.0’12]

Quite general, and does not bound existential variables

Nothing like this: ∃w Assist f b(v, w)← Assistff (u, v)

• WS not closed under MS, but JWS is

• AL(Sext) can be applied both to a JWS program and its MS
rewriting

Whereas AL(Srank) applied to a WS program’s MS rewriting
(possibly no longer WS) will be sound, but possibly incomplete

28

Example: Σ below is WS

σ1 : ∃z Assist(z, x)← Assist(x, y)

σ2 : ∃w Assist(v, w)← Assist(u, v)

σ3 : Certified(x′)← Assist(x′, y′),Assist(y′, z′),Doctor(y′)

Query Q : Certified(Marie)?

Adorned program Σa:

r1 : ∃z Assist fb(z, x)← Assistbf (x, y)

r2 : ∃w Assistbf (v, w)← Assist fb(u, v)

r3 : Certifiedb(x′)← Assistbf (x′, y′),Assistbf (y′, z′),Doctor(y′)

Still WS

29

The MS rewriting ΣM :

m1 : ∃z Assist fb(z, x)← mg Assist fb(x),Assistbf (x, y)

m2 : ∃w Assistbf (v, w)← mg Assistbf (v),Assist fb(u, v)

m3 : Certifiedb(x′)← mg Certifiedb(x′),Assistbf (x′, y′),

Assistbf (y′, z′),Doctor(y′)And the magic rules:

m4 : mg Certifiedb(Marie).

m5 : mg Assistbf (x′)← mg Certifiedb(x′)

m6 : mg Assistbf (y′)← mg Certifiedb(x′),Assistbf (x′, y′)

m7 : mg Assist fb(v)← mg Assistbf (v)

m8 : mg Assistbf (x)← mg Assist fb(x)

ΣM is not WS!

Σ is JWS since it is WS

ΣM is also JWS

30

EXTRA SLIDES

31

Existential Dependency Graph and Join Acyclicity

Example:

Assume a set Σ of tgds (a variable only appears in one rule):

σ1 : ∃z Assist(x, z)← Nurse(x, y),Doctor(x)

σ2 : ∃w Nurse(w, u)← Assist(t, u)

ΠB
x and ΠH

x are the set of all positions where a variable x occurs in
the body and head of a rule

I.e. ΠB
x = {Nurse[1],Doctor [1]} and ΠH

x = {Assist [1]}

For any ∃-variable x, Ωx is the set of positions in which values invented
for x may appear

32

Ωx can be computed as the smallest set that:

(1) ΠH
x ⊆ Ωx and

(2) ΠH
y ⊆ Ωx for every ∀-variable y with ΠB

y ⊆ Ωx

That is, Ωz = {Assist [2],Nurse[2]} and Ωw = {Nurse[1]}

EDG of Σ has:

(1) ∃-variables as its nodes,

(2) There is an edge from x to y if the rule where y occurs contains
a ∀-variable z in its body with ΠB

z ⊆ Ωx

In this example, EDG of Σ has two nodes: z and w

There is only one edge from z to w

33

A set of tgds Σ is joint acyclic (JA) if its EDG is acyclic

Σ is JA (because EDG is acyclic)

We now define ∃-infinite positions of Σ:

Π∃∞(Σ) :=
⋃

Ωxi , with xis variables that appear in a cycle in
the EDG

Π∃F (Σ) are ∃-finite positions (the rest of the positions)

Proposition 1: ΠF (Σ) ⊆ Π∃F (Σ) (Π∃∞(Σ) ⊆ Π∞(Σ))

In this example:

Π∞(Σ) = {Assist [1],Assist [2],Nurse[1],Nurse[2]}, while

Π∃∞(Σ) = ∅

34

Example of Magic Rewriting

Example: Consider a set Σ of tgds:

σ1 : ∃z Assist(z, x)← Assist(x, y)

σ2 : ∃w Assist(v, w)← Assist(u, v)

σ3 : Certified(x′)← Assist(x′, y′),Assist(y′, z′),Doctor(y′)

ΠF (Σ) = {Doctor [1]}

ΠF (Σ) = {Assist [1],Assist [2], Certified [1]}

Σ is WS!

y′ is repeated and marked but appears in Doctor [1] ∈ ΠF (Σ)

Dashed lines represent special edges

35

Given a query Q : Certified(Marie) the adorned program Σµ is:

r1 : ∃z Assist fb(z, x)← Assistbf (x, y)

r2 : ∃w Assistbf (v, w)← Assist fb(u, v)

r3 : Certifiedb(x′)← Assistbf (x′, y′),Assistbf (y′, z′),Doctor(y′)

ΠF (Σµ) = {Certified b [1],Assistbf [1],Assist fb [2],Doctor [1]}

Π∞(Σµ) = {Assistbf [2],Assist fb [1]}

Σµ is still WS (y′ in r3 appears in Doctor [1] ∈ ΠF (Σµ))

36

The MS rewriting ΣM contains modified rules:

m1 : ∃z Assist fb(z, x)← mg Assist fb(x),Assistbf (x, y)

m2 : ∃w Assistbf (v, w)← mg Assistbf (v),Assist fb(u, v)

m3 : Certifiedb(x′)← [mg Certifiedb(x′),Assistbf (x′, y′),

Assistbf (y′, z′),Doctor(y′)]

And the magic rules:

m4 : mg Certifiedb(Marie)

m5 : mg Assistbf (x′)← mg Certifiedb(x′)

m6 : mg Assistbf (y′)← mg Certifiedb(x′),Assistbf (x′, y′)

m7 : mg Assist fb(v)← mg Assistbf (v)

m8 : mg Assistbf (x)← mg Assist fb(x)

37

ΠF (ΣM) = {mg Certified b [1],Doctor [1]}

ΣM is not WS! Because of repeated variables in m1,m2 and m6

This proves that WS is not closed under MS rewriting

38

Σ is JWS since it is WS

Now consider the EDG of ΣM :

Ωz contains Assist fb [1] and Ωw has Assistbf [2]

Therefore Π∃∞(Σ) contains Assist fb [1] and Assistbf [2]

ΣM is JWS

39

Example of QA

Example: A WS Σ:

∃zAssist(z, x)← Assist(x, y)

∃wNurse(x,w)← Doctor(x)

Certified(z, x)← Assist(x, y),Nurse(x, z)

D = {Doctor(john),Certified(alice),Assist(john, alice)}

CQ Q : ∃x∃y(Assist(x, y) ∧ Assist(y, john))

We use Srank and ΠF (Σ) = {Nurse[1],Nurse[2],Doctor [1]}

40

The two phases for QA:

1. pChase runs until termination

However, after a pChase-step the generated nulls appearing in
ΠF (Σ)- positions are immediately frozen

W1 is frozen (hence underlined)
immediately, because it appears in Nurse[2] ∈ ΠF (Σ)

Z1 is not frozen, because
Assist [1] ∈ Π∞(Σ)

41

2. pChase iteratively resumes for a number of times
that depends on the number of distinct ∃-variables that appear
in a join in the query (deals with joins in the query)

y is the only ∃-variable that
also appears in a join in Q
Therefore, we freeze all nulls
(e.g. Z1), and resume the
chase only once

Assist(Z2, Z1) is entailed
since Z1 is frozen now!

Q true after the chase
resumption!

It was false without it!

42

Let us now pose the query:

Q′ : ∃x∃y∃z (Assist(x, y) ∧ Assist(y, z) ∧ Assist(z, john))

Now the algorithm runs with two chase resumptions (due to y and
z),returning true!

43

