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Abstract: This course addresses the logical aspects of the problems of defining and ob-
taining consistent information from inconsistent databases, i.e. from databases that violate
given semantic (integrity) constraints.

The basic assumption that databases may be inconsistent departs from the everyday prac-
tice of database management systems, where typically the system checks the satisfaction of
integrity constraints and backs out those updates that violate them. However, present-day
database applications have to consider a variety of scenarios in which data is not necessarily
consistent. From this perspective, integrity constraints can be seen as constraints on query
answers rather than on the data or database states.

The subject of consistent query answering in databases has received the attention of the
database and logic programming communities for the last 6 years. We summarize research
carried out in the field, starting by the seminal paper presented at the ACM Symposium on
Principles of Database Systems (PODS 99) by Arenas, Bertossi, Chomicki.

The logical approaches that has been followed rely on the concepts of “repair” and “consis-
tent query answer” (CQA). We describe (a) logical specifications of the notion of repair and
CQA; and (b) methodologies for computing CQAs: query transformation, logic program-
ming, inference in annotated logics, and specialized algorithms. Computational complexity
issues are also discussed. Applications to virtual data integration and P2P data exchange
will be introduced.

Slides for the course will be posted before and during the course under
http://www.scs.carleton.ca/~bertossi/talks/esslli05.pdf
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Abstract. In this chapter, we summarize the research on querying inconsistent
databases that we have been conducting during the last five years. The formal
framework that we have used is based on two concepts: repair and consistent query
answer. We describe different approaches to the issue of computing consistent query
ans query transformation, logic programming, inference in annotated logics,
and specialized algorithms. We also characterize the computational complexity of
this problem. Finally, we discuss related research in artificial intelligence, databases,
and logic programming.

1 Introduction

ent information from

In this chapter, we address the issue of obtaining con.
inconsistent databases — databases that violate given integrity constraints.
Our basic assumption departs from the everyday practice of database man-
agement systems. Typically, a database management system checks the sat-
isfaction of integrity constraints and backs out those updates that violate
them. However, present-day database applications have to consider a variety
of scenarios in which data is not necessarily consistent:

Integration of autonomous data sources. The sources may separately sat-
isfy the constraints, but when they are integrated the constraints may not
hold. For instance, consider different conflicting addresses for the same per-
son in a taxpayer database and a voter registration database. Each of those
databases separately satisfies the functional dependency that associ
single address with each person, and yet together they violate this depen-
dency. Moreover, because the sources are autonomous, the violations cannot
be simply fixed by removing one of the conflicting tuples.

Unenforced integrity constraints. Even though integrity constraints cap-
ture an important part of the semantics of a given application, they may still
fail to be enforced for a variety of reasons. A data source may be a legacy
system that does not support the notion of integrity checking altogether, or
integrity checking may be too costly (this is often the reason for dropping
some integrity constraints from a database schema). Finally, the DBMS itself
may support only a limited class of constraints.

Temporary inconsistencies. It may often be the case that the consistency
of a database is only temporarily violated and further updates or transactions

ciates a

Inconsistent Databases 3

2 Consistent Query Answers

base is not neces

Our basic asst ion is that an inconsistent datz arily going
to be repaired in a way that fully restores its consistency. Therefore, if such a
database is to be queried, we have to distinguish between the information in
the database that participates in the integrity violations, and one that does
not. Typically, only a small part of a database will be inconsistent.

‘We need to make precise the notion of “consistent” (or “correct”) informa-
tion in an inconsistent database. More specifically, we address the following
issues:

. giving a precise definition of a consistent answer to a query in an incon-
sistent database,
finding computational mechanisms for obtaining consistent information
from an inconsistent datab: d

. studying the computational complezity of this problem.

I

w

Ezample 1. Consider the following relational database instance r:

Employee| Name  Salary
J.Page 8000
V.Smith 3000

M .Stowe 7000

The instance r violates the functional dependency f; : Name — Salary
through the first two tuples. This is an inconsistent database. Nevertheless,
there is still some “consistent” information in it. For example, only the first
two tuples participate in the integrity violation. To characterize the consistent
information, we notice that there are two possible ways to repair the database
in a minimal way if only deletions and insertions of whole tuples are allowed.
They give rise to two different repairs:

Employeel ‘ Name Salary Employee2 ‘ Name Salary
J.Page 5000 J.Page 8000
V.Smith 3000 V.Smith 3000
M. Stowe 7000 M. Stowe 7000

We can see that certain information, for example (M.Stowe, 7000), per-
sists in both repairs because it does not participate in the violation of the FD
fi. On the other hand, some information, for example (J.Page,8000), does
not persist in all repairs because it participates in the violation of f;.

There are other pieces of information that can be found in both repairs,
for example we know that there is an employee with the name J. Page.
Such information cannot be obtained if we simply discard the tuples that
participate in the violation.

o
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are expected to restore it. This phenomenon is becoming more and more
common, as databases are increasingly involved in a variety of long-running
activities or workflows.

Conflict resolution. Removing tuples from a database to restore consis-
tency leads to information loss, which may be undesirable. For example, one
may want to keep multiple addresses for a person if it is not clear which is
the correct one. In general, the process of conflict resolution may be complex,
costly, and nondeterministic. In real-time decision-making applications, there
may not be enough time to resolve all conflicts relevant to a query.

To formalize the notion of consistent information obtained from a (possi-
bly inconsistent) database in response to a user query, we propose the notion
of a consistent query answer. A consistent answer is, intuitively, true regard-
less of the way the database is fixed to remove constraint violations. Thus,
answer consistency serves as an indication of its reliability. The different ways
of fixing an inconsistent database are formalized using the notion of a repair.
A repair is another database that is consistent and differs minimally from the
original database.

We summarize the results that we and our collaborators have obtained
so far in this area. We have studied consistent query answers for first-order
and scalar aggregation queries. We have also considered the specification of
repairs using logic-based formalisms. We relate our results to similar work
undertaken in knowledge representation and logic programming, databases,
and philosophical logic. It should be pointed out that we are studying a
very specific instance of the logical inconsistency problem: when the data is
inconsistent with the integrity constraints. We do not address the issue of
how to deal with inconsistent sets of formulas in general. In standard rela-
tional databases negative information is represented implicitly (through the
Closed World Assumption), and incons s appear only in the presence
of integrity constraints.

The trivialization of classical logical inference in the presence of an in-
consistency is less of a problem in the database context because database
systems typically do not support full-fledged first-order inference. It is more
important to be able to distinguish which query answers are affected by the
inconsistency and which are not.

This chapter is structured as follows. In Sect. 2, we define the notions
of repair and consistent query answer (CQA) in the context of first-order
queries. In Sect. 3, we present a corresponding computational methodology
based on query transformation. In Sect. 4, we show how to specify data-
base repairs declaratively using logic programming and annotated logics. In
Sect. 5, we discuss computational complexity issues. In Sect. 6, we show that
in the context of aggregation queries the definition of CQAs has to be slightly
modified, and we discuss the corresponding computational mechanisms. In
Sect. 7, we discuss other related approaches to handling inconsistent infor-
mation. In Sect. 8, we present open problems.
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In the following, we assume that we have a fixed relational database
schema R consisting of a finite set of relations. We also have two fixed, dis-
joint, infinite database domains: D (uninterpreted constants) and N (num-
bers). We assume that clements of the domains with different names are
different. Database instances can be seen as finite, first-order structures over
the given schema that share the domains D and N. Every attribute in every
relation is typed, thus all the instances of R can contain only elements of
cither D or N in a single attribute. Because each instance is finite, it has a
finite active domain that is a subset of DUN. As usual, we allow the standard
built-in predicates over N (=,#, <,>,<,>) that have infinite, fixed exten-
sions. The domain D has only equality as a built-in predicate. Using all of
these elements we can build a first-order language £.

2.1 Integrity Constraints

Integrity constraints are typed, closed first-order L-formulas. We assume that
we are dealing with a single set of integrity constraints /C' which is consistent
as a set of logical formulas. In the sequel, we will denote relation symbols by
Py, ..., Py; tuples of variables and constants by i, . m; and a quantifier-
free formula referring only to built-in predicates by ¢. We also represent a
ground tuple @ in a relation P as the fact P(a).

Practically important integrity constraints (called simply dependencies in
[1, Chapt. 10]) can be expressed as L-sentences of the form

m n
vi 3. [\/ Pi@) v\ ~P@) Voo, ), (1)
i=1 i=m+1
where &; CzUY, @ ceym
In this chapter, we discuss the following classes of integrity constraints
that are special cases of (1):

\n

1. Universal integrity constraints: L-sentences

Var,. i [\ P(@) v\ SP@) V6@, 8]
i=1 i=m+1

2. Denial constraints: L-sentences

)]

They are a special case of universal constraints.
3. Binary constraints: universal constraints with at most two occurrences of
database relations.

Page 1
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4. Functional dependencies (FDs): L.

Vi, Zods

They are a special case of binary denial constraints. A more familiar
formulation of the above FD is X — Y, where X is the set of attributes
of P corresponding to ; and Y the set of attributes of P corresponding
to 72 (and 7).

. Referential integrity constraints, also known as inclusion dependencies
(INDs): L-sentences

o

Yz, 373 [-Q(7) V P(Z:

.

where the #; are sequences of distinct variables, with &5 contained in &;;
and database relations P, Q. Again, this is often written as Q[Y] C P[X]
where X (respectively, ) is the set of attributes of P (respectively, Q)
corresponding to 7. If P and Q are clear from the context, we omit them
and write the dependency simply as ¥ C X. If an IND can be written
without any existential quantifiers, then it is called full

Denial constraints, in particular FDs, and INDs are the most common in-
tegrity constraints in database practice. In fact, commercial systems typically
restrict FDs to key dependencies and INDs to foreign key constraints.

Given a set of FDs and INDs IC' and a relation P with attributes U,
a key of P is a minimal set of attributes X of P such that IC entails the
FD X — U. In that case, we say that each FD X — Y € IC is a key
dependency and each IND Q[Y] C P[X] € IC is a foreign key constraint. If,
additionally, X is the primary key of P, then both kinds of dependencies are
termed primary.

We have seen an FD in Example 1. FDs and INDs are also present in
Example 4. Below, we show some examples of denial constraints.

Ezample 2. Consider the relation Emp with attributes Name, Salary, and
Manager, where Name is the primary key. The constraint that no employee
can have a salary greater than that of her manager is a denial constraint:

Vn,s,m,s’,m’. [~Emp(n,s,m)V ~Emp(m,s',m’) v s <.
Similarly, single-tuple constraints (CHECK constraints in SQL2) are a special
case of denial constraints. For example, the constraint that no employee can

have a salary over $200,000 is expressed as

Vi, s, m.[~Emp(n, s,m) Vs < 200000].

~
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We note that for denial constraints all repairs of an instance r are subsets
of r (see Example 1). However, for more general constraints, repairs may
contain tuples that do not belong to r. For instance, removing violations of
referential integrity constraints can be done not only by deleting but also by
inserting tuples.

Ezample 4. Consider a database with two relations Personnel(SSN,Name)
and Manager(SSN). There are FDs SSN — Name and Name — SSN,
and an IND Manager[SSN] C Personnel[SSN]. The relations have the
following instances:

Personnel| SSN  Name
123456789 Smith
555555555 Jones
555555555 Smith

Manager| SSN
123456789
555555555

The instances do not violate the IND but violate both FDs. If we consider
only the FDs, there are two repairs: one obtained by removing the third tuple
from Personnel, and the other by removing the first two tuples from the same
relation. However, the second repair violates the IND. This can be fixed by
removing the first tuple from Manager. So if we consider all three constraints,
there are two repairs obtained by deletion:

Personnel| SSN  Name Manager| SSN
123456789 Smith 123456789
555555555 Jones 555555555

and

Personnel| SSN ~ Name Manager| SSN
555555555 Smith 555555555

Additionally, there are infinitely many repairs, obtained by a combination of
deletions and insertions, of the form

Personnel|  SSN  Name Manager| SSN
123456789 ¢ 123456789
555555555 Smith 555555555

where ¢ is an arbitrary element of the database domain D different from
Smith. o

Definition 2 reflects the assumption that the information in the database
may not only be incorrect but also incomplete. This assumption is warranted
in some information integration approaches [73]. On the other hand, restrict-
ing repairs to subsets of the original database (as in [29]) is based on the
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Definition 1. Given a database instance r of R and a set of integrity con-
straints IC, we say that r is consistent if r F IC in the standard model-
theoretic sense (i.e. IC is true in r); inconsistent otherwise. o

Reiter [88] characterized relational databases as first-order theories by ax-
iomatizing the Unique Names, Domain Closure, and Closed World Assump-
tions. Each such theory is categorical in the sense that it admits the original
database, seen as a first-order structure, as its only model. In consequence,
satisfaction in a model can be replaced by first-order logical entailment. In
this context, a database is consistent with respect to a set of integrity con-
straints if it entails (as a theory in the sense of Reiter) the set of integrity
constraints. There is an alternative notion of database consistency [91]: a
consistent if its union (as a theory consisting of the atoms in
the database) with the set of integrity constraints is consistent in the usual
logical sense. All three notions of a consistent relational database, namely
the two just presented and Definition 1, turn out to be equivalent for rela-
tional databases but may differ for “open” knowledge bases (sce [89,90] for a
discussion).

database i

Ezample 3. Consider a binary relation P(AB) and a functional dependency
A — B. An instance p of P consisting of two tuples (a,b) and (a,c) is
inconsistent according to Definition 1. The following set of formulas,

{P(a,b), P(a.c),b# c,Ve,y,z. [~P(x,y) V =P(x,2) V y=z]},

is inconsistent in the standard logic sense. o

2.2 Repairs

Given a database instance 7, the set X(r) of facts of r is the set of ground
atomic formulas {P(a) | r £ P(a)}, where P is a relation symbol and a a
ground tuple. The distance A(r,r’) between database instances r and 7/ is
defined as the symmetric difference of r and 7’:

A(r,r') = (2(r) = 2(') U (2() = Z(r)).

Definition 2. [3] A database instance 1” is a_repair of a database instance
r w.r.t. a set of integrity constraints IC if

. ' is over the same schema and domain as r,

' satisfies IC,

the distance A(r,r’) is minimal under set containment among the in-
stances satisfying the first two conditions.

W

a
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assumption that the information in the database is complete, although not
necessarily correct. That assumption seems appropriate in the context of data
warehousing where dirty data coming from many sources is cleaned for use
as part of the warehouse itself.

Another variation of the notion of repair assumes a different notion of
minimality: instead of minimizing the symmetric difference, we may minimize
its cardinality. We discuss this issue in Sect. 7. Still another dimension of the
repair concept was recently introduced by Wijsen [96] who proposed repairs
obtained by modifying selected tuple components.

2.3 Queries and Consistent Query Answers

Queries are formulas over the same language £ as the integrity constraints.
A query is closed (or a sentence) if it has no free variables. A closed query
without quantifiers is also called ground. Conjunctive queries [1,27] are queries
of the form

371,..

T [Pr(@2) Ao A P (@) A (@1 T

where ¢(Z1,...,%,) is a conjunction of built-in predicate atoms. If a con-
Jjunctive query has no repeated relation symbols, it is called simple.
The following definition is standard:

Definition 3. A tuple 7 is an answer to a query Q(z) in r iff r = Q(7), i.e.
the formula Q with z replaced by  is true in 7. o

Given a query Q(Z) to an instance r, we want as consistent answers
those tuples that are unaffected by the violations of the integrity constraints
present in 7.

Definition 4. [3] A tuple £ is a consistent answer (CQA) to a query Q(z)
in a database instance r w.r.t. a set of integrity constraints IC iff £ is an
answer to the query Q(Z) in every repair ' of r w.r.t. IC. An L-sentence Q

is consistently true in r w.r.t. IC if it is true in every repair of 7 w.r.t. IC.
In symbols,

rire Q) = ' = Q(F) for every repair 17 of 7 wor.t. IC.
a

Ezample 5. Continuing Example 1, we have the following consistently true
formulas:

1. r =gy Employee(M.Stowe, 7000)

2. 1 E=(ny (Employee(J.Page,5000) V' Employee(J.Page,8000))

Page 2



Inconsistent Databases 9

3. 1 f=qpy 3w [Employee(J.Page, x)]

Notice that through Definition 4 our approach leads to a stronger notion
of inference from inconsistent databases than an approach based on simply
discarding conflicting data. In the latter approach, the last two inferences in
Example 5 would not be possible.

For universal integrity constraints, the number of repairs of a finite da-
tabase is also finite. However, referential integrity constraints may lead to
infinitely many repairs (see Example 4). Having infinitely many repairs is a
problem for those approaches to computing consistent query answers that
construct a representation of all repairs, as do the approaches based on logic
programming (Sect. 4). Therefore, they use a slightly different notion of re-
pair by allowing tuples with nulls to be inserted into the database. This
reflects common SQL2 database practice. But that approach does not always
work, as the entity integrity constraint inherent in the relational data model
prevents null values from appearing in the primary key.

Ezample 6. Consider Example 4 again. Infinitely many repairs can be re-
placed by a single repair:

Personnel| SSN  Name Manager|  SSN
123456789  null 123456789
555555555 Smith 555555555

only if it is the SSN attribute which is designated the primary key, not the
Name attribute (which still remains a key). o

One can also avoid dealing with infinitely many repairs by restricting repairs
to subsets of the original instance, as in [29].

If a notion of repair different from than that in Definition 2 is used, the
notion of consistent query answer changes, too. In general, the more restricted
the repairs, the stronger the consistent query answers, as illustrated by the
following example.

Ezample 7. Consider a database schema consisting of two relations P(AB)
and S(C). The integrity constraints are FD A — B and IND B C C. Assume
that the database instance r = {P(a,b), P(a,c), S(b)}. Under Definition 2,
there are two repairs: r; = {P(a,b),S(b)} and r3 = {P(a,c),S(b),S(c)}.
Thus, P(a,b) is not consistently true in the original instance 7, according to
Definition 4. Note that P(a,c) is not consistently true in r; either. There-
fore, P(a,b) and P(a,c) are treated symmetrically from the point of view
of consistent query answering. However, intuitively there is a difference be-
tween them. Think of A as the person’s name, B her address, and S a list of
valid addresses. The difference between P(a,b) and P(a,c) is captured under
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2.2. Repairs are some distinguished minimal models of a theory written in
annotated predicate logic [8,14].

2.3. Repairs are maximal independent sets in a hypergraph whose nodes are
database tuples and whose edges are sets of tuples participating in a
violation of a denial constraint. This approach has been applied in [29]
to quantifier-free first-order queries and in [5,7] to aggregation queries.

2.4. The interaction of the database instance and the integrity constraints
is represented as an analytical tableau that becomes closed due to the
mutual inconsistency of the database and the integrity constraints. The
implicit “openings” of the tableau are the repairs [19]. Implementation

ent query answering based on analytic tableaux for

reasoning are di in [20].

ues around con:

In the next sections, we describe some of these approaches.

3 Query Transformation

Here we consider first-order queries and universal integrity constraints. Given
stance. The query
is transformed by qualifying it with appropriate information derived from
the interaction between the query and the integrity constraints. This forces
the (local) satisfaction of the integrity constraints and makes it possible to
discriminate between the tuples in the answer set. The technique is inspired
by semantic query optimization [26].

More precisely, given a query ¢(Z), a new query T%(p(Z)) is computed
by iterating an operator T which transforms the query by conjoining the
corresponding residues to each database literal appearing in the query, until
a fixed point is reached. (If there are no residues, then T(Q) = Q.) The
residues of a database literal force the satisfaction of the integrity constraints
for the tuples satisfying the literal and are obtained by resolving the literal
with the integrity constraints.

a query, we rewrite it, preserving the original database i

Ezample 9. Consider the following integrity constraints:
IC = (¥ [R(x)V-P(x) V ~Q(@)), Ya.[P() V ~Q(@)]}

and the query Q(z). The residue of Q(z) w.r.t. the first constraint is R(x) V
~P(z), because if both Q(x) and the constraint are to be satisfied, then that
residue has to be true. Similarly, the residue of Q(z) w.r.t. the second con-
straint is P(x). In consequence, instead of the query Q(x), one rather asks the
transformed query Q(z) A (R(x) V —~P(x)) A P(x). The literal =Q(z) does not
have any residues w.r.t. the given integrity constraints, because the integrity
constraints do not constrain it. o
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a more restrictive definition of repair requiring that a repair be a subset of
the original instance. In the latter sense, only 5 is a repair and P(a,b) is
consistently true in 7. [u)

In the sequel, we will mostly use the notion of repair from Definition 2,
clearly indicating the cases where a different notion is applied.

2.4 Computing CQAs

‘What we have so far is a semantic definition of a consistent query answer in
a (possibly inconsistent) database, based on the notion of database repair.
However, retrieving CQAs via the computation of all database repairs is not
feasible. Even for FDs, the number of repairs may be too large.

Ezample 8. Consider the functional dependency A — B and the following
family of relation instances 7, n > 0, each of which has 2n tuples (represented
as columns) and 2" repairs:

LA
Alm oy ay - anan
Blbo by bo by bo by

Therefore, we develop various methods for computing CQAs without ex-
plicitly computing all repairs. Such methods can be split into two categories:

1. Query transformation. Given a query Q and a set of integrity constraints
IC, construct a query Q' such that for every database instance r, the
set of answers to @' in r is equal to the set of consistent answers to
Q in r w.r.t. IC. This approach was first proposed in [3] for first-order
queries. In that case, the transformed query is also first-order, thus af-
ter a straightforward translation to SQL2, it can be evaluated by any
relational database engine. Note that the construction of all repairs is
entirely avoided. In [25], the implementation of an extended version of
the method of [3] was described.

2. Compact representation of repairs. Given a set of integrity constraints
IC and a database instance r, construct a space-efficient representation
of all repairs of r w.r.t. IC, and then, use this representation to answer

ies. Different representations have been considered in this context:

21. aits are answer sets of a logic program [4,6,14,15]. The compact rep-
resentation is the program, and to obtain consistent answers, one runs
the program.
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If we want the CQAs to an L-query ¢(Z) in 7, we rewrite the query into
the new L-query T“(p(z)), and we pose T (p(Z)) to r as an ordinary query.
We expect that for every ground tuple #:

rEicet) = rETY(e(D).
We explain later under what conditions this equivalence holds.

Ezample 10. (Example 1, continued) The FD f; can be written as the £-
formula

fi: Yo,y [~Employec(z,y) V ~Emplogee(z,z) V y= @)
If we are given the query Q(x,y) : Employee(x,y), we expect to ob-
tain the consistent answers:  (V.Smith, 3000), (M.Stowe, 7000), but not
(J.Page, 5000) or (J.Page, 8000).
The residue obtained by resolving the query with the FD f; is

Vz. [~Employee(x,z) V y=z].

Note that we get the same residue by resolving the query with the first or
second literal of the constraint. Thus, the rewritten query T(Q(x,y)) is as
follows:

T(Q(x,y)) := Employee(x,y) A Yz. [~Employee(x,z) V y = z],

and returns exactly (V.Smith, 3000) and (M.Stowe, T000) as answers, i.e.
the consistent answers to the original query. )

In general, T needs to be iterated because we may need to consider the
residues of residues and so on. In consequence, depending on the integrity
constraints and the original query, we may need to iterate 7" until the infinite
fixed point T is obtained. In Example 10, this was not necessary, because
the literal =Employee(x, z) in the appended residue does not have a residue
w.r.t. fy itself. We stop after the first iteration.

Ezample 11. (Example 9, continued) The following are the sets of residues
for the relevant literals (the other literals have no residues):

Literal  Residues

P(z) :{R()V-Q(x)}

Qz)  :{R(x)V-P(x), P(z)}
~P() {-Q(x)}

~R(x) :{-P(x) v -Q(x)}
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The query is transformed into T(Q(z)) = Q(z) A (R(z) V ~P(x)) A P(x).
Now, we apply T again, to the appended residues, obtaining

T*(Q(x) = Q(z) A (T(R(2)) v T(=P(x))) AT(P(x))
= Q(x) A (R(x) V (=P (2) A =Q(x))) A P(x) A (R(z) V ~Q(x)).

And once more

T3(Q(x)) = Q@) A (R(z) V (~P(x) AT(=Q(x)))) A
(2) AT (R(x)) vV T(-Q(x)))-

Because T(=Q(z)) = ~Q(z) and T(R(x)) = R(x), we obtain TZ(Q(J,)) =
T3(Q(x)), and we have reached a fixed point.

The fundamental properties of the transformation-based approach are:
soundness, completeness, and termination [3]. Soundness means that every
answer to 7*(Q) is a consistent answer to Q. Completeness means that every
consistent answer to @ is an answer to T(Q). Termination means that there
is an n such that for all m > n, V&(T™(Q(z)) = T™(Q(x)) is a valid formula.

In [3], some very general sufficient conditions for soundness of the trans-
formation-based approach are defined, encompassing essentially all integrity
constraints that occur in practice. Completeness is much harder to achiev
In (3], the completeness of the transformation-based approach is proved for
binary, generic integrity constraints and queries that are conjunctions of liter-
als. (A constraint is generic if it does not imply any ground database literal.)
For example, we may have the query R(u,v) A =P(u,v), and the binary in-
tegrity constraints

1C = {¥a,y.[=P(w,y) V R(z,y)], Y.y, 2.[~P(x,y) vV 2P(w,2) Vy = 2]}
However, with disjunctive or existential queries, we may lose complete-
ness.
Exzample 12. Tn Example 10, if we pose the ground disjunctive query
Q: Employee(J.Page, 5000) V Employee(J.Page, 8000),

the application of the operator T' produces the rewritten query T(Q):

= 5000)) Vv

(Employee(.J . Page, 5000) A Yz (~Employee(J.Page,z) V' =z
2 = 8000)).

v
(Employee(J.Page, 8000) A Yz (~Employee(J.Page,z) V
that has the answer (truth value) false in the original database instance,
but, according to the definition of consistent answer, is consistently true in
this instance. u]

o
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what is still mis:

integrity constraints. Nevertheless sing is a logical specifi-
cation Spec, of all database repairs of an instance r, satisfying the following
property for all queries @ and tuples #:

Spee, F Q) = rlie Q). (3)

where - is a new, suitable consequence relation. If we had such a specification,
we could consistently answer every query Q(z) by asking for those £ such that
Spec, = Q(f)

As the following example shows, - has to be nonmonotonic.

Ezample 13. The database that contains the table

Employee| Name Salary
J.Page 5000
V.Smith 3000

M. Stowe 7000

is consistent w.r.t. the FD f; of Example 1. In consequence, the set of CQAs
to the query Q(z,y) : Employee(x.y) is

{(J.Page, 5000), (V.Smith, 3000), (M.Stowe, 7000)}.

If we add the tuple (J.Page, 8000) to the database, the set of CQAs to the
same query is reduced to

{(V.Smith, 3000), (M.Stowe, 7000)}.

A specification Spec, may provide new ways of computing CQAs and shed
some light on the computational complexity of this problem.

4.1 Logic Programs

‘We show here how to specify the database repairs of an inconsistent database
by means of a logic program 11, [4,6]. To pose and answer a first-order
%), a stratified logic program IT(Q) plus a new goal query atom
andard methodology [81,1], and the query G(z) is
evaluated against the program IT, U IT(Q). The essential part is the program
1,.

The first observation is that when a database is repaired, most of the data
persists, except for some tuples. More precisely, by default, all the positive
and implicit negative data (the latter derived through the Closed World As-
sumption) persist from r to the repairs, except for some tuples that have to be
added or removed to restore the consistency of the database. To capture this
idea, we may use logic programs with exceptions [70], in this case containing:

G(z) is obtained by ¢
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Termination can be guaranteed if there is an n such that T"(Q(z)) and
Tm+1(Q(z)) are syntactically the same. Reference [3] shows that this property
holds for any kind of queries iff the set of integrity constraints IC'is acyclic,
where IC'is acyclic if there exists a function

fAP. Py =Py, 2P — N,

such that for every constraint,

k
v(\/ li(z:) v o(@)) € IC,

i=1

and every 1 < i,j < k,if i # j, then f(=l;) > f(l;). Here, f is a level
mapping, similar to the mappings associated with stratified or hierarchical
logic programs, except that complementary literals get values independently
of each other. Any set of denial constraints — thus also FDs — is acyclic.

For example, termination is syntactically guaranteed for any query if

IC = {Va,y.[~P(z,y) V R(z,y)), Yz, y, 2.[~P(z,y) V =P(z,2) Vy = z]}.

Reference [3] provides further, nonsyntactic sufficient criteria for termi-

nation of the transformation-based dpp]‘()dLh In particular, termination for
i 1d lencies is i

In [25], an implementation of the operator T is presented. The im-
plementation is done on top of the XSB deductive database system [92],
whose tabling techniques make it possible to keep track of previously com-
puted residues and their subsumption. In this way, redundant computation
of resid avoided, and termination is detected for a wider class of in-
tegrity constraints than those presented in [3]. Using XSB also allows a real
interaction with the IBM DB2 DBMS.

The query transformation approach to CQAs, as presented in [3,25], has
some limitations. First of all, the methodology is designed to handle only
universal integrity constraints, whereas existential quantifiers are necessary
for specifying referential integrity constraints. Furthermore, as we have shown
the transformation-based approach fails (it is sound but not complete) for
disjunctive or existentially quantified queries. This failure can be partially
explained by complexity-theoretic reasons. Except for very restricted classes
of constraints and queries, adding an existential quantifier leads to co-NP-
completeness of CQAs. This issue is discussed in more depth in Sect. 5.

4 Specifying Database Repairs

So far we have presented a model-theoretic definition of CQAs and a compu-
tational methodology to obtain such answers for some classes of queries and
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o default rules capturing the persistence of the data, and
o cxception rules stating that certain changes have to be made and the
integrity of the database has to be restored.

The exception rules should have higher priority than the default rules. The
semantics is that of e-answer sets, based on answer set semantics for ex-
tended disjunctive logic programs [49]. A logic program with exceptions can
be eventually translated into an extended disjunctive normal logic program
with answer set semantics [70]. Now, we give an example of this transformed
version, where default rules have been replaced by persistence rules, so that
the whole program has an answer set semantics. (In addition to disjunction,
the program has two kinds of negation: classical negation — and negation-as-
failure not.)

Ezample 14. Consider the full inclusion dependency Va.[~P(x) V Q(x)] and
the inconsistent database instance r = {P(a)}. The program I, that spec-
ifies the repairs of 7 contains two new predicates, P’ and @', corresponding
to the repaired versions of P, Q, respectively, and the following sets of rules:

1. Pe

tence rules:

P'(z) « P(z),not ~P'(z); Q'(z) — Q(z),not ~Q'(x)
=P'(z) « mnot P(z),not P'(z); —Q'(z) « not Q(x),not Q'(x).
The defaults say that all data persists from the original tables to their

repaired versions.

Triggering exception: —P'(z) VvV Q'(x) «— P(x), not Q(x).

This rule is needed as a first step toward the repair of r. It states that to
“locally” repair the constraint, P(z) needs to be deleted or Q(z) inserted.
Stabilizing exceptions:  Q'(z) — P'(x); —P'(z) — -Q'(z).

The rules say that eventually the constraint has to be satisfied in the
repairs. This kind of exception rules is important if there are interacting
integrity constraints and local repairs alone are not enough.

Database facts:  P(a).

o

w

>

If we instantiate the rules in all possible ways in the underlying domain,
we obtain a ground program I7,.. A set of ground literals M is an answer set of
1T, if it is a minimal model of IT, where IT = {A; V---V A, « By,--- By, |
Ay V-V A, — By, By.not Cy,--- ,not Cy € IT, and C; ¢ M for
1 < i < k}. If M has complementary literals, then M is a trivial answer set
containing all ground literals.

In this example, the answer sets of the program correspond to the ex-
pected database repairs:  {-P'(a),~Q'(a), P(a)};  {P'(a), Q'(a). P(a)}.
The first one indicates through the underlined literal that P(a) has to be
deleted from the database; the second one - that Q(a) has to be inserted in
the database. o
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In [6], it is proved that for the class of binary integrity constraints (defined
in Sect. 2), there exists a one-to-one correspondence between answer sets and
database repairs. In consequence, in (3) we can take Spec,. as the appropriate
extended disjunctive logic program and the notion of logical consequence
there as being true w.r.t. all answer sets of the program (i.e. the skeptical
answer set semantics).

;From the correspondence results just mentioned, we can obtain a method
to compute database repairs by using any implementation of the answer set
semantics for extended disjunctive logic programs. To compute CQAs, one
needs to have a way to obtain atoms true in every answer set of the logic
program. In [6], experiments with the deductive database system DLV [40] are
reported. It is also possible to extend the methodology to include referential
integrity constraints containing existentially ified variables [4,6].

The logic programming approach is very general because it applies to
arbitrary first-order queries. However, the systems computing answer sets
work typically by grounding the logic program. In the database context, this
may lead to huge ground programs and be impractical.

Logic programs for repairing databases and computing CQAs w.r.t. arbi-
trary universal constraints have been independently introduced in [57]. That
work is further discussed in Sect. 7.

4.2  Annotated Logics

As explained at the beginning of this section, we would like to have a logical
specification of database repairs. Such a specification must contain informa-
tion about the database and the integrity constraints — two pieces of infor-
mation that will be mutually stent if the database does not saf
the integrity constraints. So including them in a classical first-order theory
would lead to an inconsistent theory and the trivialization of reasoning. In
consequence, if we want a first-order theory, we have to depart from classical
logic, moving to lassical logic, where ing in the presence of classi-
cal inconsistencies does not necessarily collapse. Following [8], we show here
how to generate a consistent first-order theory with a nonclassical semantics.
We use Annotated Predicate Calculus (APC) [68].

In APC, database atoms are annotated with truth values taken from a
truth-value lattice. The most common annotations are: true (t), false (f),
contradictory (T), and unknown (L). In [8], a lattice was used to capture
the preference for integrity constraints when they conflict with the data: the
integrity constraints cannot be given up but the database can be repaired.
These are the new truth values in the lattice:

incons

o Database values: tq and fq, used to annotate the atoms in the original
database, respectively, outside of it.

o Constraint values: to and fe, used to annotate, depending on their
sign, the database literals appearing in the disjunctive normal form of
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is translated into
Va,y, z.[Employee(z,y): fe vV Employee(x,2): f. V y=z:t].
Each of the database facts is appropriately annotated. For example, the
Employee(J.Page,5000) is annotated as Employee(J.Page,5000) : ta.
introduce annotated axioms representing the Unique Names As-

sumption and the Closed World Assumption [88]. In this way, we generate
the annotated first-order theory Th(r,IC). u]

As mentioned before, navigation in the lattice and an adequate definition
of APC formula satisfaction help solve the conflicts between the database and
the integrity constraints. The notion of formula satisfaction in a Herbrand
interpretation I (now containing annotated ground atoms) is defined as in
classical first-order logic, except for atomic formulas. By definition, for such
formulas, T |= p:s, with s € Latt, iff for some s’ such that s <,y 5, p:s' € I.

In [8], it is shown that for every database r, there is a one-to-one corre-
spondence between the repairs of r w.r.t. IC and the models of Th(r, IC)
that make true a minimal set of atoms annotated with t, or fu (corre-
sponding to the fact that a minimal set of database atoms is changed). In
consequence, the specification Spec,., postulated in (3) at the beginning of
this section, is simply Th(r,IC), and the corresponding (nonmonotonic) no-
tion of consequence is truth in all {tq, f}-minimal annotated models of the
theory. The approach of [8] produces a set of advisory clauses from Th(r, IC).
The clauses are then processed by specialized algorithms. The approach is
applicable to queries that are conjunctions or disjunctions of positive literals
and to universal constraints.

4.3 Logic Programs with Annotation Constants

In [15] a method to obtain a disjunctive logic program I1¢""(r,IC) from
Th(r, IC) is presented. This program, having a stable model semantics, spec-
ifies the database repairs. The program has annotations as additional predi-
cate arguments; thus it is a standard, not an annotated [69] logic program,
and the standard results and techniques apply to it. We give here an example
only.

Ezample 16. Consider the same database r and integrity constraints IC' as
in example 14. The logic program should have the effect of repairing the
database. Single, local repair steps are obtained, as before, by deriving the
annotations t, or fa. This is done when each constraint is considered in
isolation, but there may be interacting integrity constraints, and the repair
process may take several steps and should stabilize at some point. To achieve
this, we need additional, auxiliary annotations t*, f*, t**, and f** that are
new special constants in the language.
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the integrity constraints. The built-in atoms appearing in the integrity
constraints are annotated with the classical annotations t and f.
Advisory values: ta and fa, used to solve the conflicts between the
database and the integrity constraints, always in favor of the integrity
constraints that are not to be given up, whereas the data is subject to
changes. This is represented in the lattice Latt in Fig. 1. Intuitively, if a
ground atom becomes annotated with both tq and fe, then it gets the
value f, (the least upper bound of the first two values in the lattice),
meaning that the advice is to make it false, as suggested by the integrity
constraints, that is, the facts for which the advisory truth values f, and
ta are derived are to be removed from, respectively, inserted into, the
database to satisfy the integrity constraints.

Fig. 1. The truth-value lattice Latt

In this lattice, the top element is T, that is reached as the least upper
bound (lub) of any pair of contradictory annotations. The annotations tg
and fc, for example, are not considered definitely contradictory (i.e. with lub
T) if we can still make them compatible by passing to their lub f,. If there
is no conflict between a data and a constraint annotation, then we pass to
their lubs, i.e. t or f.

Now, both the database r and the integrity constraints IC, with the ap-
propriate annotations taken from the lattice, can be embedded into a single
and consistent APC theory Th(r,IC). We show this embedding using an
example.

Ezample 15. (Example 1, continued) The integrity constraint

Va,y, z.[~Employee(z,y) vV —Employee(x.z) V y = z]
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The annotation t*, for example, groups together the annotations tq and
ta for the same atom (rules 1 and 4 below). This new, derived annotation
can be used to provide feedback to the bodies of the rules that produce the
local, single repair steps, so that a propagation of changes is triggered (rule
2 below). The annotations t** and f** are just used to read off the literals
that are inside (respectively, outside) a repair. This is achieved by means of
rules 6 below that are used to interpret the models as database repairs. The
following is the program 17" (r, IC):

L P(a,f) « P(a,fa).  P@,t") « P(a,ta).  P(z,t") — P(z,ta).
Q") = Qr.fa).  Qz,8") — Qz,8a).  Q(x,¢") — Q(z,ta).

Pl fa) V Q2. ta) — Pla,t%), Q. £).

Pla,ta) <.

P(a,£) — not P(x,ta).  Q(z,£*) — not Q(x,ta).
 P(3,ta), P(ifa). Q3 ta), Q(, £a).

P(z,t") « P(x,ta).  P(a,t™) — P(z,ta), not P(z,£,).

ovEwe

P(a, ) — P(a,£). P, £) — not P(x,ta), not P(z,ta).

QU t™) — Q. ta). Q@ t™) — Q. ta), not Q(x,fa).
Q) — Q@ f). Q. £*) — not Q(z,ta), not Q(z, ta).

Rule 2 is the only rule dependent on the integrity constraints. It says how
to repair the constraint when an inco: detected. If there were other
integrity constraints interacting with this constraint, having passed to the
annotations t* and f* will allow the system to keep repairing the constraint
if it becomes violated due to the repair of a different constraint. Rules 3
contain the database atoms. Rules 4 capture the Closed World Assumption.
Rules 5 are denial constraints for coherence, that is, coherent models do not
contain atoms annotated with both t, and f,.

Stable models are defined exactly as the answer sets in Example 14, but
considering sets of ground atoms only because there is no classical negation
in programs with annotations.

The program in this example has two stable models:

{P(a.ta). P(a.t*),Q(a, "), Q(a. ta). Pa,t™), Q(a, t*), Q(a. t*")}

and
{P(a,ta), P(a.t*), P(a,f*),Q(a,£*), P(a,£**), Q(a,£**), P(a,fa)};

the first one says, through its underlined atoms, that Q(a) is to be inserted
into the database; the second one — that P(a) is to be deleted.

Page 5



Inconsistent Databases 21

In [15], a one-to-one correspondence between the stable models of the
programs I1%""(r, IC') and the repairs of r w.r.t. IC is established. Consistent
answers can thus be obtained by “running” a query program together with
the repair program I7°""(r, IC), under the skeptical stable model semantics.

The programs with annotations obtained are simpler than those in Sect. 4.1
in the sense that they contain one change-triggering rule per constraint (rule
2 in the example), whereas the natural extension to arbitrary universal con-
straints of the approach in Sect. 4.1 may produce programs with the number
of rules that is exponential in the number of disjuncts in the disjunctive
normal forms of the (universal) integrity constraints [6,57]. The method of
[15] can also capture repairs of referential integrity constraints (under the
notion of repair allowing tuples with nulls, as discussed in Sect. 2). Thus,
the approach in [15] is the most general considered so far, because it applies
to arbitrary first-order queries and arbitrary universal or referential integrity
constraints (with the exception of the cases that may lead to the violations
of the entity integrity constraint; see Example 6).

In some cases, optimizations of the program are possible. For example,
the program we just gave is head-cycle-free [16]. In cc it can be
transformed into a nondisjunctive normal program, reducing the complexity
of its evaluation from IT} to co-NP [35,75]. Not every repair program with
annotations will be head-cycle-free though.

5 Computational Complexity

‘We summarize here the results about the computational complexity of consis-
tent query answers [3,7,29,30]. We will adopt the data complexity assumption
[1,66,95] that measures the complexity of the problem as a function of the
number of tuples in a given database instance. The given query and integrity
constraints are considered fixed.

The query transformation approach [3] — when it terminates — provides a
direct way to establish PTIME-computability of consistent query answers. If
the original query is first-order, so is the transformed version. In this way, we
obtain a PTIME (or, more precisely AC?) procedure for computing CQAs:
transform the query and evaluate it in the original database. Note that the
transformation of the query is done independently of the database instance
and therefore, does not affect the data complexity. For example, in Example
8 the query R(z,y) will be transformed (similarly to the query in Example
10) to another first-order query and evaluated in PTIME, despite the pres-
ence of an exponential number of repairs. However, the query transformation
approach is sound, complete and terminating only for restricted classes of
queries and constraints. More specifically, the results of [3] imply that for
binary denial constraints and full inclusion dependencies, consistent answers
can be computed in PTIME for queries that are conjunctions of literals. The
logic programming approaches described in Sect. 4 do not have good asymp-
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We prove here that for every set F' of denial constraints and ground query
@, the data complexity of checking whether @ is consistently true w.r.t. F in
an instance 7 is in PTIME. We assume that the sentence @ is in CNF, i.e.
of the form @ = &y A Py A ... P, where each @; is a disjunction of ground
literals. @ is true in every repair of 7 if and only if each of the clauses ; is
true in every repair. So it is enough to provide a polynomial algorithm that
will check if a given ground clause is consistently true.

Tt is easier to think that we are checking if a ground clause is not consis-
tently true. This means that we are checking whether there exists a repair in
which —@; is true for some i. But =®; is of the form

Py(tr) A Py(E2) A - oo A Po(En) A =Pt (Bng1) Ao APy (E),

where the £;’s are tuples of constants. (We assume that all facts in the set
{Pi(t1),...,Py(t,)} are mutually distinct.)

The nonderministic algorithm selects an edge E; € G, for every j, such
that m +1 < j <n, Pj(t;) € £(r), and P;({;) € E;, and constructs a set of
facts S, such that

S ={P(f1)s... Pu(f)} U U (B; = {P;(t;)})
ML P ()€

and there is no edge E € Gp, such that E C S. If the construction of S
succeeds, then a repair in which —®; is true can be built by adding to S new
facts from X(r) until the set is maximal independent. The algorithm needs
n — m nondeterministic steps, a number that is independent of the size of
the database (but dependent on @), and in each of its nondeterministic steps,
selects one possibility from a set whose size is polynomial in the size of the
database. So there is an equivalent PTIME deterministic algorithm.

6 Aggregation Queries

So far we have considered only first-order queries, but in databases, aggrega-
tion queries are also important. In fact, aggregation is essential in scenarios,
like data warchousing, where inconsistencies are likely to occur, and keeping
inconsistent data may be useful. Only some aggregation queries, for example,
computing a maximum or minimum value of an attribute in a relation can
be expressed as first-order queries. Even in this case, due to its syntax, the
resulting first-order query cannot be handled by the query transformation
methodology described earlier.

We will consider here a restricted scenario: the integrity constraints will be
limited to functional dependencies, and the aggregation queries will consist
of single applications of one of the standard SQL-2 aggregation operators
(MIN, MAX, COUNT (), COUNT(A), SUM, and AVG). Even in this case, it was
shown [5] that computing consistent query answers to aggregation queries is
a challenging problem for both semantic and complexity-theoretic reasons.

22 Leo Bertossi and Jan Chomicki

totic complexity properties because they are all based on II5-complete classes
of logic programs [35]. So it was an open question how far the boundary be-
tween tractable and intractable could be pushed in this context.

The paper [29] ([30] is an earlier version containing only some of the
results) shows how the complexity of computing CQAs depends on the type
of the constraints considered, their number, and the size of the query. Several
new classes for which consistent query answers are in PTIME are identil

o ground queries and arbitrary denial constraints;

o closed simple (without repeated relation symbols) conjunctive queries and
functional dependencies with at most one FD per relation;

e ground or closed simple conjunctive queries together with key functional
dependencies and foreign key constraints with at most one key per rela-
tion.

Additionally, the paper [29] analyzes the data complexity of repair check-
ing, the problem of testing whether one database is a repair of another. (The
paper [29] assumes that repairs are subsets of the original instance.) It is
shown that repair checking is in PTIME for all of the above classes of con-
straints, as well as for arbitrary FDs together with acyclic INDs. The results
obtained are tight in the sense that relaxing any of the above restrictions
leads to co-NP-hard problems. (This, of course, does not preclude the possi-
bility that introducing additional orthogonal restrictions could lead to more
PTIME cases.) To complete the picture, it is shown that for arbitrary sets
of FDs and INDs, repair checking is co-NP-complete, and consis
answering is II5-complete.

We outline now the proof of the first result listed above because it is done
by using a technique different from query transformation. We introduce first
the notion of a conflict hypergraph that will serve as a succinct representation
of all repairs of a given instance.

ent query

Definition 5. The conflict hypergraph G, is a hypergraph whose set of
vertices is the set X(r) of facts of an instance r and whose set of edges
consists of all sets

{Pi(t), Pa(t), ... Pi(10)}
such that Py (£,), Pa(fs),... Pi(f;) € £(r), and there is a constraint

VE1,Ea, ... & [APU(E) V SPa(@2) V...V P(@) V (3,2, .. 3)

in F such that Py (f,). P2(f2), ... P,(f;) violate together this constraint, which
means that there exists a substitution p such that p(z1) = f,p(22) =
to,...p(7;) = and that ¢(f1, 2, ... 1) is false.

By an independent set in a hypergraph we mean a subset of its set of
vertices that does not contain any edge. Clearly, each repair of r w.r.t. F
corresponds to a maximal independent set in Gp,,.
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Ezample 17. Consider again the instance r of Employee from Example 1. Tt
is inconsistent w.r.t. the FD fi: Name — Salary.

Employee| Name Salary
J.Page 5000
J.Page 8000
V.Smith 3000

M .Stowe 7000

The repairs are

Employeel ‘ Name Salary Employee.?‘ Name Salary
J.Page 5000 J.Page 8000
V.Smith 3000 V.Smith 3000
M .Stowe 7000 M .Stowe 7000

If we pose the query
SELECT MIN(Salary) FROM Employee
we should get 3000 as a consistent answer: MIN(Salary) returns 3000 in
cach repair. Nevertheless, if we ask
SELECT MAX(Salary) FROM Employee

then the maximum, 8000, comes from a tuple that participates in the vio-
lation of fi. Actually, MAX(Salary) returns a different value in each repair:
7000 or 8000. Thus, there is no consistent answer in the sense of Definition
4. a

‘We give a new, slightly weakened definition of a consistent answer to an
aggregation query that addresses the above difficulty.

Definition 6. [5] (a) A consistent answer to an aggregation query Q in a
database instance 7 w.r.t. a set of integrity constraints F is the minimal in-
terval T = [a,b] such that for every repair ' of r w.r.t. F, the scalar value
Q(r') of query Q in ' belongs to I.

(b) The left and right end-points of the interval I are the greatest lower bound
(glb) and least upper bound (lub), respectively, answers to Q in r. o

According to this definition, in Example 17, the interval [7000,8000] is
the consistent answer to the query

SELECT MAX(Salary) FROM Employee

and 7000 and 8000 are the glb-answer and lub-answer, respectively. Notice
that the consistent query answer interval represents in a succinct form a
superset of the values that the aggregation query can take in all possible
repairs of the database r w.r.t. a set of FDs. The representation of the interval
is always polynomially sized because the numeric values of the end-points can
be represented in binary.
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Ezample 18. Along the lines of Example 8, consider the functional depen-
dency A — B and the following family of relation instances S,, n > 0:

Tn
A
B

a; aj az az az az an
01 0 4 - 02"

The aggregation query SUM(B) takes all of the exponentially many values
between 0 and 2"+ — 1 in the (exponentially many) repairs of the database
5] An explicit representation of the possible values of the aggregation func-
tion would then be exponentially large. Moreover, it would violate the INF
assumption. On the other hand, the interval representation is of polynomial
size.

Next, we consider the complexity of the problem of computing the glb-
and lub-answers. The complexity results are given in terms of data complex-
ity [1,66,95]. To classify the problems of consistent answering to different
aggregation queries in terms of complexity and to find polynomial time algo-
rithms in tractable cases, it is useful to use a graph representation of the set
of all re > are dealing with functional dependenc
specialize the notion of conflict hypergraph (Definition 5) to that of a conflict
graph (edges contain two vertices).

we can

Ezample 19. Consider the schema R(AB), a set F of two functional depen-
dencies A — B and B — A, and the inconsistent instance

7= {(a1,b1), (a1, b2). (a2, b2), (az,b1)}

over this schema. The following is the conflict graph Gp.,:

(a1, b1)——(a1, bs)

(ag, br)—(az, bs)

In this graph, the two maximal independent sets {(a1,b1), (az.b2)} and
{(ay,b2), (az,b1)} correspond to the two possible repairs of the database. O

The paper [7] contains a complete classification of tractable and intractable
cases of the problem of computing consistent query answers (in the sense of
Definition 6) to aggregation queries. Its results can be summarized as follows:

o For all the aggregate operators except COUNT (A), the problem is in PTIME
if the set of integrity constraints contains at most one nontrivial FD.
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o Computational complesity.

To be able to delineate the scope of different approaches, one has to ob-
serve whether they are first-order or propositional, and if they are first-order
— whether they can be reduced to propositional. The approaches presented
in this chapter ~order. However, they can be reduced to the
propositional case for universal integrity constraints and ground queries be-
cause the constraints themselves can be grounded using the constants in the
database and the query. For more general classes of queries and constraints,
for example, referential integrity constraints, such a reduction does not ap-
ply. Moreover, the approaches which do not require grounding, for example,
query transformation in Sect. 3, are preferable from the efficiency point of
view.

A specific di ion of the comp ional under considera-
tion is support for the locality of inconsistency. Locality in our context means
that the consistency violations that are irrelevant to a given query are ig-
nored in the process of obtaining consistent answers to the query. Clearly,
locality is desirable, but it is supported by only a few approaches. The query
transformation approach (Sect. 3) supports locality because the violations
occurring in the relations not mentioned in the transformed query are irrel-
evant for evaluating this query and are ignored. The approaches based on
some form of specification of all repairs (Section 4) do not support locality
because they require resolving all violations by constructing all answer sets
(or minimal models). The algorithm described in Sect. 5 is based on con-
structing the conflict hypergraph of the given instance and though it does
not resolve all conflicts, it has to detect them all. Other PTIME algorithms
mentioned in that section support locality. It seems possible to refine the
nonlocal approaches mentioned above to obtain locality.

so far are firs

7.1 Belief Revision and Update

Semantically, our approach to inconsistency handling corresponds to some of
the approaches followed by the belief revision/update community [46,47]. Da-
tabase repairs (Definition 2) coincide with revised models defined by Winslett
[97]. Both use the same notion of minimality. Comparing our framework with
that of belief revision, we have an empty domain theory, one model: a data-
base instance, and a revision by a set of integrity constraints. The revision
of a database instance by the integrity constraints produces new database
instance s of the original database. The scenario adopted by most
belief revision papers is thus more general than ours because such papers
typically assume that it is a formula (or, equivalently, the set of its models)
that is undergoing the revision, and that the domain theory is nonempty.
On the other hand, the research on belief revision is typically limited to the
propositional case.

Our implicit notion of revision satisfies the postulates (R1) — (R5),(R7)
and (R8) introduced by Katsuno and Mendelzon [67]. Dalal [33] postulated
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e For COUNT(A), the problem is NP-complete, even for one nontrivial FD
(one can encode the HITTING SET problem [48]).

o For more than one nontrivial FD, even the problem of checking whether

. the problem of checking

P-complete.

the glb-answer to a query is < k (respective

whether the lub-answer to a query is > k) is

For aggregate operators MIN, MAX, COUNT (), and SUM and a single FD,
the glb- and lub-answers are computed by SQL2 queries (so this is in a
sense an analogue of the query transformation approach for first-order queries
discussed earlier). For AVG, however, the PTIME algorithm is iterative and
cannot be formulated in SQL2.

Ezample 20. Continuing Example 17, the greatest lower bound answer to the
query

SELECT MAX(Salary) FROM Employee

is computed by the following SQL2 query

SELECT MAX(C) FROM
(SELECT MIN(Salary) AS C
FROM Employee
GROUP BY Name).

In [5,7], some special properties of conflict graphs were identified, paving
the way to more tractable cases. For example, for two FDs and the relation
schema in Boyce-Codd Normal Form, the conflict graphs are claw-free and
perfect [22], and computing lub-answers to COUNT () queries can be done in
PTIME.

Given the intractability results, it seems appropriate to find approxima-
tions to consistent answers to aggregation queries. Unfortunately, “maximal
independent set” seems to have bad approximation properties [61].

7 Related Work

‘We discuss here related work on dealing with inconsistency in artificial intel-
ligence, databases and logic programming. We will attempt to characterize
various approaches along several common dimensions, including

e Semantics: What is the underlying notion of inconsistency? Are the no-
tions of repair and consistent query answer supported in any sense?

o Scope: What classes of databases, integrity constraints, and queries
be handled?

o Computational mechanisms: How is consistent information obtained in
the presence of inconsistency?

an

28 Leo Bertossi and Jan Chomicki

a different notion of revision, based on minimizing the cardinality of the set
of changes, as opposed to minimizing the set of changes under set inclusion
[3,97]. In [6] it is shown how to capture repairs under Dalal’s notion of revision
by logic programs for consistent query answering.

The belief revision community has adopted a notion of inference called
counterfactual inference [46] that corresponds to our notion of a formula being
consistently true. Counterfactual inference is based on the Ramsey test for
conditionals: a formula 3 > ~ is a counterfactual consequence of a set of
beliefs K if for every closest context in which K is revised so that 3 is true, v
is also true. In our case, K is a database, 3 is the set of integrity constraints,
and v is the query.

Winslett’s approach [97] is mainly propositional, but a preliminary exten-
sion to the first-order ground case can be found in [31]. Those papers concen-
trate on the computation of the models of the revised theory, i.e. the repairs
in our case. Inference or query answering is not addressed. The complexity
of belief revision and counterfactual inference was exhaustively classified by
Eiter and Gottlob [41]. They deal with the propositional case only. We have
outlined above how to reduce — in some cases — consistent query answer-
ing to the propositional case by grounding. However, grounding of integrity
constraints results in an update formula which is unbounded,
depends on the size of the database. This prevents the transfer of any of
the PTIME upper bounds from [41] into our framework. Similarly, the lower
bounds from [41] require kinds of formulas different from those that we use.
The classic paper on updating logical theories by Fagin et al. [42] focuses on
the semantics of updates but does not address computational issues. More-
over, the proposed framework is also limited to the propositional case. Tt
is interesting that [42] proposes yet another notion of repair minimality by
giving priority to minimizing deletions over minimizing insertions.

The approaches pursued by the belief revision community are nonlocal in
the sense of having to resolve all inconsistencies in the database, even those
that are irrelevant to the query.

e. whose size

7.2 Reasoning in the Presence of Inconsistency

There are many approaches to handling inconsistency in the literature.! Many
of them have been proposed by the logic community; the most prominent is
the family of paraconsistent logics [32,62]. Such logics protect reasoning from
triviality (the property that an inconsistent theory entails every formula) in
the presence of classical inconsi ies . Their licability in the context
of inconsistent databases is, however, limited. First, they typically do not
address the issue of the special role of integrity constraints whose truth cannot
be given up during the inference process. Second, most paraconsistent logic
are monotonic and thus fail to capture the nonmonotonicity inherent in the

! For recent collections of papers, see [17,37].
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notion of a consistent query answer (Example 13). Third, they are mostly
nonlocal. Below we discuss those paraconsistency-based approaches that are
closest to ours.

Bry [24] was, to our knowledge, the first author to consider the notion
of a consistent query answer in inconsistent databases. He defined consistent
query answers using provability in minimal logic. The proposed inference
method is nonmonotonic but fails to capture minimal change (thus Bry’s no-
tion of a consistent query answer is weaker than ours). Moreover, Bry’s ap-
proach is entirely proof-theoretic and does not provide a computational mech-
anism to obtain consistent answers to first-order queries. Other formalisms,
for example, [79], are also limited to propositional inference. Moreover, they
do not distinguish between integrity constraints and database facts. Thus, if
the data in the database violates an integrity constraint, the constraint itself
can no longer be inferred (which is not acceptable in the database context).

Ezample 21. Assume that the integrity constraint is (—p V —¢) and the da-
tabase contains the facts p and ¢. In the approach of Lin [79], p V ¢ can be
inferred (minimal change is captured correctly), but p, ¢ and (-p V =¢) can
no longer be inferred (they are all involved in an inconsistency). o

Several papers by Lozinskii, Kifer, Arieli, and Avron [9,68,82] studied
the problem of making inferences from a possibly inconsistent, propositional,
or first-order knowledge base. The basic idea is to infer the classical conse-
quences of all maximal consistent subsets of the knowledge base [82] or all
most consistent models of the knowledge base [9,68] (where the order on mod-
defined on the basis of atom annotations drawing values from a lattice
or a bilattice). This provides a nonmonotonic consequence relation but the
special role of integrity constraints (whose truth cannot be given up) is not
captured. Also, no computational mechanisms for answering first-order (or
aggregation) queries are proposed, nor are computational complexity issues
addressed. In section 4, we described how the approach of Kifer and Lozinskii
[68] can be adapted to the task of computing consistent query answers.

In [36], a logical framework based on a three-valued logic is used to dis-
tinguish between consistent and inconsistent (controversial) information. A
database instance is a finite set of tuples, each tuple associated with the value
1 (safe), 0 (false, does not need to be stored) or & (controversial). Integrity
constraints are expressed in a first-order language and have three-valued se-
mantics. A repair J of I is an instance satisfying a set of integrity constraints
IC, which is <;-minimal among all the instances satisfying IC', where <j is
defined as follows. The distance between I and J is the sum over all tuples
w of |I(u) — J(u)|, where I(u) and J(u) are the values associated with u
in I and J, respectively. Then, J <; K if the distance between I and J is
less than or equal to the distance between I and K. Furthermore, in [36],
an algorithm for computing repairs is introduced. This algorithm is based on
the tableau proof system for the three-valued logic used in the framework.

els
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followed by an insertion, because this might not be minimal under set in-
clusion. Wijsen proposes to represent all repairs of an instance by a single
trustable tableau. From this tableau, answers to conjunctive queries can be
efficiently obtained. It is not clear, however, what is the computational com-
plexity of constructing the tableau, or even whether the tableau is always of
polynomial size.

Franconi et al. [43] also discuss repairs based on updating individual values
in the context of a data cleaning application. The aim is to compute all
possible repairs, in this case of a particular kind of databases storing census
data, rather than consistent query answering. The issues addressed consist
of detecting and solving conflicts inside the database and conflicts between
answers to questionnaires and the intended declarative semantics of the latter,
as opposed to conflicts between data and integrity constraints. This work is
a specific case of data cleaning [45].

It has been widely recognized that in database integration, the integrated
data may be inconsistent with the integrity constraints. A typical (theoret-
ical) solution to the problem of database inconsistency in this context is
augmenting the data model to represent disjunctive information. Different
disjuncts correspond to different ways of resolving an inconsistency. The fol-
lowing example explains the need for a solution of this kind.

Example 22. Consider the functional dependency “every person has a single
salary” in Example 1. It is violated by the first two tuples. Each of those tuples
may be coming from a different data source that satisfies the dependency.
Thus, both tuples are replaced by their disjunction

Employee(J. Page, 5000) V Employee(.J. Page, 8000)

in the integrated database. Now, the functional dependency is no longer vi-
olated. o

To solve this kind of problem, Agarwal et al. [2] introduced the notion of
flexible relation, a non-1NF relation that contains tuples with sets of nonkey
values (where such a set stands for one of its elements). This approach is
limited to primary key functional dependencies and was subsequently gener-
alized to other key functional dependencies by Dung [38]. In the same context,
Baral et al. [13,54] proposed to use disjunctive Datalog, and Lin and Mendel-
zon [80] tables with OR-objects [63,64]. Agarwal et al. [2] introduced flexible
relational algebra to query flexible relations, and Dung [38] introduced flex-
ible relational calculus (a proper subset of the calculus can be translated to
flexible relational algebra). The remaining papers did not discuss query lan-
guage issues, relying on the existing approaches to query disjunctive Datalog
or tables with OR-objects.

There are several important differences between the above approaches
and ours. First, they rely on the construction of a single (disjunctive) in-
stance and the deletion of conflicting tuples. The integrity constraints are
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A related approach of Arieli et al. [10] introduces executable specifications
of repairs using abductive logic programming [65]. In both approaches, how-
ever, no notion analogous to consistent query answers is proposed, and no
complexity analysis is provided.

Pradhan [86,87] introduced a logic for reasoning in the presence of con-
testations that are conflicts of different kinds: logical, semantical, domain de-
pendent, etc. They are declared together with a domain specification which
is, for example, a logical theory or a normal logic program. The logic has a
four-valued semantics that allows inferring conflict-free of
s. For example, if conflicts have been declared as classical logical
conﬂmta no logical contradiction will be found in the set of consequences.
A deductive evaluation mechanism is developed for ground queries that are
strong consequences of the specification, i.e. that hold in all conflict-free mod-
els. Furthermore, it is also shown how to represent — as a set of conflicts - the
inconsistency of a deductive database w.r.t. a set of integrity constraints. An
interesting approach to integrity constraints in databases is taken: the con-
straints should restrict the possible answers one can get from the database,
rather than capture the semantics of the domain or restrict the states of the
database. This view is quite compatible with the approach in [3] and could
be used as another motivation for it. However, the general deductive system
for strong consequences is not explicitly applied nor specialized to consis-
tent (conflict-free) query answering in databases. Complexity issues are not
addressed.

Further related treatments of inconsistency have been developed in the
areas of knowledge representation [44] and formal specifications in software
engineering [12,85].

7.3 Databases

The approaches discussed here and in the next subsection are applicable to
relational databases and to first-order queries and integrity constraints.

Asirelli et al. [11] treat integrity constraints as views over a deductive
database. In that way, queries can be answered “through the views,” so
that the resulting answers satisfy the integrity constraints and answers that
do not satisfy them are filtered out. This approach is the clos to the
ed approach presented in Sect. 3 and also supports local-
ity. However, the approach [11] is a deductive, resolution-based, direct query
answering method, similar to the approaches to query answering in deductive
databases in the presence of integrity constraints [71,91]. Moreover, queries
are restricted to be conjunctions of literals. No computational complexity
issues are addressed.

Wijsen [96] studies the problem of consistent query answering in the con-
text of universal constraints. In contrast to Definition 2, he considers repairs
obtained by modifying individual tuple components. Notice that a modifi-
cation of a tuple component cannot necessarily be simulated as a deletion
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used solely for conflict resolution. However, all conflicts need to be resolved,
and thus the above approaches are nonlocal. In our transformation-based ap-
proach, the underlying databases are incorporated into the integrated one in
toto, without any changes. There is no need for introducing disjunctive in-
formation. The integrity constraints are used only during querying. Second,
the above approaches do not generalize to arbitrary functional dependencies
and other kinds of integrity constraints. Imielinski et al. [64] provide a com-
prehensive characterization of the computational complexity of evaluating
conjunctive queries in databases with OR-objects. Those results carry over
into our framework only in very limited cases, as discussed in [7.29].

Motro [84] addressed the issue of integrating data from possibly mutually
inconsistent sources in a fashion different from the above and closer to our
approach. He proposed, among others, the notion of sound query answers
— the answers present in the query result in every source. For functional
dependencies and single-literal queries, every sound answer (in Motro’s sense)
is a consistent answer (in our sense). However, the converse is since
a tuple that appears only in a single source will not be a sound answer,
although it is a consistent answer if it does not conflict with any other tuple.
Also, for general denial constraints, there may be sound answers that are not
consistent. The computational mechanism proposed in [84] consists of simply
taking the intersection of the query answers in individual sources, and thus
it is local. No complexity analysis is provided.

Gertz [50.51] described mhmqm based on model-based diagnosis for
letecting causes of i in databases and computing the corre-
sponding repairs. However, he did not address the issue of query answering
in the presence of an inconsistency.

Cholvy (28] introduced a deductive approach based on modal logic that
allows limiting the impact of inconsistent information that is related to a
query. The logic distinguishes sure and doubtful information. From the origi-
nal inconsistent deductive database that includes integrity constraints, a new
database consisting of modal formulas is constructed. There are modalities
S and D for the sure and doubtful formulas. Then, the idea is to derive
the sure answers from the deductive system, so query processing consists of
constructing a proof in an appropriate modal logic. Integrity constraints are
considered at the same level of reliability as data, and in consequence, they
could be considered “doubtful.” No complexity analysis is provided.

7.4 Logic Programming

Greco et al. [57,59] independently developed a logic-programming-based ap-
proach to inconsistency handling in databases, alternative to those presented
in Sect. 4.1 and 4.2. In that approach, disjunctive logic programs with stable
model semantics are used to specify the sets of changes that lead to database
repairs in the sense of [3]. The authors present a general solution based on a
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compact schema for generating repair programs for universal integrity con-
straints. The application of such a schema leads to rules whose heads involve

ntially all possible disjunctions of database literals that occur together
in a constraint. Thus, a single constraint can produce exponentially many
clauses. The approach of [4,6] can be generalized to nonbinary constraints
along the same lines. (In contrast to [4,6,57,59], the approach of [15] does not
lead to an exponential blowup.) The approach of [57] is concentrated mainly
on producing the sets of changes, rather than the repaired databases explic-
itly. In particular, there are no persistence rules in the generated program. In
consequence, the program cannot be directly used to obtain consistent query
answers. An additional contribution of [57] is the notion of repair constraints
that specify preferences for certain kinds of repairs (for example, deletion
over insertion).

Another approach to database repairs based on logic programming se-
mantics consists of revision programs proposed by Marek and Truszczynski
[83]. The rules in those programs explicitly declare how to enforce the satis-
faction of an integrity constraint, rather than explicitly stating the integrity
constraints, for example,

in(a) — in(a)-.., in(ax), out(vy), .., out (bm)

has the intended procedural meaning of inserting the database atom a when-
ever aj,...,a but not by,..., b, are in the database. Also a declarative,
stable model semantics is given to revision programs (thus also providing
a computational mechanism). Preferences for certain kinds of repair actions
can be captured by including the corresponding rules in the revision program
and omitting the rules that could lead to other forms of repairs. No notion
analogous to consistent query answers is proposed.

There are several proposals for language constructs specifying nondeter-
ministic queries that are related to our approach: witness [1] and choice
[52,53,58]. Essentially, the idea is to construct a maximal subset of a given
relation that satisfies a given set of functional dependencies. Because there
is usually more than one such subset, the approach yields nondeterministic
queries in a natural way. Clearly, maximal consistent subsets (choice models
[52]) correspond to repairs of Definition 2. Stratified Datalog with choice [52]
combines enforcing functional dependencies with inference using stratified
Datalog programs. Answering queries in all choice models (YG-queries [58])
corresponds to our notion of computation of consistent query answers for first-
order queries (Definition 4). However, in [58], the former problem is shown
co-NP-complete and no tractable cases are identified. One of the sources of
complexity in this case is the presence of intensional relations defined by
Datalog rules. Such relations are absent from our approach. Moreover, the
procedure proposed in [58] runs in exponential time if there are exponentially
many repairs, as in Example 8. Also, only conjunctions of literals are con-
sidered as queries in [58]. Arbitrary first-order or aggregation queries are not
studied. Neither is the approach generalized beyond functional dependencies.

&
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[55.76-78]. In the global-as-view approach [74], the global database is defined
as a view over the data sources.

Sometimes one assumes that certain integrity constraints hold in the
global system, and those integrity constraints are used in generating the
query pla ually, there are situations where without integrity constraints,
no query plan can be generated [39,56,60]. The problem is that we cannot
be sure that such global integrity constraints hold. Even in the presence of
consistent data sources, a global system that integrates them may become
inconsistent. The global integrity constraints are not maintained and could
easily be violated. In consequence, data integration is a natural scenario to
apply the methodologies presented before. What we have to do is to retrieve
consistent information from the global system.

Several new interesting issues appear, among them are (a) What is a
consistent answer in this context? (b) If we are going to base this notion
on a notion of repair, what is a repair? Notice that we do not have global
instances to repair. (¢) How can the consistent answers be retrieved from
the global systems? What kind of query plans do we need? These and other
issues are addressed in [18,23] for the local-as-view approach and in [73] for
the global-as-view approach.

8.3 Other Problems

An important achievement of this line of research would be integrating the
mechanisms for retrieving consistent query answers with a full-fledged DBMS.
In such a system, it should be possible to specify, in SQL, soft integrity
constraints (constraints that are not explicitly maintained) and pose the usual
SQL queries. The consistent answers to those queries would be obtained by an
enhanced SQL engine. Note that different users, having different perceptions,
could specify different soft constraints.

So far, we have developed our notions of consistent answer and repair in
the context of relational databases. Nevertheless, it would be interesting to
extend these notions and the corresponding computational mechanisms to
other kinds of databases: semistructured, deductive, spatiotemporal, etc.
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Blair and Subrahmanian [21] introduced paraconsistent logic program-
ming. Paraconsistent logic programs have nonclassical semantics, inspired by
paraconsistent first-order semantics. Kifer and Subrahmanian [69] discussed
annotated logic programs with lattice-based, nonclassical semantics. Atoms in
clauses have annotations, as in [68], but now they may also contain variables
and functions, providing a stronger representation formalism. The implemen-
tation of annotated logic programs and query answering mechanisms are dis-
cussed in [72]. Subrahmanian [93] further generalized annotated programs to
use them for amalgamating databases by resolving potential conflicts between
integrated data. For this purpose, the product of the lattices underlying each
database is constructed as the semantic basis for the integrated database.
Conflict resolutions and preferences are captured by means of function-based
annotations. Other approaches to paraconsistent logic programming are dis-
cussed in [34]. These works do not define notions analogous to repairs and
consistent query answers.

8 Open Problems and Ongoing Work

8.1 Flexible Repairs

The existing notions of a consistent query answer [3-5,57,59,73] are based on
the notion of database repair from [3]. Database repairs of an inconsistent
database instance are new instances that satisfy the integrity constraints but
differ from the original instance by a minimal set of whole database tuples,
where minimality is understood under set inclusion. In Sect. 2, we mentioned
some alternative notions of repair. In particular, in some situations, it may
be more natural to consider more flezible repairs that allow modifications of
individual tuple components [96].

Other alternatives, independently of how repairs are defined, should con-
sider more flexibility w.r.t. the class of all repairs, for example, considering
an answer consistent if it is true in the majority of the database repairs, or
true in some preferred repairs, under some predefined notion of preference.
Majority-based approaches to consistency have been studied in [80] and [82]
in the context of data integration. The whole issue of preferences for cer-
tain changes and repairs still remains to be investigated. Some work in this
direction is presented in [57].

8.2 Data Integration

Assume that we have a collection of (materialized) data sources Si,...,S,,
and a global, virtual database G that integrates data from Sy,...,S,. Ac-
cording to the local-as-view approach [76,84,94], we can look at the data
sources, S;, as views of the global schema G. Now, given a query @ to G,
one can generate a query plan that extracts the information from the sources
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Abstract

In this paper we consider the problem of the logical char-
acterization of the notion of consistent answer in a relational
database that may violate given integrity constraints. This
notion is captured in terms of the possible repaired versions
of the database. A method for computing consistent an-
swers is given and its soundness and completeness (for some
classes of constraints and queries) proved. The method is
based on an iterative procedure whose termination for sev-
eral classes of constraints is proved as well.

1 Introduction

Integrity constraints capture an important normative aspect
of every database application. However, it is often the case
that their satisfaction cannot be guaranteed, allowing for the
existence of inconsistent database instances. In that case,
it is important to know which query answers are consistent
with the integrity constraints and which are not. In this pa-
per, we provide a logical characterization of consistent query
answers in relational databases that may be inconsistent with
the given integrity constraints. Intuitively, an answer to a
query posed to a database that violates the integrity con-
straints will be consistent in a precise sense: It should be the
same as the answer obtained from any minimally repaired
version of the original database. We also provide a method
for computing such answers and prove its properties. On the
basis of a query Q, the method computes, using an iterative
procedure, a new query T,(Q) whose evaluation in an arbi-
trary, consistent or inconsistent, database returns the set of

and
Supply Class
C D1 It Ii Ta
D D2 I

Example 4. (motivated by [19]) Consider the IC:
V(x,y)(Supply(x,y;11) D Supply(x,¥;12)),  (2)

saying that item I is supplied whenever item 11 is supplied;
and the following inconsistent instance, r», of the database

Supply
C D1 I1
C D1 I3
This instance has two repairs:
Supply
C D1 Iz
C D1 I2
C D1 I3
and
Supply
C D1 I3

Example 5. Consider a student database. Student(x,y,z)
means that x is the student number, y is the student’s name,
and z is the student’s address. The two following ICs state
that the first argument is a key of the relation
V(x.y,z,u,v)(Student(x,y,z) A Student(x,u,v) Dy = u),
V(.y,z,u,v)(Student(x,y,z) A Student(x,u,v) Dz = V).

The inconsistent database instance r3

Student Course
St N Di S1 G G
S1 N2 D1 S1 G G2

has two repairs:

Student Course
S; N Di S1 C Gi
St G G
and
Student Course
Si N2 D1 S$1 G Gy
S1 C2 G2

consistent answers to the original query Q. We envision the
application of our results in a number of areas:

Data warehousing. A data warehouse contains data com-
ing from many different sources. Some of it typically does
not satisfy the given integrity constraints. The usual ap-
proach is thus to clean the data by removing inconsistencies
before the data is stored in the warehouse [6]. Our results
make it possible to determine which data is already clean
and proceed to safely remove unclean data. Moreover, a dif-
ferent scenario becomes possible, in which the inconsisten-
cies are not removed but rather query answers are marked as
“consistent” or “inconsistent”. In this way, information loss
due to data cleaning may be prevented.

Database integration. Often many different databases
are integrated together to provide a single unified view for
the users. Database integration is difficult since it requires
the resolution of many different kinds of discrepancies of
the integrated databases. One possible discrepancy is due
to different sets of integrity constraints. Moreover, even if
every integrated database locally satisfies the same integrity
constraint, the constraint may be globally violated. For ex-
ample, different databases may assign different addresses to
the same student. Such conflicts may fail to be resolved at all
and inconsistent data cannot be “cleaned” because of the au-
tonomy of different databases. Therefore, it is important to
be able to find out, given a set of local integrity constraints,
which query answers returned from the integrated database
are consistent with the constraints and which are not.

Active and reactive databases. A violation of integrity
constraints may be acceptable under the provision that it will
be repaired in the near future. For example, the stock level in
a warehouse may be allowed to fall below the required min-
imum if the necessary replenishments have been ordered.
During this temporary inconsistency, however, query answers
should give an indication whether they are consistent with
the constraints or not. This problem is particularly acute in

2.2 Consistent query answers
We assume all queries are in prefix disjunctive normal form.

Definition 5. A formula Q is a query if it has the following
syntactical form:

s m n

QV (AP (H)A A =Qui (V) Awi),
i=1j j=1

=1

where Q is a sequence of quantifiers and every | contains
only built-in predicates. If Q contains only universal quanti-
fiers, then we say that Q is a universal query. IfQ contains
existential (and possibly universal) quantifiers, we say that
Q is non-universal query.

Definition 6. (Query answer) A (ground) tuple tis an an-
swer to a query Q('x) in a database instance r if r |= Q). A
(ground) tuple t is an answer to a set of queries {Qx,.... Qn}

ifr=QiA  AQn

Definition 7. (Consistent answer) Given a set of integrity
constraints, we say that a (ground) tuple t is a consistent
answer to a query Q('X) in a database instance r, and we
write 1 |=¢ Q(t) (or r |=c Q( X)), if for every repair r’ of
r,r'  Q(t). If Qis asentence, then true (false) is a consis-
tent answer to Q in r, and we write r =c Q (r [&¢ Q), if for
every repairr’ ofr,r’  Q (" #Q).

Example 6. (example 3 continued) The only consistent an-
swer to the query Class(z,Ts), posed to the database instance
ry, is Iy because ry |=c Class(z,Ts)[l1].

Example 7. (example 4 continued) The only consistent an-
swer to the query Supply(C, D1,z), posed to the database in-
stance r», is I3 because rz |=¢ Supply(C,D1,2)(l3].

Example 8. (example 5 continued) By considering all the re-
pairs of the database instance r3, we obtain C; and C; as the
consistent answers to the query 3zCourse(S1,y,z), posed to
r3. For the query 3(u,v)(Student(u, N1,v) A Course(u,X,y)),
we obtain no (consistent) answers.

3 The General Approach

We present here a method to compute consistent answers to
queries. Given a query Q, the query Te(Q) is defined based
on the notion of residue developed in the context of seman-
tic query optimization (SQO) [5]. In the context of deductive
databases, SQO is used to optimize the process of answering
queries using the semantic knowledge about the domain that
is contained in the ICs. In this case, the basic assumption is
that the ICs are satisfied by the database. In our case, since
we allow inconsistent databases, we do not assume the sat-
isfaction of the ICs while answering queries. A first attempt
to obtain consistent answers to a query Q(X) may be to use
query modification, i.e., ask the query Q(X) A IC. However,

active databases that allow such consistency lapses. The re-
sult of evaluating a trigger condition that is consistent with
the integrity constraints should be treated differently from
the one that isn’t.

The following example presents the basic intuitions be-
hind the notion of consistent query answer.

Example 1. Consider a database subject to the following IC:
WX(P(X) 2 Q(x))-

The instance
{P(a),P(b),Q(a).Q(c)}

violates this constraint. Now if the query asks for all x such
that Q(x), only a is returned as an answer consistent with the
integrity constraint.

The plan of this paper is as follows. In section 2 we in-
troduce the basic notions of our approach, including those of
repair and consistent query answer. In section 3 we show a
method how to compute the query T(,(Q) for a given first-
order query Q. In subsequent sections, the properties of this
method are analyzed: soundness in section 4,
in section 5, and termination in section 6. In section 7 we
discuss related work. In section 8 we conclude and outline
some of the prospects for future work in this area. The proofs
are given in the appendix.

2 Basic Notions

In this paper we assume we have a fixed database schema
and a fixed infinite database domain D. We also have a first
order language based on this schema with names for the ele-
ments of D. We assume that elements of the domain with dif-
ferent names are different. The instances of the schema are
finite structures for interpreting the first order language. As
such they all share the given domain D, nevertheless, since
relations are finite, every instance has a finite active domain
which is a subset of D. As usual, we allow built-in predi-
cates that have infinite extensions, identical for all database
instances. There is also a set of integrity constraints IC, ex-
pressed in that language, which the database instances are
expected to satisfy. We will assume that IC is consistent in
the sense that there is a database instance that makes it true.

Definition 1. (Consistency) A database instance r is consis-
tent if r satisfies IC in the standard model-theoretic sense,
thatis, r IC; r is inconsistent otherwise.

This paper addresses the issue of obtaining meaningful
and useful query answers in any, consistent or inconsistent,
database. It is well known how to obtain query answers in
consistent databases. Therefore, the challenging part is how
to deal with the inconsistent ones.

this does not work, as we obtain false as the answer if the
DB is inconsistent. Instead, we iteratively modify the query
Q using the residues. As a result, we obtain the query T,(Q)
with the property that the set of all answers to Te,(Q) is the
same as as the set of consistent answers to Q. (As shown
later, the property holds only for restricted classes of queries
and constraints.)

3.1 Generating residues in relational DBs

We consider only universal constraints. We begin by trans-
forming every integrity constraint to the standard format (ex-
pansion step).

Definition 8. An integrity constraint is in standard format if
it has the form

m n

YIVR(OVV-Qi() V),
1 i=1

where Y represents the universal closure of the formula, x,
“y are tuples of variables and  is a formula that mentions
only built-in predicates, in particular, equality.

Notice that in such an IC there are no constants in the
P;,Qj; if they are needed they can be pushed into .

Many usual ICs that appear in DBs can be transformed to
the standard format, e.g. functional dependencies, set inclu-
sion dependencies of the form v 'X(P('X) D Q('X)), transitiv-
ity constraints of the form x,y, z(P(x,y) AP(y,z) D P(x.z)).
The usual ICs that appear in SQO in deductive databases
as rules [5] can be also accommodated in this format, in-
cluding rules with disjunction and logical negation in their
heads. An inclusion dependency of the form V'X(P(X) >
3y Q('X.y)) cannot be transformed to the standard format.

After the expansion of IC, rules associated with the database
schema are generated. This could be seen as considering
an instance of the database as an extensional database ex-
panded with new rules, and so obtaining an associated de-
ductive database where semantical query optimization can
be used.

For each predicate, its negative and positive occurrences
in the ICs (in standard format) will be treated separately with
the purpose of generating corresponding residues and rules.
First, a motivating example.

Example 9. Consider the IC Vx (=P(x) VQ(x)). If Q(x) is
false, then —P(x) must be true. Then, when asking about
—Q(x), we make sure that —-P(x) becomes true. That is,
we generate the query —Q(x) A —P(x) where —P(x) is the
residue attached to the query.

For each IC in standard format

Y(VR(YVV QD V), @®

i=1 i=1

2.1 Repairs

Given a database instance r, we denote by (r) the set of
formulas {P(7a)[r P(7a)}, where the Ps are relation names
and “ais ground tuple.

Definition 2. (Distance) The distance A(r,r’) between data-
base instances r and r’ is the symmetric difference:

Anr)=(X(r) Z(F)UE(I) Z(N).

Definition 3. For the instances r.r'.r", v’ r” if A(r,r")
A(r,r"), i.e., if the distance between r and r’ is less than or
equal to the distance between r and r”.

Notice that built-in predicates do not contribute to the
As because they have fixed extensions, identical in every
database instance.

Definition 4. (Repair) Given database instances r and r’, we
say that r’ is a repair of rif r' ICand r'is -minimal in
the class of database instances that satisfy the ICs.

Clearly, what constitutes a repair depends on the given
set of integrity constraints. In the following we assume that
this set is fixed.

Example 2. Let us consider a database schema with two
unary relations P and Q and domain D = {a,b,c}. Assume
that for an instance r, Z(r) = {P(a).P(b),Q(a),Q(c)}, and
let IC = {¥x(P(x) D Q(x))}. Clearly, r does not satisfy IC
because r  P(b) A—Q(b).

In this case we have two possibles repairs for r. First,
we can falsify P(b), obtaining an instance ' with Z(r') =
{P(a),Q(a),Q(c)}. As a second alternative, we can make
Q(b) true, obtaining an instance r” with £(r”) = {P(a).P(b),
Q(a).Q(b),Q(c)}.

The definition of a repair satisfies certain desirable and
expected properties. Firstly, a consistent database does not
need to be repaired, because if r satisfies IC, then, by the
minimality condition wrt the relation 1, r is the only repair
of itself (since A(r,r) is empty). Secondly, any database r
can always be repaired because there is a database r’ that
satisfies IC, and A(r, r) is finite.

Example 3. (motivated by [19]) Consider the IC saying that
C is the only supplier of items of class T4:

(x.y,z)(Supply(x,y,z) AClass(z,T4) Dx=C). (1)

The following database instance ry violates the IC:

Supply Class
C D1 It I Ta
D Dz I lo Ta
The only repairs of this database are
Supply Class
C D1 Ih I Ta
I Ta

and each positive occurrence of a predicate P;(7y) in it, the
following residue for —P;(7¥) is generated

_i-1 m n
QVP(RV V R(RIVV-Q()VY), @
i-1 i=j+1 =1

where Q is a sequence of universal quantifiers over all the
variables in the formula not appearing in .

IfRy,...,R, are all the residues for —Pj, then the follow-
ing rule is generated:

“Pj(W)1 — =R(W){R(W),...,R(W)},

where W are new variables. If there are no residues for -,
then the rule —Pj( W) — —R( W) is generated.

For each negative occurrence of a predicate Q;(y) in (3),
the following residue for Q;(7y) is generated

~m j-1 n
QAVRAVV QMY V -Q(WVw),
i=1 i=1

i=j+1

where Q is a sequence of universal quantifiers over all the
variables in the formula not appearing in y.

IfR},... Ry are all the residues for Q;(y), the following
rule is generated:

Qi(U) = Q(W{R(U),....R(U)}.

If there are no residues for Q;(7y), then the rule Q;(u)+ —
Qj("u) is generated. Notice that there is exactly one new rule
for each positive predicate, and exactly one rule for each
negative predicate.

If there are more than one positive (negative) occurrences
of a predicate, say P, in an IC, then more then one residue
is computed for —P. In some cases, e.g., for functional de-
pendencies, the subsequent residues will be redundant. In
other cases cases, e.g., for transitivity constraints, multiple
residues are not redundant.

Example 10. If we have the following ICs in standard for-
mat

1C = {¥x(R(X) V =P(x) V =Q(x)), X (P(X) V ~Q(X))},

the following rules are generated:

Px) 1= POO{RX) V-Q(x)}
QX)) = QM{R(X)V-P(x),P(x)}
R(x) + — R(x)

PO = POO{-QM)}
Q) = Q)
RO 1= SROO{P() v -Q()}-

Notice that no rules are generated for built-in predicates,
but such predicates may appear in the residues. They have
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fixed extensions and thus cannot contribute to the violation
of an IC or be modified to make an IC true. For example, if
we have the IC Vx,y,z(=P(x,y) V -P(x,z) Vy = z), and the
database satisfies P(1,2),P(1,3), the IC cannot be made
true by making 2 =3.

Once the rules have been generated, it is possible to sim-
plify the associated residues. In every new rule of the form
P(u)r —P(U){RU),....R("U)} the auxiliary quantifications
introduced in the expansion step are eliminated (both the
quantifier and the associated variable in the formula) from
the residues by the process inverse to the one applied in
the expansion. The same is done with rules of the form
“Pi—-P{ }.

3.2 Computing T,(Q)

In order to determine consistent answers to queries in arbi-
trary databases, we will make use of a family of operators
consisting of To, n 0, and Tg,.

Definition 9. The application of an operator Ty, to a query is
defined inductively by means of the following rules

Tn(D) :=0, Ta(-0) := -0, foreveryn 0 (Cisthe
empty clause).

To(9) :=¢.

For each predicate P( ), if there is a rule P(U)» —
P(W){R(U),....R(u)}, then

[

w N

Toa(P(W) =P(U) A\ Ta(Ri(T)).

If P("U) does not have residues, then T.1(P(U)) :=
P(T).

For each negated predicate —Q( V), if there is a rule

—Q(V)1 = -Q(V){RV),...,R(V)}, then

>

Tre1(=Q(V)) = —Q(V) A\ Ta(RI(V)).
i=1

If =Q( V) does not have any residues, then T11(—=Q( 1)) :=
=Q()-

If ¢ is a formula in prenex disjunctive normal form,
that is,

s om n
6 =Q V(AP A A ~Qij (V) Awi),
i=1 j=1 j=1

o

where (5is asequence of quantifiers and yj is a formula
that includes only built-in predicates, then for every
n 0

m
A Ta(Pij(H)A

(
1j=1

Ta(#) == Q)

ATol-Qui () AW).
j=1

5.2 Other Constraints

The following theorem applies to arbitrary ICs and general-
izes Theorem 2.

Theorem 3. (Completeness) Let IC be a set of integrity con-
straints, I(X) a literal, and T,(I( X)) of the form

100 M YCR WX RV (%, 3).
i=1

Ifforeveryn 0, thereisS {1,...,m} suchthat
1. forevery j € S and every tuple a: IC j%5 Cj( @), and
2. {(V(X WX XV Wi X, iY)|i € S} implies
MEPCRIV(RPL i m)

thenr I(¥) impliesr  Te(I(1)).

This theorem can be extended to conjunctions of literals.
Notice that the theorem requires a condition for every n € N.
Its application is obviously simplified if we know that the
iteration terminates. This is an issue to be analyzed in the
next section.

6 Termination

Termination means that the operator T, returns a finite set
of formulas. It is clearly important because then the set of
consistent answers can be computed by evaluating a single,
finite query. We distinguish between three different notions
of termination.

Definition 13. Given a set of ICs and a query Q( ), we say
that Te(Q( X)) is

1. syntactically finite if there is an an n such that To(Q( X))
and Tn;1(Q( X)) are syntactically the same.

2. semantically finite if there is an n such that for all m
nYX(RQ(X)  T(Q(X)) is valid.

3. semantically finite in an instance r, if there is an n such

thatforallm n,rl=YX(RQ(X) TQ(X)-

The number n in cases 2 and 3 is called a point of finite-
ness. It is clear that 1 implies 2 and 2 implies 3. In the full
version we will show that all these implications are proper.
In all these cases, evaluating T¢,(Q( X) gives the same result
as evaluating Tn(Q(X) for some n (in the instance r in case
3). If Tu(Q(X) is semantically finite, sound and complete,
then the set of consistent answers to Q is first-order defin-
able.

Definition 10. The application of operator T, on a query is
defined as Too(¢) = [ J {Ta(9)}.

n<w

Example 11. (example 10 continued) For the query —R(x)
we have T1 (<R(x)) = ~R(x) A (=P(x) V=Q(x)), T2(+R(x))
= -R(X) A((-P(X) A=Q(x)) V—Q(x)) and finally Ta(—R(x))
= T2(-R(x)). We have reached a fixed point and then

To(=R(X)) = {=R(x), 7R(X) A (=P(x) V =Q(x)),
“RX) A ((=P(X) A=Q(x)) V=Q(x))}-

We show first that the operator T, conservatively extends
standard query evaluation on consistent databases.

Proposition 1. Given a database instance r and a set of in-
tegrity constraints IC, such that r  1C, then for every query
Q('x) and every natural numbern: r - ¥ X(Q(X) nR(X))).

Corollary 1. Given a database instance r and a set of in-
tegrity constraints IC, such that r  1C, then for every query
Q('X) and every tuple: r - Q(t) ifand only if r  Te,(Q(t)).

4  Soundness

Now we will show the relationship between consistent an-
swers to a query Q in a database instance r (definition 7) and
answers to the query T (Q) (definition 6). We show that
Tw(Q) returns only consistent answers to Q.

Theorem 1. (Soundness) Let r be a database instance, IC a
set of integrity constraints and Q( X) a query (see definition 5)
suchthat r - Te(Q(X)). If Q is universal or non-universal
and domain independent[20], then t is a consistent answer to
Q in r (in the sense of definition 7), that is, r = Q(f) .

The second condition in the theorem excludes non-universal,
but domain dependent queries like 3x—P(x).

Example 12. (example 6 continued) The IC (1) transformed
into the standard format becomes

V(x,y,z,w)(=Supply(x,y,2)V
—Class(z,w) VW # T4 VX =C).

The following rule is generated:

Class(z,w) + — Class(z,w)
{¥(x,y)(=Supply(x,y.z) VW # T4 Vx =C)}.

Given the database instance ry that violates the IC as before,
if we pose the query Class(z,T4), asking for the items of
class T, directly to r1, we obtain Iy and I,. Nevertheless, if
we pose the query Te,(Class(z,T4)), that is

{Class(z,Ts).
Class(z,T4) A V(x.y)(—~Supply(x,y,z) VX =C)}

6.1 Syntactical finiteness

The notion of syntactical finiteness is important because then
for some nand all m > n, Tm(Q( X)) will be exactly the same.
In consequence, Te,(Q) will be a finite set of formulas. In
addition, a point of finiteness n can be detected (if it exists)
by syntactically comparing every two consecutive steps in
the iteration. No simplification rules need to be considered,
because the iterative procedure is fully deterministic.

Here we introduce a necessary and sufficient condition
for syntactical finiteness.

Definition 14. A set of integrity constraints IC is acyclic if
there exists a function f from predicate names plus negations
of predicate names in the database to the natural numbers,
that is, f: {p1,...,Pn,=P1,....7Pn} — N, such that for
every integrity constraint v(\/K_; i( %) V(X)) € ICasin (3),
andeveryiand j (1 i,j K),ifi# j, then f(=li) > f(lj).
(Here —l; is the literal complementary to I;.)

Example 17. The set of ICs

IC = {YX(~P(X) V ~Q(X) V' $(x)).
YO6Y)(-Q(X) V=S(Y) VT (x.¥))}-

is acyclic, because the function f defined by
f(P)=2 f(Q =2 f(-P)=0 f(-Q) =0
f(S)=1 f(T)=0 f(-§)=1 f(-T)=2
isfies the condition of definition 14.

sat-

Example 18. The set of ICs

1C = {wx(=P(x) V =Q(x) V S(x)),
Y6Y)QM)V=S(y) VT (xy)) -

is not acyclic, because for any function f that we may at-
tempt to use to satisfy the condition in definition 14, from
the first integrity constraint we obtain f(Q) > f(S), and from
the second, we would obtain f(S) > f(Q); a contradiction.

Theorem 4. A set of integrity constraints IC is acyclic iff
for every literal name | in the database schema, T¢,(1(X)) is
syntactically finite.

The theorem can be extended to any class of queries sat-
isfying Definition 5.

Example 19. The set of integrity constraints in example 18
is not acyclic. In that case T,(Q(x)) is infinite.

Example 20. The ICs in example 17 are acyclic. There we

we obtain only I3, eliminating Io. 11 is the only consistent
answer.

Example 13. (example 8 continued) In the standard format,
the ICs take the form
V(x,y,z,u,v)(=Student(x,y,z) v
~Student(x,u,v) Vy =u),
Y(x,y,z,u,v)(—Student(x,y,z) v
—Student(x,u.v)Vz =V,

The following rule is generated
Student(x,y,z) 1 — Student(x,y.z)
{¥(u,v)(=Student(x,u,v) Vy =u),
¥(u,v)(=Student(x,u,v) Vz=v)}.
Given the inconsistent database instance rs, if we pose the
query 3zCourse(Sz1,y,z), asking for the names of the courses
of the student with number S;, we obtain C; and C,. If we
pose the query
Tw(JzCourse(S1,y,2)) = {3zCourse(Sy1,y,2)}

we obviously obtain the same answers which, in this case,
are the consistent answers. Intuitively, in this case the T,
operator helps us to establish that even when the name of the
student with number S is undetermined, it is still possible
to obtain the list of courses in which he/she is registered. On
the other hand, if we pose the query

3(u,v)(Student(u,Ny,v) A Course(u,X,y))

about the courses and grades for a student with name Ny, to
r3, we obtain (C1,Gz1) and (Cz,Gz). Nevertheless, if we ask
Te(3(u,v)(Student(u, N1, v) A Course(u,x,y)))

we obtain, in conjunction with the original query, the for-
mula:

3(u,v)(Student(u,N1,v) A

W(y',Z')(=Student(u,y’,Z') vy’ = N1) A

W(y',Z')(=Student(u,y’,') vz’ = v) A Course(u,X,y)),
from this we obtain the empty set of tuples. This answer
is intuitively consistent, because the number of the student
with name Ny is uncertain, and in consequence it is not pos-
sible to find out in which courses he/she is registered. The

set of answers obtained with the T, operator coincides with
the set of consistent answers which is empty.

5 Completeness
5.1 Binary ICs

Definition 11. A binary integrity constraint (BIC) is a sen-
tence of the form

V(L (%) V1208 V(%)

have
To(P(u)) =
{P(w),
P(U) A (=Q(u) v S(u)),
P(U) A (=Q(u) VS(U) AW(=Q(V) VT (v,u)))}
To(Q(U) =
{Q(),
Q(u) A (=P (u) vS(u)) AWW(=S(v) VT (u,v)),
Q(U) A (=P(u) v S(u) AYW(-Q(w) VT (w,u))) A

W(=S(V) A (SP(V) V=Q(V)) VT (uv))}

To(S(u)) = {S(u),S(U) AV(=Q(V) VT (v,u))}
To(T (V) ={T(uv)}
To(-P(W) = {=P(u)}
To(-Q(u)) = {~Q(u)}

To(=8(u)) = {=S(u), =S(u) A (=P(u) v ~Q(u))}

To(=T(u,v) =
{=T(uv),
ST(UY) A (-Q(U) V-S(V)).
ST (U.Y) A (-Q(U) V ~8(v) A (<P(¥) V~Q(V)))}-

Corollary 3. For functional dependencies and a query Q(X),
To(Q(X)) is always syntactically finite.

6.2 Semantical finiteness

Definition 15. A constraint C in clausal form is uniform if
for every literal I('X) in it, the set of variables in I(X) is the
same as the set of variables inC  1(X). A set of constraints
is uniform if all the constraints in it are uniform.

Examples of uniform constraints include set inclusion
dependencies of the form vX(P('X) O Q('X)), e.g., Example
4.

Theorem 5. If a set of integrity constraints IC is uniform,
then for every literal name | in the database schema, Te,(1( X))
is semantically finite. Furthermore, a point of finiteness n
can be bounded from above by a function of the number of
variables in the query, and the number of predicates (and
their arities) in the query and IC.

where |1 and I are literals, and ¢ is a formula that only
contains built-in predicates.

Examples of BICs include: functional dependencies, sym-
metry constraints, set inclusions dependencies of the form
YX(P(X) QX))

Definition 12. Given a set of sentences Z in the language
of the database schema DB, and a sentence ¢, we denote by
Z pe ¢ the fact that, for every instance r of the database, if
r Zthenr ¢.

Theorem 2. (Completeness for BICs) Given a set IC of bi-
nary integrity constraints, if for every literal 1'(‘a), IC kg
I'(7a), then the operator T, is complete, that is, for every
ground literal 1(t), if r ¢ 1(f) thenr  Tu(I(t)).

The theorem says that every consistent answer to a query
of the form 1(7X) is captured by the T, operator. Actually,
proposition 2 in the appendix and the completeness theorem
can be easily extended to the case of queries that are con-
junctions of literals. Notice that the finiteness T,,(1(X)) is
not a part of the hypothesis in this theorem. The hypoth-
esis of the theorem requires that the ICs are not enough to
answer a literal query by themselves; they do not contain
definite knowledge about the literals.

Example 14. We can see in the example 12 where BICs and
queries which are conjunctions of literals appear, that the
operator T, gave us all the consistent answers, as implied
by the theorem.

Corollary 2. If IC is a set of functional dependencies (FDs)

1IC = {¥(-P(X.y) V-P(Kz1) Vy1=21),  (5)

W(=Pa(K.Yn) V =Pn(X,2n) V¥n =)},

then the operator T, is complete for consistent answers to
queries that are conjunctions of literals.

Example 15. In example 13 we had FDs that are also BICs.
Thus the operator T, found all the consistent answers, even
for some queries that are not conjunctions of literals, show-
ing that this is not a necessary condition.

Example 16. Here we will show that in general complete-
ness is not obtained for queries that are not conjunctions of
literals. Consider the IC: Vx,y,z(P(x,y) AP(x,z) Dy=12)
and the inconsistent instance r with £(r) = {P(a,b),P(a,c)}.
This database has two repairs: r’ with Z(r') = {P(a,b)}; and
r’ with Z(r") = {P(a,c)}. We have that r |=¢ IxP(a,x), be-
cause the query is true in the two repairs.

Now, itis easy to see that T¢,(3uP(a,u)) is logically equiv-
alentto Su(P(a,u) AVz(-P(a,z) vz =u)). So, we have r |~
Tw(IxP(a,x)). Thus, the consistent answer true is not cap-
tured by the operator T,.

Theorem 6. Let | be a literal name. If for some n,
YXRI(3)) 2 Fia(1(X))
isvalid, then forallm  n,
YXRAN) TWACX)

is valid.

According to Theorem 6, we can detect a point of finite-
ness by comparing every two consecutive steps wrt logical
implication. Although this is undecidable in general, we
might try to apply semidecision procedures, for example,
automated theorem proving. We have successfully made use
of OTTER [17] in some cases that involve sets of constraints
that are neither acyclic nor uniform. Examples include mul-
tivalued dependencies, and functional dependencies together
with set inclusion dependencies. For multivalued dependen-
cies, Theorem 6 together with Theorem 3 gives complete-
ness of T (I( X)) where I('X) is a negative literal. The cri-
terion from Theorem 6 is also applicable to uniform con-
straints by providing potentially faster termination detection
than the proof of Theorem 5.

6.3 Instance based semantical finiteness

Theorem 7. If Q(X) is a domain independent query, then
for every database instance r there is an n, such that for all
Mmoo rEVERQR)  RQUR)).

Notice that this theorem does not include the case of neg-
ative literals, as in the case of theorem 5.

7 Related work

Bry [4] was, to our knowledge, the first author to consider
the notion of consistent query answer in inconsistent data-
bases. He defined consistent query answers based on prov-
ability in minimal logic, without giving, however, a proof
procedure or any other computational mechanism for obtain-
ing such answers. He didn’t address the issues of of seman-
tics, soundness or completeness.

It has been widely recognized that in database integra-
tion the integrated data may be inconsistent with the integrity
constraints. A typical (theoretical) solution is to augment the
data model to represent disjunctive information. The follow-
ing example explains the need for a solution of this kind.

Example 21. Consider the functional dependency
V(XY,2)(P(x.y) AP(x,2) Dy =z.

If the integrated database contains both P(a,b) and P(a,c),
then the functional dependency is violated. Each of P(a,b)
and P(a,c) may be coming from a different database that
satisfies the dependency. Thus, both facts are replaced by
their disjunction P(a,b) vV P(a,c) in the integrated database.
Now the functional dependency is no longer violated.
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To solve this kind of problems [1] introduced the notion
of flexible relation, a non-1NF relation that contains tuples
with sets of non-key values (with such a set standing for one
of its elements). This approach is limited to primary key
functional dependencies and was subsequently generalized
to other key functional dependencies [9]. In the same con-
text, [3, 12] proposed to use disjunctive Datalog and [16]
tables with OR-objects. [1] introduced flexible relational al-
gebra to query flexible relations, and [9] - flexible relational
calculus (whose subset can be translated to flexible relational
algebra). The remaining papers did not discuss query lan-
guage issues, relying on the existing approaches to query
disjunctive Datalog or tables with OR-objects. There are
several important differences between the above approaches
and ours. First, they rely on the construction of a single (dis-
junctive) instance and the deletion of conflicting tuples. In
our approach, the underlying databases are incorporated into
the integrated one in toto, without any changes. There is no
need for introducing disjunctive information. It would be
interesting to compare the scope and the computational re-
quirements of both approaches. For instance, one should
note that the single-instance approach is not incremental:
Any changes in the underlying databases require the recom-
putation of the entire instance. Second, our approach seems
to be unique, in the context of database integration, in con-
sidering tuple insertions as possible repairs for integrity vi-
olations. Therefore, in some cases consistent query answers
may be different from query answers obtained from the cor-
responding single instance.

Example 22. Consider the integrity constraint p > q and a
fact p. The instance consisting of p alone does not satisfy
the integrity constraint. The common solution for remov-
ing this violation is to delete p. However, in our approach
inserting q is also a possible repair. This has consequences
for the inferences about —p and —q. Our approach returns
false in both cases, as p (resp. q) is true in a possible repair.
Other approaches return true (under CWA) or undefined (un-
der OWA).

Our work has connections with research done on belief
revision [10]. In our case, we have an implicit notion of re-
vision that is determined by the set of repairs of the database,
and corresponds to revising the database (or a suitable cat-
egorical theory describing it) by the set of integrity con-
straints. Thus, querying the inconsistent database expect-
ing only correct answers corresponds to querying the revised
theory without restrictions.

It is easy to see that our notion of repair of a relational
database is a particular case of the local semantics intro-
duced in [8], restricted to revision performed starting from
a single model (the database). From this we obtain that our
revision operator satisfies the postulates (R1) — (R5),(R7),
(R8) in [13]. For each given database r, the relation  in-
troduced in definition 3 provides the partial order between
models that determines the (models of the) revised database
as described in [13]. [8] concentrates on the computation

[20] J. Ullman. Principles of Database and Knowledge-
Base Systems, Vol. I. Computer Science Press, 1988.

Appendix: Proofs of Results

Some technical lemmas are stated without proof. Full proofs
can be found in the file proofspods99.psin
http://dcc.ing.puc.cl/~bertossi/.

Lemma 1. If r  Ty(I(@)), where I(a) is a ground literal,

then for every repair r’ of r, it holds r’ 1(7a).

Lemma 2. Ifr Tu(AlL1li(®), where Ii() is a ground
literal, then for every repair r' of r, it holds r' A, li( ).

Lemma 3. Ifr  Te(ViL;Ci( @), with Ci( @) a conjunction
of literals, then for every repair ' of r, r' /L, Ci(@).

Lemma 4. Let Q('x) a universal query. If r '[,(Q(t:)), for
aground tuple t, then for every repair r' of r, ' Q(t).

Lemma 5. Let Q(X) a domain independent query. If r
Tw(Q(t)), for a ground tuple t, then for every repair r' of r,

Proof of Theorem 1: Lemmas 4 and 5.

Proposition 2. Given a set IC of integrity constraints, a
ground clause V" I (&), if 1C #pg V{1 I (&) and, for every
repair r’ of r, r’ /M ki(6), thenr /™, k().

Proof of Proposition 2: Assume that r = \/2, Ii(t;). By
hypothesis IC ¥pg V{4 li(&i), thus there exists an instance
of the database r’ such that r'  ICU{=\/™, li(t)}. Letus
consider the set of database instances

R={r[r* ICandA(r,r*) A(r,r)}.

We know that A(r,r’) is finite, therefore there exists i € R
such that A(r, ro) is minimal. Then, ro is a repair of .

Foreveryl i m,ifli(t)is p(f) or —p(t), then p(f) ¢
A(r,r'). Using this fact we conclude that p(t) ¢ A(r,ro),
Therefore, r  \/, Ii(t) if and only if ro /™ Ii(&). But
we assumed that r - —\/™, li(&), then ro = \V™, li(%); a
contradiction.

Proof of Theorem 2: From theorem 3.

Proof of Corollary 2: In this case it holds:

1. For every tuple @, IC /g P,(a), because the empty
database instance (which has only empty base rela-
tions) satisfies IC, but not P(a).

n

For every tuple a, IC jg —Pi( @), since the database
instance r'; where the relation P; contains only the tu-
ple 7aand the other relations are empty, satisfies IC, but
not -Pi(a).

of the models of the revised theory, i.e. the repairs in our
case, whereas we do not compute the repairs, but keep query-
ing the original, non-revised database and pose a modified
query. Therefore, we can view our methodology as a way
of representing and querying simultaneously all the repairs
of the database by means of a new query. Nevertheless, our
motivation and starting point is quite different from belief
revision. We attempt to take direct advantage of the seman-
tic information contained in the integrity constraints in order
to answer queries, rather than revising the database. Revis-
ing the database means repairing all the inconsistencies in it,
instead we are interested in the information related to par-
ticular queries. For instance, a query referring only to the
consistent portion of the database can be answered without
repairing the database.

Reasoning in the presence of inconsistency has been an
important research problem in the area of knowledge repre-
sentation. The goal is to design logical formalisms that limit
what can be inferred from an inconsistent set of formulas.
One does not want to infer all formulas (as required by the
classical two-valued logic). Also, one prefers not to infer a
formula together with its negation. The formalisms satisfy-
ing the above properties, e.g., [15], are usually propositional.
Moreover, they do not distinguish between integrity con-
straints and database facts. Thus, if the data in the database
violates an integrity constraint, the constraint itself can no
longer be inferred (which is not acceptable in the database
context).

Example 23. Assume the integrity constraint is —(p A q)
and the database contains the facts p and g. In the approach
of [15], p Vv q can be inferred (minimal change is captured
correctly) but p, g and ~(p A q) can no longer be inferred
(they are all involved in an inconsistency).

Because of the above-mentioned limitations, such methods
are not directly applicable to the problem of computing con-
sistent query answers.

Deontic logic [18, 14], a modal logic with operators cap-
turing permission and obligation, has been used for the spec-
ification of integrity constraints. [14] used the obligation op-
erator O to distinguish integrity constraints that have to hold
always from database facts that just happen to hold. [18]
used deontic operators to describe policies whose violations
can then be caught and handled. The issues of possible re-
pairs of constraint violations, their minimality and consistent
query answers are not addressed.

Gertz [11] described techniques and algorithms for com-
puting repairs of constraint violations. The issue of query
answering in the presence of an inconsistency is not addressed
in his work.

8 Conclusions and Further Work

This paper represents a first step in the development of a
new research area dealing with the theory and applications

Proof of Theorem 3: Sum)ose thatr cI(t). Letr’ arepair
of r, we have that r'I(t). By proposition 1 we have that
r' Ta(l(t)), that is

m m
IO A AV G E ) VE ), ()

=1 j=1

We want to prove that for every i and for every sequence
of ground tuples aj, a; 1, ..., &im:

m
ro V&) veEa. ]
j=1

To do this, first we are going to prove that for every i € S
and for every sequence of ground tuples aj, a; 1, ..., aim:

m
ro V&) veEa, ®)
j=1

This is immediately obtained when r  yi(t, @. As-
sume that r - —i(f, @). We know that i only mentions
built-in predicates, thus for every repair r' of r we have that
' —i(t, @. Therefore, by (6) we conclude that for every
repair r’ of r:

m
vV ) Ve @),
j=1
By proposition 2 we conclude (8). Thus we have that

m
rAEAAYCV € %) Vi E ).

ies j=1

but by the second condition in the hypothesis of the theorem
we conclude that:

m m
rAOAAYCV E X)) VWE R)-

=1 j=1

Proof of Theorem 4: (=) Suppose that IC is acyclic, then
there exists f as in the definition 14. We are going to prove
by induction on k that for every literal name I, if f(I) =k,
then Tie;1(1(%)) = Er2(1( %))

(1) If k=0. We know that that for every literal name I’,
(1) 0. Therefore, every integrity constraint containing —I
is of the form V(=1("X) v(y)), where g only mentions built-
in predicates. This is because if there were any other literal
I in the integrity constraint, we would have f(1') < f(I) =0.
Then Ty(1(%)) = 5(1( ).

(I1) Suppose that the property is true for every m < k. We
know that Ty, o(I( X)) is of the form:

_m
1) M\ QiCV Tiesa (1, (%)) v Wi(%),

=1 j=1

of consistent query answers in arbitrary, consistent or incon-
sistent, databases.

The theoretical results presented here are preliminary. We
have proved a general soundness result but the results about
completeness and termination are still partial. Also, one
needs to look beyond purely universal constraints to include
general inclusion dependencies. In a forthcoming paper we
will also describe our methodology for using automated the-
orem proving, in particular, OTTER, for proving termina-
tion.

It appears that in order to obtain completeness for dis-
junctive and existentially quantified queries one needs to move
beyond the T, operator on queries. Also, the upper bounds
on the size of T, and the lower bounds on the complexity of
computing consistent answers for different classes of queries
and constraints need to be studied. In [2] it is shown that in
the propositional case, SAT is reducible in polynomial time
to the problem of deciding if an arbitrary formula evaluated
in the propositional database does not give true as a correct
answer, that is it becomes false in some repair. From this it
follows that this problem is NP-complete.

There is an interesting connection to modal logic. Con-

sider the definition 7. We could write r = 0Q(), meaning

that Q(f) is true in all repairs of r, the database instances

that are “accessible” from r. This is even more evident from

example 16, where, in essence, it is shown that 03xQ(X) is
not logically equivalent to 3xJQ(X), which is what usually
happens in modal logic.
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then Tp,2(1(X)) is of the form:

1) YR W(T2CH XV Wi(%,13),
i=1

Lemma 7. If foragroundtuple a, T(I(a)) vvlelj(ﬁ,ﬁ),
then Toy1(1(2) VW41 Ta(lf (2, 9).

Proof of Theorem 6: Suppose that for a natural number n,
VX(R(I(X)) D Rs2(1(X))) is a valid sentence. We are going
to prove that foreverym  n, V' X(Ta(1( X)) D Tasa(1(X))) is
a valid sentence, by induction on m.

(1) If m = n, by hypothesis.

(11) Suppose that ¥V X(Ta(1( X)) D Ta+1(1(X))) is a valid sen-
tence. For every clause \V/§_y I{ (X, 73V W(X, 2) indfa(1( X))
and for every ground tuple “a we have that

k
Tn(l() YV 1{(3 73V W(a 7).
j=1

By lemma 7 and considering that { only mentions built-in
predicates we have that Tm,1(1("a)) V(\/‘l‘lel(I;(’a. BV
Y(a, 7)), and from this and lemma 6 we can conclude that
YX(T2(1(X)) D Tae2(1(X))) is a valid sentence.

Proof of Theorem 7: Let Q('X) be a domain independent
query and r adatabase instance. Define Ay={t[r Ta(Q({))}.
We know that for every n: Ap 1 Ay, therefore A= {A; | i <
} is a family of subsets of Ag. But Ag is finite because Q(X)
is a domain independent query. Thus, there exists a minimal
element Ay, in A. For this element, it holds that for every

k  m: Ap=Ay since Ay  Am.
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Abstract. We consider the problem of specifying and computing con-
sistent answers to queries against databases that do not satisfy given
integrity constraints. This is done by simultaneously embedding the
database and the integrity constraints, which are mutually inconsistent
in classical logic, into a theory in annotated predicate calculus — a logic
that allows non trivial reasoning in the presence of inconsistency. In this
way, several goals are achieved: (a) A logical specification of the class
of all minimal “repairs” of the original database, and the ability to rea-
son about them; (b) The ability to distingnish between consistent and
ion in the and (c) The development of

for retrieving i query answers, i.e.,

answers that are not affected by the violation of the integrity constraints.

1 Introduction

Databases that violate stated integrity constraints is an (unfortunate) fact of life
for many corporations. They arise due to poor data entry control, due to merges
of previously separate databases, due to the incorporation of legacy data, and
so on. We call such databases “inconsistent.”

Even though the information stored in such a database might be logically
inconsistent (and, thus, strictly speaking, any tuple should be viewed as a cor-
rect query answer), this has not been a deterrent to the use of such databases in
practice, because application prc have been i ing i ious tech-
niques for salvaging “good” information. Of course, in such situations, what is
good information and what is not is in the eyes of beholder, and each concrete
case currently requires a custom solution. This situation can be compared to
the times before the advent of relational datab when every database query
required a custom solution.

Thus, the problem is: what is the definition of “good information” in an
inconsistent database and, once this is settled, what is the meaning of a query
in this case. Several proposals to address these problems — both semantically
and computationally — are known (e.g., [1]), and we are not going to propose
yet anotller definition for consistent query answers. Instead, we introduce a new

fr k, based on A d Predicate Calculus [9], that leads to a

Definition 1. (Datab and Ce ints) A datal instance DB is a fi-
nite collection of facts, i.e., of statements of the form p(ci,...,cn), where p is a
predicate in P and ci,...,cn are constants in D.

An integrity constraint is a clause of the form

pr(T1) V-V pa(Tn) Va1 (S1) V-V 2Gm(Sm)

where cach p; (1 < i< mn)andq; (¢ <j <m)is apredicate in PU B and
T1yeres Ty Sty ey S are tuples (of appropriate arities) of constants or variables.
As usual, we assume that all variables in a clause are universally quantified, so
the quantifiers are omitted.

Throughout this paper we assume that both the database instance DB and
the set of integrity ints IC are consistent when considered in isolation.
However, together DB U IC might not be consistent.

Definition 2. (Sentence Satisfaction) We use =pp to denote the usual notion
of formula satisfaction in a database. The subscript DB is used to distinguish
this relation from other types of implication used in this paper. In other words,

— DB [=pp p(¢), where p € P, iff p(¢) € DB;

— DB |=pp q(@), where q € B, iff q(¢) is true;

— DB [=pg —p iff it is not true that DB |=pp ¢;

- DB =pp 6 AY iff DB |=pp ¢ and DB |=pp v;

— DB |=pp (VX)$(X) iff for all d € D, DB |=pp ¢(d);

and so on. Notice that the domain is fied, and it is involved in the above defi-
nition.

Definition 3. (IC Satisfaction) A database instance DB satisfies a set of in-
tegrity constraints IC iff for every ¢ € IC, DB |=pp .

If DB does not satisfy IC, we say that DB is inconsistent with 1C. Addi-
tionally, we say that a set of integrity constraints is consistent if there ewists a
database instance that satisfies it.

Next we recall the relevant definitions from [1].

Given two database instances DB; and DBy, the distance A(DB;,DB;)
between them is their symmetric difference: A(DB,, DB;) = (DB; — DB;) U
(DB; — DB;). This leads to the following partial order:

DB, <pg DB, iff A(DB,DB;)C A(DB,DB,).

o

That is, <pp determines the “closeness” to DB. The notion of closeness forms
the basis for the concept of a repair of an inconsistent database.

Definition 4. (Repair) Given database instances DB and DB', we say that
DB’ is a repair of DB with respect to a set of integrity constraints IC iff DB’
satisfies IC and DB' is <pg-minimal in the class of database instances that
satisfy IC.

different computational solution and provides a basis for a systematic study of
the problem.

Ultimately, our framework leads to the query semantics proposed in [1]. Ac-
cording to [1], a tuple £ is an answer to the query Q(Z) in a possibly inconsistent
database instance r, if Q(£) holds true in all the “repairs” of the original database,
that is in all the databases that satisfy the given constraints and can be obtained
from r by means of a “minimal” set of changes (where minimality is measured
in terms of a smallest symmetric set difference).

In [1], an algorithm is proposed whereby the original query is modified using
the set of integrity constraints (that are violated by the database). The modified
query is then posed against the original database (with the integrity constraints
ignored). In this way, the explicit integrity checking and computation of all
database repairs is avoided.

In this paper, we take a more direct approach. First, since the database is

i with the i it seems natural to embed it into a logic that
is better suited for dealing with inconsistency than classical logic. In this paper
we use Annotated Predicate Calculus (abbr. APC) introduced in [9]. APC is a
form of “paraconsistent logic,” i.e., logic where inconsistent information does
not unravel logical inference and where causes of inconsistency can be reasoned
about. APC generalizes a number of earlier proposals [12,11,3] and its various
partial generalizations have also been studied in different contexts (e.g., [10]).

The gist of our approach is to embed an inconsistent database theory in
APC and then use APC to define database repairs and query answers. This
helps understand the results of [1], leads to a more straightforward complexity
analysis, and provides a more general algorithm that covers classes of queries
not included in [1]. Furthermore, by varying the semi-lattice underlying the host
APC theory, it is possible to control how exactly inconsistency is resolved in the
original database.

Section 2 formalizes the problem of querying inconsistent databases. Section 3
reviews the basic definitions of Annotated Predicate Calculus, and Section 4 ap-
plies this calculus to our problem. In Section 5, we provide a syntactic character-
ization for database repairs and discuss the assoclated computatlonal process.
Section 6 studies the problem of query e in i and
Section 7 concludes the paper.

2 Preliminaries

‘We assume we have a fixed database schema P = {pi,... ,p,}, where p1, ..., pp
are predicates corresponding to the database relations; a fixed, possibly infinite
database domain D = {¢1,¢a,...}; and a fixed set of built-in predicates B =
{e1,.-. ,em}. Each predicate has arity, i.e., the number of arguments it takes.
An integrity constraint is a closed first-order formula in the language defined by
the above components. We also assume a first order language L = DUPUB
that is based on this schema.

Clearly if DB is consistent with IC, then DB is its own repair. Concepts
similar to database repair were proposed in the context of database maintenance
and belief revision [7,4].

Ezample 1. (Repairing a database) Consider a database schema with two unary
relations p and ¢ and domain D = {a, b,c,...}. Let DB = {p(a), p(b), q(a), q(c)}
be a database instance over the domain D and let IC = {-p(z) V q(z)} be a set
of constraints. This database does not satisfy IC because ~p(b) V q(b) is false.

Two repairs are possible. First, we can make p(b) false, obtaining DB’ =
{p(a),q(a),q(c)}. Alternatively, we can make g(b) true, obtaining DB" =
{p(a), p(5) a(a). a(8), ()}

Definition 5. (Consistent Answers) Let DB be a database instance, IC be set
of integrity constraints and Q(z) be a query. We say that o tuple of constants
 is a consistent answer to the query, denoted DB =, Q(f), if for every repair
DB’ of DB, DB =1 Q(A)-

IfQ is a closed formula, then true ( false) is a consistent. answer
to Q, denoted DB = Q, if DB' |=pp Q (respectively, DB’ [£pp Q) for every
repair DB’ of DB.

3 Annotated Predicate Calculus

Annotated predicate calculus (abbr. APC) [9] is a generalization of annotated
logic programs introduced by Blair and Subrahmanian [3]. It was introduced
in order to study the problem of “causes of inconsistency” in classical logical
theories, which is closely related to the problem of consistent query answers
being addressed in our present work. This section briefly surveys the basics of
APC used in this paper.

The syntax and the semantics of APC is based on classical logic, except
that the classical atomic formulas are annotated with values drawn from a belief
semilattice (abbr. BSL)  an upper semilattice! with the following properties:

(i) BSL contains at least the following four distinguished elements: t (true), f
(false), T (contradiction), and L (unknown);

(ii) For every s € BSL, L < s < T (< is the semilattice ordering);

(iii) lub(t, f) = T, where lub denotes the least upper bound.

As usual in the lattice theory, lub imposes a partial order on BSL: a < b iff
b=1ub(a,b) and a < b iff a < b and a is different from b. Two typical examples
of BSL (which happen to be complete lattices) are shown in Figure 1. In both
of them, the lattice elements are ordered upwards. The specific BSL used in this
paper is introduced later, in Figure 2.

Thus, the only syntactic difference between APC and classical predicate logic
is that the atomic formulas of APC are constructed from the classical atomic
" That is, the least upper bound, 1ub(a, b), is defined for every pair of elements a,b €

BSL.
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4-valued Lattice [2,3] Lattice with Defaults [§]

Fig. 1. Typical Belief Semilattices

formulas by suffixes. For instance, if s, t, T are elements of
the belief semilattice, then p(X) : s, ¢: T, and r(X, Y, Z) : t all are atomic
formulas in APC.

We define only the Herbrand semantics of APC (this is all we need here),
and we also assume that the language is free of function symbols (because we
are dealing with relational databases in this paper). We thus assume that the
Herbrand universe is D, the set of all domain constants, and the Herbrand base,
HB, is the set of all ground (i.e., variable-free) atomic formulas of APC.

A Herbrand interpretation is any downward-closed subset of HB, where a set
I C HB is said to be downward-closed iff p : s € T implies that p : ' € I for every
s’ € BSL such that s’ < s. Formula satisfaction can then be defined as follows,
where v is a variable assignment that gives a value in D to every variable:

— I|=y p:s, where s € BSL and p is a classical atomic formula, if and only
ifp:sel.

— Ik, gAY ifandonlyifIl=, ¢ and I |=, t;

— I|=, — if and only if not I |=, ¥;

— I'l=, (VX)3(X) if and only if T |=, 1, for every u that may differ from v
only in its X-value.

Tt is thus easy to see that the definition of = looks very much classical. The
only difference (which happens to have significant implications) is the syntax
of atomic formulas and the requirement that Herbrand interpretations must be
d d-closed. The implication a <— b is also defined classically, as a V =b.

It turns out that whether or not APC has a complete proof theory depends
on which semilattice is used. It is shown in [9] that for a very large and natural
class of semilattices (which includes all finite semilattices), APC has a sound
and complete proof theory.

The reason why APC is useful in analyzing inconsistent logical theories is
because classical theories can be embedded in APC in various ways. The most
useful types of embeddings are those where theories that are inconsistent in clas-
sical logic become consistent in APC. It then becomes possible to reason about
the embedded theories and gain insight into the original inconsistent theory.

The two embeddmgs defined in [9] are called epistemic and ontological. Under
the epi a (classically inconsistent) set of formulas such as

I is most e-consistent in a class of semantic structures with respect to A, if
no semantic structure in this class is strictly more e-consistent with respect to
A than I (i.c., for every J in the class, I <a J implies J <a I).

4 Embedding Databases in APC

One way to find reliable answers to a query over an inconsistent database is to
find an algorithm that impls the definition of ot answers. While
this approach has been successfully used in [1], it is desirable to see it as part
of a bigger picture, because consistent query answers were defined at the meta-
level, without an independent logical justification. A more general framework
might, (and does, as we shall see) help study the problem both semantically and
algorithmically.

Our new approach is to embed inconsistent databases into APC and study
the ways to eliminate inconsistency there. A similar problem was considered in
[9] and we are going to adapt some key ideas from that work. In particular,
we will define an embedding, 7, such that the repairs of the original database
are precisely the models (in the APC sense) of the embedded database. This
embedding is described below.

First, we define a special 10-valued lattice, £4P, which defines the truth values
appropriate for our problem. The lattice is shown in Figure 2. The values L, T,
t and f signify undefined i truth, and falsehood, as usual. The
other six truth values are explained below.

Informally, values t. and f; signify the truth values as they should be for the
purpose of constraint satisfaction. The values tq and f4 are the truth values as
they should be according to the database DB. Finally, t, and f, are the advisory
truth values. Advisory truth values are intended as keepers of the information
that helps resolve conflicts between constraints and the database.

Notice that 1ub(fg, tc) is ta and lub(tg,f) is fa. This means that in case of
a conflict between the constraints and the database the advise is to change the
truth value of the corresponding fact to the one prescribed by the constraints.
Intuitively, the facts that are assigned the advisory truth values are the ones that
are to be removed or added to the database in order to satisfy the constraints.
The gist of our approach is in finding an embedding of DB and IC into APC
to take advantage of the above truth values.

Embedding the ICs. Given a set of integrity constraints IC, we define a new
theory, T(IC), which contains three kinds of formulas:

1. For every constraint in IC:
n(@) Vo Vopa(@n) Vosa(S) Vo Vo gm(Sn),
T(IC) has the following formula:

pi(T) tte VooV opa(Tn) tte V @i(S1) tfe VooV gn(Sm) ¢ fe

S = {p(1), -p(1), q(Z)} is embedded in APCas S¢ = {p(1) : t, p(1) : £, q(2) : t}
and under the 1 dding it is embedded as S° = {p(1) : t —p(1) :
t, ¢(2) : t}.2 In the second case, the embedded theory is still inconsistent in
APC, but in the first case it does have a model: the downward closure of {p(1) :
T, q(2) : t}. In this model, p(1) is annotated with T, which signifies that its
truth value is “inconsistent.” In contrast, the truth value of ¢(2) is t. More
precisely, while both ¢(2) and —¢(2) follow from S in classical logic, because S
is inconsistent, only (2) : t (but not g(2) : £ !) is implied by S¢. Thus, q(2)
can be seen as a consistent answer to the query ?— ¢(X) with respect to the
inconsistent database S.

In [9], epistemic embedding has been shown to be a suitable tool for analyzing
inconsistent classical theories. However, this embedding does not adequately
capture the inherent lack of symmetry present in our setting, where inconsistency
arises due to the incompatibility of two distinct sets of formulas (the database
and the constraints) and only one of these sets (the database) is allowed to
change to restore consistency. To deal with this problem, we develop a new type
of embedding into APC. It uses a 10-valued lattice depicted in Figure 2, and is
akin to the epistemic embedding of [9], but it also has certain features of the
ontological embedding.

The above simple examples illustrate one important property of APC: a set
of formulas, S, might be ontologically consistent in the sense that it might have
a model, but it might be epi: i (abbr. e-i istent) in the
sense that S |= p : T for some p, i.e., S contains at least one inconsistent fact.
Moreover, S can be e-consistent (i.e., it might not imply p : T for any p), but
each of its models in APC might contain an inconsistent fact nonetheless (this
fact must then be different in each model, if S is e-consistent).

It was demonstrated in [9] that ordering models of APC theories according to
the amount of inconsistency they contain can be useful for studying the problem
of recovering from inconsistency. To illustrate this order, consider S = {p: t, p:
fVg:t, p:fVq:f} and some of its models:

My, where p: T and ¢ : T are true;
Ms, where p: T and ¢ : L are true;
Ms, where p: t and ¢ : T are true.

Among these models, both M5 and M3 contain strictly less inconsistent infor-
mation than M, does. In addition, M, and M3 contain incomparable amounts
of information, and they are both “minimal” with respect to the amount of
inconsistent information that they have. This leads to the following definition.

Definition 6. (E-consistency Order) Given A C BSL, a semantic structure I
is more (or equally) e-consistent than I with respect to A (denoted I < I) if
and only if for every atom p(ty, ... ,tx) and X € A, whenever I |=p(ty,... ,tx) @
X then also I |=p(t, ... ,tx) : A.

% p: v is to be always read as =(p: v).

fa ‘I
f. ‘
Fig. 2. The lattice £*® with constraints values, database values and advisory values.

In other words, positive literals are embedded using the “constraint-true”
truth value, tc, and negative literals are embedded using the “constraint-
false” truth value f..

For every predicate symbol p € P, the following formulas are in 7 (IC):

b

pE) i te V p(T) 1L, 2 p(Z) 1te V - p(T) L

Intuitively, this says that every embedded literal must be either constraint-
true or constraint-false (and not both).

Embedding database facts. T(DB), the embedding of the database facts into
APC is defined as follows:

1. For every fact p(@), where p € P: if p(@) € DB, then p(a) : ta € 7(DB); if
p(a) ¢ DB, then p(a) : f4 € T(DB).

Embedding built-in predicates. T(B), the result of embedding of the built-in
predicates into APC is defined as follows:

1. For every built-in fact p(a), where p € B, the fact p(a) : t is in 7(B) iff p(a)
is true. Otherwise, if p(a) is false then p(a) : £ € T(B)
2. = p(z) : T € T(B), for every built-in p € B.

The former rule simply says that built-in facts (like 1=1) that are true in classical
sense must have the truth value t and the false built-in facts (e.g., 2=3) must
have the truth value f. The second rule states that built-in facts cannot be both
true and false. This ensures that theories for built-in predicates are embedded
in 2-valued fashion: every built-in fact in 7(B) is annotated with either t or f,
but not both.

Page 16



Ezample 2. (Embedding, I) Consider the database DB = {p(a), p(b), q(a)} over
the domain D = {a,b} and let IC be {-p(z) V q(z)}. Then

T(DB) = {p(a) : ta, p(b) : ta, q(a) : ta, q(b) : fa}
and T(IC) consists of:
pz)  fe vV qlz) :te,

pz) i te V ple) i fe, = p(z) ite V - p(e)
a(z) 1te V qlz) 1 fe, —ale) te V - q(z)

e,
fe
Ezample 3. (Embedding, 11) Let DB = {p(a,a),p(a,b),p(h,a)}, D = {a,b},
and let IC be {-p(z,y) V —p(z,2z) Vy = z}. It is easy to see that this constraint
T the fi ional d d p-1 = p.2. Since this constraint involves
the built-in “=”, the rules for embedding the built-ins apply.

In this case, T(DB) = {p(a,a) :ta, p(a,b):ta, p(b,a):ta, p(b,b): fa}
and 7 (IC) is:

plz,y) e V oplr,2) e V y=2z:tc,
plz,y) tte V oplzy) Lo, = plz,y) ste V = plzy) Lo

The embedded theory 7 (B) for the built-in predicate “=" is: (a =a) : t, (b=
b):t, (a=b):f, (b=a):f, ~(z=y):T. u}

Finally, we define 7 (DB, IC) as 7(DB) U 7 (IC) U T(B). We can now state
the following properties that confirm our intuition about the intended meanings
of the truth values in £4P.

Lemma 1. If M is a model of T(DB,IC), then for every predicate p € P and
a fact p(a), the following is true:

1L MpE-p@E):T.
2 MEp@:tV p@: £V p@:taVp@):fa o

The first part of the lemma says that even if the initial database DB is inconsis-
tent with constraints IC, every model of our embedded theory is epistemically
consistent in the sense of [9], i.e., no fact of the form p(@) : T is true in any
such model.? The second part says that any fact is either true, or false, or it has
an advisory value of true or false. This indicates that database repairs can be
constructed out of these embeddings by converting the advisory truth values to
the corresponding values t and f. This idea is explored next.

Given a pair of database instances DB1 and DB, over the same domain, we
construct the Herbrand structure M(DBy, DB,) = (D, Ip, I), where D is the

2 Note that an APC theory can entail p(a) : T and be consistent in the sense that

it can have a model. However, such a model must contain p(a) : T, which makes it
epistemically inconsistent.

This theory has four models, depicted in the following table:

It is easy to verify that M; and My are the most e-consistent models with
respect to A = {ta,fa, T} among the models in the table and the database
instance DB, = {p(a),(a),7(a)} and DBy, = 0 are exactly the repairs of
DB with respect to IC.

Ezample 5. ( le 3 inued) The embedding of the datat described
in Example 3 has nine models listed in the following table. The table omits the
built-in “=", since it has the same interpretation in all models.
[p(a, a) p(a,b) p(b, a) p(b,b)
t
fa
fa
t
fa
fa
t
Ms|fa a fa f
My|fa £ fa ta

It is easy to see that M; and M, are the most e-consistent models with respect
to A = {ta,fa, T} among the models in the table, and the database instances
DBu, = {p(a,a), p(b,a)}, and DB, = {p(a,b), p(b,a)} are exactly the
repairs of DB with respect to IC.

5 Repairing Inconsistent Databases

To construct all possible repairs of a database, DB, that is inconsistent with the
integrity constraints IC, we need to find the set of all ground clauses of the form

P1:% V- Vpn:Ta, (3)

that are implied by 7(DB,IC), where each ?, is either t, or fo. Such clauses
are called a-clauses, for advisory clauses.

A-clauses are important because one of the disjuncts of such a clause must
be true in each model of 7(DB,IC). Suppose that, say, p : 74 is true in some
model I. This means that the truth value of p with respect to the database is
exactly the opposite of what is required in order for I to satisfy the constraints.
This observation can be used to construct a repair of the database by reversing
the truth value of p with respect to the database. We explore this idea next.

* Here, bold face symbols, e.g., p, denote classical ground atomic formulas.

domain of the database and Ip, Ip are the interpretations for the predicates and
the built-ins, respectively. Ip is defined as follows:

p(@) € DBy, p(a) € DB,
p(a@) ¢ DBy, p(a) ¢ DB,
p(d@) € DBy, p(a) ¢ DB,
= p(a) ¢ DBy, p(a) € DB,

The interpretation I is defined as expected: if g is a built-in, then Ip(g(a)) =t
iff g(@) is true in classical logic, and Tp(g(a)) = f iff g(a) is false.

Notice that M(DB;,DB3) is not symmetric. The intent is to use these
structures as the basis for construction of database repairs. In fact, when DB,
is inconsistent and DB is a repair, Ip shows how the advisory truth values are
to be changed to obtain a repair.

Lemma 2. Given two database instances DB and DB, if DB’ |=pp IC, then
M(DB,DB') |- T(DB,IC). o

The implication of this lemma is that whenever IC is consistent, then the
theory 7(DB,IC) is also consistent in APC. Since in this paper we are always
dealing with consistent sets of integrity constraints, we conclude that 7(DB, IC)
is always a consistent APC theory.

We will now show how to generate repairs out of the models of 7(DB, IC).
Given a model M of 7(DB,IC), we define DB as:

{p(@) |p€ P and M |= p(a):tVp(a): ta}. (2)
Note that DBy can be an infinite set of facts (but finite when M corresponds
to a database instance).
Lemma 3. If M is a model of T(DB,IC) such that DBy, is finite, then
DBy [=ps IC.
Proposition 1. Let M be a model of T(DB,IC). If M is most e-consistent
with respect to A = {ta,fa, T} (sec Definition 6) among the models of
T(DB,IC) and DBy is finite, then DBy is a repair of DB with respect to
IC.

Ir(p(@)) = ®

o gn o oo

Proposition 2. If DB’ is a repair of DB with respect to the set of integrity
constraints IC, then M(DB,DB') is most e-consistent with respect to A =
{ta,fa, T} among the models of T(DB,IC).

FEzample 4. (Repairs as most e-consistent models) Consider a database instance
DB = {p(a)} over the domain D = {a} and a set of integrity constraints IC =
{-p(z) Vv q(z), —q(z) V r(z)}. In this case T(DB) = {p(a): ta, q(a):
fa, r(a):fa}, and T(IC) is

pz) : fe V(o) i te, qlz):feVr(a):te,

p(x) 1t Vp(z) i fe, —p(z):teV-p(r):f,
q(z) 1te Va(z) i fe, —q(z) 1 te Vq(z) : fo,
r(z) tteVr(z) i, (@) : te V() : fe

Constructing database repairs. Let T*(DB,IC) be the set of all minimal a-
clauses that are implied by 7(DB,IC). “Minimal” here means that no disjunct
can be removed from any clause in 72(DB, IC) and still have the clause implied
by T(DB,IC).

In general, this can be an infinite set, but in most practical cases this set
is finite. Conditions for finiteness of 72(DB,IC) are given in Section 5.1. If
72(DB,IC) is finite, it can be represented as the following set of clauses:

Ci = pritain Ve VPig a1,

Ck = Pr1:ak1 VooV Prn, 8k,

Here, the p; ; : a; ; are ground positive literals and their annotations, a; ;, are
always of the form t, or fa.

It can be shown that, all a-clauses can be generated using the APC resolution
inference rule [9] between 7 (IC), 7(DB), and 7 (B). It can be also shown that all
a-clauses generated in this way are ground and do not contain built-in predicates.

Given T2(DB,IC) as above, a repair signature is a set of APC literals that
contains at least one literal from each clause C; and is minimal in the sense that
no proper subset has a literal from each C;. In other words, a repair signature
is a minimal hitting set of the family of clauses C1, .. . , Cy, [6].

Notice that if the clauses C; do not share literals, then each repair signature
contains exactly k literals and every literal appearing in a clause C; belongs to
some repair signature.

1t follows from the construction of repairs in (2) and from Propositions 1 and
2 that there is a one to one correspondence between repair signatures and repairs
of the original database instance DB. Given a repair signature Repair, a repair
DB’ can be obtained from DB by removing the tuples p(%), if p(f) : fa € Repair,
and inserting the tuples p(%), if p(f) : ta € Repair. It can be shown that it is not
possible for any fact, p, to occur in 72(DB, IC) with two different annotations.
Therefore, it is not possible that the same fact will be inserted and then removed
(or vice versa) while constructing a repair as described here.

5.1 Finiteness of 72(DB,IC)
‘We now examine the issue of finiteness of the set 72(DB,IC).
Definition 7. (Range-restricted Constraints) An integrity constraint, p\ (T1) v
<V pn(Ta) V=i (T{) V V=g (T},), is range-restricted if and only if every
variable in T; (1 < i < n) also occurs in some T; (1 < j < m). Both p; and g;
can be built-in predicates.

A set IC of constraints is range-restricted if so is every constraint in IC.

Lemma 4. Let IC be a set of range-restricted constraints over a database DB.
Then every a-clause implied by T(DB,IC) (i.e., every clause of the form (8))
mentions only the constants in the active domain of DB.5

& The active domain consists of the constants in D that appear in some database table.
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Corollary 1. If IC is range-restricted, then T*(DB,IC) is finite.

6 Queries to Inconsistent Databases

In general, the number of all repair signatures can be exponential in the size
of T2(DB,IC), so using this theory directly is not likely to produce a good
query engine. In fact, for the propositional case, [5] shows that the problem of
deciding whether a formula holds in all models produced by Winslett’s theory of
updates [4]is ITS -complete. Since, as mentioned before, our repairs are essentially
Winslett’s updated models, the same result applies to our case.

However, there are cases when complexity is manageable. It is easy to see
that if k is the number of clauses in 7*(DB, IC) and n, ..., ny are the numbers
of disjuncts in Ct, ..., Ck, respectively, then the number of repair signatures is
O(ny X ... X ng). Therefore, two factors affect the number of repairs:

1. The number of clauses in 72(DB,IC);
2. The number of disjuncts in each clause in 72(DB,IC).

So, we should look into those types of constraints where either k is bound or all
but a bound number of n;’s equal 1.

Other cases when query answering is feasible arise when the set of a-clauses
7°(DB, IC) is precomputed. Precomputing this set might be practical for read-
only databases. In other cases, 72(DB,IC) might be easy to compute because
of the special form of constraints (and in this case, the size of 72(DB, IC) turns
out to be P-bounded). For instance, suppose IC consists of range-restricted
formulas and is closed under the resolution inference rule (e.g. if IC is a set of
functional dependencies). In this case, a-clauses can be generated by converting
each constraint into a query that finds all tuples that violate the constraint. For
instance, the constraint p(Z) D ¢(Z) can be converted into the query p(z) A—~q(Z)
(which is the denial form of this constraint). If the tuple @ is an answer, then
one a-clause is p(a) : fa V q(@) : ta.

Answering ground j ive queries. To i ly answer a ground con-
junctive query of the form p; A...Apx A—qi A...A g, we need to check
the following:

For each p;: if p; € DB and p; : f, is not mentioned in 72(DB,IC); or if
72(DB,IC) has a clause of the form p; : ta.

For each q;: if q; DB and q; : ta is not mentioned in 72(DB,IC); or if
72(DB,IC) has a clause of the form q; : fa.

If all of the above holds, true is a consistent answer to the query. Otherwise, the
answer is not true, meaning that there is at least one repair where our conjunctive
query is false. (Note that this is not the same as answering false in definition 5).

APC with an appropriate truth values lattice. In this way, we obtain a general
logical i ion of t repairs and i query answers.

With this new framework, we are able to provide a better analysis of the com-
putational complexity of query answering in such environments and to develop
a more general query answering mechanism than what was known previously
[1]. We also identified certain classes of queries and constraints that have lower
complexity, and we are looking into better query evaluation algorithms for these
classes.

The development of the specific mechanisms for consistent query answering
in the presence of universal ICs, and the extension of our methodology to con-
straints that contain existential quantifiers (e.g., referential integrity constraints)
is left for future work.
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Non-ground conjunctive queries. Let DB have the relations p,... ,p,. We con-
struct a new database, DBV, with relations p?,... ,pQ,pY,... ,pU (where O

and U stand for “original” and “unknown”, resp.), as follows:

pY consists of: all the tuples such that p;(f) € DB and p;() : fa is not men-
tioned in 72(DB,IC) plus the tuples f such that p(f) : ta is a clause in
T2(DB, IC).

Py consists of : all the tuples  such that p;(f) : ta or p;(f) : fa appear in a
clause in 7°(DB,IC) that has more than one disjunct.

To answer an open conjunctive query, for example, p(z) A ~q(z), we pose the
query p°(z) A—¢°(z) A—~qU (z) to DBV . This can be done in polynomial time
in the database size plus the size of the set of a-clauses.

Ground disjunctive queries. Sound and query evaluati i for
various types of queries and constraints are developed in [1]. Our present frame-
work extends the results in [1] to include disjunctive queries. We concentrate on
ground disjunctive queries of the form

pi1V:-VpeVoar g (4)

First, for each p; we evaluate the query p$ and for each g; we evaluate the query
-qf A~qY against the database DBV If at least one true answer is obtained,
the answer to (4) is true. Otherwise, if all these queries return false, we evaluate
the queries of the form ~p{ A-pY and q against DBV. For each answer true,
the corresponding literal is eliminated from (4). Let p;, V---Vpi, V-aj, - -- ~qj,
be the resulting query. If this query is empty, then the answer to the original
query is false, i.e., the original query is false in every repair. If the resulting query
is not empty, we must check if there is a minimal hitting set for 72(DB, IC), that
contains {=pi,,--- ,7Pi.,Qj,-- - ,qQ, }- I such a hitting set exists, the answer
to the original query is maybe, meaning that there is at least one repair where
the answer is false. Otherwise, the answer to the query is true.

Therefore, the problem of answering disjunctive queries for a given
72(DB,IC) is equivalent to the problem of deciding whether a given set can
be extended to a minimal hitting set of the family. Since this is an NP-complete
problem, we have the following result.

Proposition 3. Suppose that T2(DB,IC) has been precomputed. Then the
problem of deciding whether true is a consistent answer to a disjunctive ground
query is NP-complete with respect to the size of DB plus 72(DB,IC).

7 Conclusions

‘We presented a new semantic framework, based on Annotated Predicate Cal-
culus [9], for studying the problem of query answering in databases that are
inconsistent with integrity constraints. This was done by embedding both the
database instance and the integrity constraints into a single theory written in an
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A Proofs and Intermediate Results

Proof of lemma 1:

1. M |=p(@) : T, then M |= p(@) : te and M = p(@) : fe. Thus, M |£ T(IC),
a contradiction.

2. We know that M |= p(@) : tc V p(a) : fc and M | p(a) : ta V p(@) : fa
(since p(@) : ta € T(DB,IC) or p(a) : fa € T(DB,IC)). Thus, one of the
following cases must be true: (1) M |= p(a) : te and M |= p(a) : ta, and
therefore M |= p(a) : t, (2) M |= p(a) : t. and M |= p(a) : fa, and therefore
M p@) : ta, (3) M = p(@) : £ and M k= p(a) : ta, and therefore
M E p(@) : fa, (4) M = p(a@) : £. and M = p(a) : fa, and therefore
Mpa): f.

a

Proof of lemma 2: We have to prove that M(DB,DB’') |= 7(DB) and
M(DB,DB) |- T(IC).

1. Let us consider p(a) : a € 7(DB). If a = tq, then p(a) € DB, and then by
considering (1) we obtain that Ip(p(@)) =t or Ip(p(a@)) = fa, and therefore
M(DB,DB’) |= p(@) : a. If a = fa, then p(a) ¢ DB, and then by con-
sidering (1) we obtain that Ip(p(@)) = f or Ip(p(a@)) = ta, and therefore
M(DB,DB') |= p(a) : a.

2. (a) Let us suppose that p1(71) 1 te V- Vpu(Tn) s te Vi (T1) i £ V-V
gm(Tm) : fc € T(IC), and let us assume that p1 (@) : te V -+ V pa(Gn) :
te Vai(bi) : fo V- -+ V gm(@m) : fo was obtained from this constraint by
instantiating in the domain of the database. In this case we have that
(1) VeV pu(Tn)V =qi (T1) V- - -V =g (T1) is an element of IC, and
therefore we have that DB’ [=np p1(@1) V -+ V pu(@n) V21 (1) V -+ V
G (bn)-

Firstly, we are going to consider what happens if DB' |=pg pi(a;)
(1 < i < n). If p; is a built-in predicate, then Ir(p;(@;)) = t, since
M(DB, DB') gives to the built-in predicates in the database the appro-
priate truth values, and therefore M(DB,DB') |= p;(a:) : te. If py is
not a built-in predicate, then Ip(p;(ai)) = t or Ip(pi(a;)) = ta, since
pi(@;) € DB', and therefore M(DB,DB') = p;(a;) : te.

Secondly, we are going to consider what happens if DB’ |=pg —qi(b;)
(1 < i < m). If g; is a built-in predicate, then In(q,-(B,-)) = f, since
M(DB, DB') gives to the built-in predicates in the database the ap-
propriate truth values, and therefore M(DB,DB') | ¢;(b;) : fo. If g;
is not a built-in predicate, then Ip(q;(5;)) = £ or Ip(gi(b;)) = fa, since
g;(b;) ¢ DB', and therefore M(DB,DB') |= ¢;(b;) : ..

(b) Let us consider a predicate p in P. By considering (1) we know that
for every tuple a (of appropriate arity) Ip(p(a)) = t, Ip(p(@)) = f,
Ip(p(@)) = ta or Ip(p(a)) = fa, and therefore M(DB,DB') = p(a) :
te V p(@) : fo. Thus, we conclude that M(DB,DB') = Vi(p(z) :

But A(DB,DB") G A(DB,DB), and therefore p(a) ¢ DB . Thus,
we can conclude that M = p(@) : £V p@) : fa. If we suppose that
M = p(a) : £, then M £ p(@) : ta, but we know that M |= 7(DB,IC)
and p(@) : ta € T(DB,IC), since p(a) € DB, a contradiction. Therefore,
M = p(@) : fa. Thus, we can deduce that M(DB,DB~) <4 M.
Finally, we know that there exists p(@) such that it is not in A(DB, DB*)
and it is in A(DB,DB,,). Thus, p(a) € DB and p(a) € DB, and
therefore M(DB,DB") |= p(a) : t, or p(a) ¢ DB and p(a) ¢ DB~, and
therefore M(DB, DB”) |= p(a) : f. Then, we have that M(DB,DB") [£
p(a) : ta and M(DB,DB") |£ p(a) : fa. Additionally, since p(a) €
A(DB,DB,,), we can conclude that p(a) € DB and p(a) ¢ DB, or
p(@) ¢ DB and p(a) € DBy In the first case we can conclude that
M = p(@a) : fa, since M must be satisfied p(a) : £V p(a) : fa, and
if we suppose that M |= p(a) : f, then M £ p(a) : ta, but p(a) :
ta € T(DB,IC) in this case, a contradiction. In the second case we
can conclude that M |= p(@) : ta, since M must be satisfied p(a) :
tV p(@) : ta, and if we suppose that M = p(a) : t, then M = p(a) : fa,
but p(@) : fa € T(DB,IC) in this case, a contradiction. Thus, we can
conclude that M |= p(@) : ta V p(@) : fa. Therefore we can deduce that
M £4 M(DB,DB").

Finally, we deduce that M is not e-consistent maximal in the class of the

models of 7(DB,IC), with respect to A, a contradiction.

Proof of proposition 2:

1. By Lemma 2, we conclude that M(DB, DB’) | T(DB,IC).

2. Let us suppose that M (DB, DB') is not e-consistent maximal in the class
of models of 7(DB,IC) with respect to A. Then, there exists M |=
T(DB,IC), such that M < M(DB,DB’). By using this it is possible
to prove that A(DB,DB() G A(DB,DB').

(a) Let us suppose that p(a) € A(DB, DBy,). Then p(a) € DB and p(a) ¢
DB, or p(a) ¢ DB and p(a) € DB . In the first case we can conclude
that p(a) : ta € T(DB,IC) and M |= p(a) : £V p(a) : fa. If we suppose
that M |= p(a) : f, then M £ p(@) : ta, a contradiction. Thus, we
have that M = p(@) : fa. But M <a M(DB,DB’), and therefore
M(DB,DB') |= p(a) : fa. Then, by considering (1) we conclude that
p(a@) ¢ DB', and therefore in this case it is possible to conclude that
p(@) € A(DB,DB'). In the second case we can conclude that p(a) : fa €
T(DB,IC) and M |~ p(a) : tVp(@) : ta. If we suppose that M |= p(a) :
t, then M £ p(@) : fa, a contradiction. Thus, we have that M |= p(a) :
ta. But M <a M(DB,DB’), and therefore M(DB,DB') |= p(@) : ta.
Then, by considering (1) we conclude that p(a) € DB’, and therefore in
this case it is possible to conclude that p(a) € A(DB,DB'). Thus, we
can conclude that A(DB, DB) G A(DB,DB').

te v p(z) : f). Additionally, if Ip(p(@)) = t or Ip(p(a)) = ta, then
M(DB,DB') i p(a) : £, and if Ip(p(a)) = £ or Ip(p(@)) = fa, then
M(DB,DB') } p(a) : tc. Thus, we also conclude that M(DB,DB') =
VE(p(Z) : te Vp(T) : fo).

a

Proof of lemma 3: We are going to prove that DB j=nn IC. Let us suppose
that pi(T1) V-V pu(Tn) V=g (T1) V- -V =gm(Trn) is an integrity constraint in
IC, and let us assume that p; (@) V-V pn(@n) Vg1 (b)) V -+ V =gy (bn) was
obtained from it by instantiated in the domain of the database. In this case we
have that py (@) t te V-V Pa(@n) 1tc Va1 (B1) : fe V -+ V gm(bm) : fe could be
obtained by instantiated an integrity constraint in 7(IC). Thus, we have that
MEPpi(@):teV - Vpa(an) s te Vai(h)  fe Ve Vam(bn) : fe.
Firstly, we are going to consider what happens if M |= p;i(a@;) : tc (1 <
i < n). If p; is a built-in predicate, then Ir(pi(a;)) = t, since M gives to
the built-in predicates in the database the value t or f, and if in this case we
suppose that Ir(pi(a;)) = f then M £ p;(@;) : tc, a contradiction. Therefore
DBu Eps pi@;). If p; is not a built-in predicate, then p;(a;) : ta € T(DB)
or pi(@;) : fa € T(DB). In the first case we have that M |= pi(@) : t, and
therefore p;(@;) € DBs. In the second case M = pi(@;) : ta, and therefore
pi(@i) € DBy _
Secondly, we are going to consider what happens if M |= ¢;(b;) : f. (1 <
i < m). If g; is a built-in predicate, then Ig(g;(b;)) = f, since M gives to
the built-in predicates in the database the value t or f, and if in this case we
suppose that Ir(gi(b;)) = t then M £ q;(b;) : fc, a contradiction. Therefore
DB Eps —gi(hi). If g; is not a built-in predicate, then g;(b;) : ta € T(DB) or
gi(bi) : fa € T(DB). In the first case we have that M = g;(b;) : fa, and therefore
gi(bi) € DB In the second case M |= g;(b;) : f, and therefore g;(5;) ¢ DB .
a

Proof of proposition 1

1. By Lemma 3, we conclude that DB |=pg IC.

2. Now, we need to prove that DB is minimal. Let us suppose this is not
true. Then, there is a database instance DB* such that DB" |=pp IC and
A(DB,DB*) G A(DB, DB ).

(a) From Lemma 2, we conclude that M(DB, DB*) |= 7(DB,IC).

(b) Now, we are going to prove that M(DB,DB") <5 M.
If M(DB,DB") k= p(a) : ta, then by considering (1) we can conclude
that p(a) ¢ DB and p(a) € DB, and therefore p(a) € A(DB,DB").
But A(DB,DB") G A(DB,DB ), and therefore p(a) € DB . Thus,
we can conclude that M |= p(a) : t V p(a) : ta. If we suppose that
M = p(a) : t, then M £ p(a) : fa, but we know that M |= T(DB, IC)
and p(a) : fa € T (DB, IC), since p(a) ¢ DB, a contradiction. Therefore,
ME p(@) : ta.
If M(DB,DB") |= p(a) : fa, then by considering (1) we can conclude
that p(a) € DB and p(a) ¢ DB", and therefore p(a) € A(DB,DB").

(b) Since M(DB,DB') £ M, there exists p(a) such that M(DB,DB') |=
p@) : taVp@ : fa and M | p@ : tVp(a) : f. By using (1)
and the first fact it is possible to conclude that p(a) € A(DB,DB').
If we suppose that p(@) € DB, then p(@) : ta € T(DB,IC), and
therefore by considering the second fact it is possible to deduce that
M must satisfy p(@) : t. Thus, we can conclude that in this case
p(@) € DBy, and therefore p(@) ¢ A(DB,DBy,). By the other hand,
if we suppose that p(a) ¢ DB, then p(@) : fa € T(DB,IC), and
therefore by considering the second fact it is possible to deduce that
M must satisfy p(@) : f. Thus, we can conclude that in this case
p(a) € DBy, and therefore p(a) ¢ A(DB, DB y,). Finally, we conclude
that A(DB,DB,,) € A(DB,DB').

We know that DB’ is a database instance, and therefore A(DB, DB') must,

be a finite set. Thus, we can conclude that A(DB,DB,,) is a finite set,

and therefore DB, is a database instance. With the help of Lemma 3, we
deduce that DB 4 |= IC. But this a contradiction, since DB’ is a repair of

DB with respect to IC and A(DB,DBux) G A(DB,DB').

Proof of lemma 4: Let us suppose that
T(DB,IC) Fri(&1): 7aV -V - Vrg(@r) : %a. (5)

Because of the form of the clauses in 7(DB,IC), the above a-clause can be
obtained by applying a series of reduction and resolution rules to the clauses in
T(DB)U T (B) (the database part of 7(DB,IC) plus builtins) and a clause of
the form

ri(f) £ Ve Vr(E) e Vs (e) st V
V() e, (6)

where the latter is a clause obtained from 7(IC) (the constraint part of
T(DB,IC)) by resolution (and factorization) alone.

Furthermore, it is easy to show that resolution applied to a pair of range-
restricted constraints yields a range-restricted constraint. Thus, (6) is range-
restricted.

Since (5) is obtained from (6) by resolution and reduction with the clauses
in 7(DB), there must be clauses r;(¢;) : tVry(:) : T € T(DB), 1 <i <j
(which are resolved with (6)), and clauses ry(¢#) : £V ry(éz) : T € T(DB),
j < i' < k (which are reduced with (6)), such that there is a substitution 6 for
which £;6 =¢; (1 <i<k).

Therefore, due to the range-restrictedness of (6), every constant in & (j <
i < k) occurs in some & (1 < i < j). Since every constant in ; is in the active
domain of DB, we lude that every tant ioned in (5) belongs to the
active domain of DB. o
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Proof of corollary 1: By Lemma 4, the clauses in 72(DB,IC) can mention
only the constants that occur in the active domain of DB, which is a finite set.
a

Proof of theorem 3: At the end of section 6 we showed that the decision
problem is equivalent to the problem of deciding, given a finite collection of sets,
and a subset of the union of the family, whether the subset can be extended to
a minimal hitting set of the family. In the following lemmas we prove that this
is N P-complete.

Lemma 5. Given a finite collection of sets S and a hitting set of it H, H is a
minimal hitting set of S if and only if for each h € H there ezists an A € S such
that AN H = {h}.

Proof

(=) Let us suppose that the lemma is not true. Then there exists h € H such
that for every A € S, AN H # {h}. We are going to prove H' = H — {h} is also
a hitting set. Let us consider A € S. If h € A, then there exists another h' € H
such that b’ € A, since AN H # {h}, and therefore ANH' # 0. If h ¢ A, then
there exist h' # h such that k' € AN H, and therefore AN H' # (). Thus, we
obtain a contradiction.

(<) ¥ H' G H, then there exists h € H such that h ¢ H'. But we
know that there is a set A € S such that ANH = {h}, and therefore ANH' = .
Thus, H' is not a hitting set of S.

Lemma 6. Given a finite collection of sets S and a set H C US, the problem
of deciding if there exists a minimal hitting set H' of S such that H C H' is NP

Proof We are going to reduce our problem to SAT. For each z € US we introduce
a propositional letter z, and we define:

sm=(\ V A -an

heH {A€S | heA} {a€A | a#h}
AirC A Va.
heH {A€S | ANH=0} a€A

There exists a minimal hitting set H' of S which contains H if and only if f(H,S)
is a satisfied formula.

(=) For every proposition letter « in f(H,S) we define o(x) = 1 if and only if
z€H'

1. ¥ h € H, then h € H’, and therefore by lemma 5 we conclude that
there exists A € S such that AN H' = {h}. Thus, for every a €
A — {h} we have that a ¢ H', and then o(a) = 0. We conclude that
(Viaes | neay Naea | agny ") =1

2. o(Aperrh) =1, since HC H'.

3.HAec Sand ANH =0, then AN (H' — H) # 0, since H' is a hitting set
of S. Thus, there exists a € H' such that a € A, and therefore o(a) = 1. We
conclude that o(V,c4a) = 1.

(<) Let o such that o(f(H,S)) = 1. We construct H" = {z | o(z) = 1}.
H S H", since oA h) = 1. H" is a hitting set of S. Let us consider A € S.
If ANH # 0, then ANH" # 0. f ANH =0, then 6(\/,¢ , @) = 1, and therefore
AN(H"—-H)#0.

H" is a finite set. Then there exists a minimal hitting set of S such
that H' C H". We are going to prove that H C H'. By contradiction,
let us suppose that there exists h € H such that h ¢ H'. We know that
(V{aes | neay Naea | apny~@) = 1. Then there exists A € S such that
(Afaca | azny™@) = 1, and therefore AN H' = 0, by definition of H' and
given that h ¢ H'. Thus, we conclude a contradiction.

Lemma 7. Given a finite collection of sets S and a set H € US, the problem
of deciding if there ezists a minimal hitting set H' of S such that H C H' is
NP-hard

Proof. We are going to reduce SAT(3) to our problem. Given a formula ¢ = C1 A
- A C, where every Cj is a clause, we define PL(y) as the set of propositional
letters mentioned in it. Additionally, for each clause Cj, of the form p; V ---V
PV @ V-V gy, we define

CH(Cy) ={p1-1,-,pn-1, 010, ..., gm0}
After that, we define f(¢0) = (S, H), where

S={{vp,p0} | p€PL(p)}U{{vp,p-1} | p€ PL(p)} U{CH(C:) | 1<i<

H={vp | pePL(p)}

We are going to prove that ¢ is consistent if and only if there exists a
minimal hitting set H' of S such that H C H'.

(=) Let o that satisfies . We define
H"=HU{pO0 | p€ PL(p) and a(p) =0} U{p.1 | p € PL(y) and o(p) =1}

H" is a hitting set of S, and therefore there exists H' minimal hitting set of S
such that H' € H", since H" is a finite set. If we suppose that there is v.p € H
such that v_p ¢ H', then H' N {v_p,p-0} =0 or H' N {v_p,p-1} = 0, given that
o(p) =1 or (p) =0. Thus, we conclude a contradiction.

(<) Let us suppose that there exists H' minimal hitting set of S such
that H C H'. Notice that for every p € PL(p) we have that p0 ¢ H’' or
p-1 ¢ H',since if both elements would be in H', then H' — {v_p} will be a hitting
set, a contradiction given that H' is minimal. Thus, we can define a function
o : PL(p) = {0,1} by means of the rule o(p) = 1 if and only if p.1 € H'. We
have that o(p) = 1, given that for every clause C;, H' N CH(C;) # 0. u}
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in [Arenas et al. 1999], where also a computational

hanism for obtaining them was 1. In-
tuitively speaking, an ground tuple f is a consistent
answer to a first order query Q(Z) in a, possibly in-
consi: , relational database instance DB if it is

integrity cc i are ized
[Arenas et al. 1999] as ordinary answers
that can be obtained from every repaired
version of the database. In this paper we
address the problem of specifying the re-
pairs of a database as the minimal models
of a theory written in Annotated Predicate
Logic [Kifer et al. 1992a]. The specifica-
tion is then transformed into a disjunctive
logic program with annotation arguments
and a stable model semantics. From the
program, consistent answers to first order
queries are obtained.

1 Introduction

Integrity constraints (ICs) are important in the de-
sign and use of a relational database. They embody
the semantics of the application domain and help
maintain the correspondence between that applica-
tion domain and its model provided by the database.
Nevertheless, it is not strange for a database instance
to become inconsistent with respect to a given, ex-
pected set of ICs. This could happen due to dif-
ferent factors, being one of them the integration of
several data sources. The integration of consistent
databases may easily lead to an inconsistent inte-
grated database.

An important problem in databases consists in re-
trieving answers to queries that are “consistent”
with the given ICs, even when the database as a
whole does not satisfy those ICs. Very likely “most”
of the data is still consistent. The notion of consis-
tent answers to a first order (FO) query was defined

[Arenas et al. 1999], denoted DB |=. Q(), if for ev-
ery repair DB’ of DB, DB’ |=s Q(f). I Q is a closed

an (ordinary) answer to (Z) in every minimal re-
pair of DB, that is in every database instance over
the same schema that differs from DB by a mini-
mal (under set inclusion) set of inserted or deleted
tuples.

That mechanism presented in [Arenas et al. 1999]
has some limitations in terms of the ICs and queries
that can be handled. In [Arenas et al. 2000b], a
more general methodology based on logic programs
with an stable model semantics was introduced.
More general queries could be considered, but 1Cs
were restricted to be “binary”, i.e. universal with at
most two database literals (plus built-in formulas).

For consistent query answering we need to deal with
all the repairs of a database. In consequence, a
natural approach consists in providing a manage-
able logical specification of the class of database re-
pairs. The specification must include information
about (from) the database and the information con-
tained in the ICs. Since these two pieces of infor-
mation are mutually inconsistent, we need a logic
that does not collapse in the presence of contradic-
tions. A logic like Annotated Predicate Logic (APC)
[Kifer et al. 1992a], for which a classically inconsis-
tent set of premises can still have a model, is a nat-
ural candidate.

In [Arenas et al. 2000a], a new declarative semantic
framework was introduced for studying the problem
of query answering in databases that are inconsistent,
with integrity constraints. This was done by embed-
ding both the database instance and the integrity
constraints into a single theory written in APC,

specifying what is needed for constraint satisfac-
tion. The values tq and fq represent the truth val-

formula, i.e. a then trueis a i an-
swer to (), denoted DB |=. Q, if for every repair DB’
of DB, DB' |5 Q.

le 2. le 1 inued) The query
Q1 : Book(kafka, metamorph, 1915) does not have
true as a consistent answer, because it is not true
in every repair. Query Qa(y) : 3Jz3zBook(z,y,z)
has y = metamorph as a consistent answer. Query
Qs(x) : 3zBook(z, metamorph, z) has = = kafka as
a consistent answer. o

2.2 Annotating DBs and ICs

Annotated Predicate Calculus was  introduced
in  [Kifer et al. 1992a] and also studied in
[Blair et al. 1989] and [Kifer et al. 1992b]. It
constitutes a non classical logic, where classically
inconsistent information does not unravel logical
inference, reasoning about causes of inconsistency
becomes possible, making one of its goals to study
the differences in the contribution to the inconsis-
tency made by the different literals in a theory,
what is related to the the problem of consistent
query answers.

The syntax of APC is similar to that of classi-
cal logic, except for the fact that the atoms are
annotated with values drawn from a truth-values
lattice. The lattice Latt we will use throughout
this paper is shown in Figure 1, first introduced in
[Arenas et al. 2000a].

T

ta

|' te
Figure 1: Latt with constraints values, database val-

ues and advisory values

Intuitively, we can think of values t. and f. as

ues ing to the original database. Finally, ta
and f, are considered advisory truth values. These
are intended to solve conflicts between the original
database and what is needed for the satisfaction of
the integrity constraints. Notice that lub(ta,f.) =
fa and lub(fg, tc) = ta . The intuition behind is that,
in case of a conflict between the constraints and the
database, we should obey the constraints, because
the database instance only can be changed to re-
store consistency. This lack of symmetry between
data and ICs is captured by the lattice. Advisory
value t, is an indication that the atom annotated
with it must be inserted into the DB; and deleted
from the DB when annotated with fa.

Herbrand interpretations are now sets of annotated
ground atoms. The notion of formula satisfaction in
an Herbrand interpretation I is defined classically,
except for atomic formulas p, where we say that I |=
p:s, with s € Latt, iff for some s’ such that s < s’
we have that p:s’ € I [Kifer et al. 1992a].

Given an APC theory T, we say that an Herbrand
interpretation I is a A-minimal model of 7, with
A = {ta,fa}, if T is a model of T and no other
model of T has a proper subset of atoms annotated
with elements in A, i.e. the set of atoms annotated
with t, or f, in T is minimal under set inclusion.

Given a database instance DB and a set of in-
tegrity constraints JIC of the form (1), an embed-
ding T(DB,IC) of DB and IC into a new APC
theory can be defined [Arenas et al. 2000a] in order
to restore i using the i in the
lattice. It was shown in [Arenas et al. 2000a] that
there is a one-to-one correspondence between the A-
minimal models (we will simply say “minimal” in the
rest of the paper) of theory T(DB,IC) and the re-
pairs of the original database instance. Repairs can
be obtained from minimal models as follows:

Definition 1. Given a minimal model M of
T(DB, IC), the corresponding DB instance is de-
fined by DB = {p(@) | M |= p(a):t V p(@):ta}.
[u]

Example 3. (example 1 cont.) The embedding
T(DB) of DB into APC is given by the following
formulas:

1. Book(kafka, metamorph, 1915 tq
Book(kafka, metamorph, 1919)ta.

with an appropriate non classical truth-values lat-
tice Latt. It was shown that, for universal ICs, there
is a one to one correspondence between some mini-
mal models of the annotated theory and the repairs
of the inconsistent database. In this way, a logical
specification of the database repairs was achieved.
The annotated theory was used to obtain some al-
gorithms for obtaining consistent answers to some
simple first order queries.

This paper extends the results presented in
[Arenas et al. 2000a] in several ways. First, in sec-
tion 3, we show how to annotate and integrate ref-
erential ICs (that contain existential quantifiers) in
addition to universal ICs into the annotated theory.
The correspondence between minimal models of the
theory and the datat repairs is blished. Next,

cate in P and ¢, ..., ¢, are constants in D. Built-in
predicates have a fixed and same extension in every
database instance, not subject to changes.

An integrity constraint (IC) is an implicitly quanti-
fied clause of the form

a(f) Ve Van(ta) Vpi(51) VooV =pm(5m) (1)

in the FO language of %, where each p;, g is a pred-
icate in P U B and the £,3; are tuples containing
constants and variables. We assume we have a fixed
set IC of ICs.

We will assume that DB and IC, separately, are
consistent theories. Nevertheless, it may be the case
that DB U IC is inconsistent. Equivalently, if we

in section 4, we show how to annotate queries and
the formulation of the problem of consistent query
answering as a problem of non-monotonic (minimal)
entailment from the annotated theory. Then, in sec-
tion 5.1, on the basis of the generated annotated the-
ory, disjunctive logic programs with annotation ar-
guments are derived in such a way that they specify
the database repairs. After that, in section 5.2, we
show how to use those programs to obtain consistent
answers to first order queries. In section 5.3 the logic
programs are transformed into classical disjunctive
normal programs with a stable model semantics; and
the coherent stable models become the database re-
pairs. In section 2 we present the basic framework,
and in section 6 we draw some conclusions, mention
ongoing work, and consider related work.

The methodology presented here works for arbi-
trary first order queries and arbitrary universal ICs,
what considerable extends the cases that could be
handled in [Arenas et al. 1999, Arenas et al. 2000b,
Arenas et al. 2000a].

2 Preliminaries

2.1 Database repairs and consistent
answers

In the context of relational databases, we will con-
sider a fixed relational schema % = (D,P U B)
that determines a first order language. It con-
sists of a fixed, possibly infinite, database domain
D = {e1,2,...}, a fixed set of database predicates
P = {p1,... ,pn}, and a fixed set of built-in predi-
cates B = {ey,... ,em}.

A database instance over ¥ is a finite collection DB
of facts of the form p(c1, ..., cn), where p is a predi-

2. Predicate closure axioms:
((z = kafka)ta A (y = metamorph)ty A
(z = 1915)ta) V
((z = kafka)ta A (y = metamorph)ty A
(z = 1919)tq) V
Book(z,y, 2)fa-
Every ground atom that is not in DB is (possi-
bly implicitly) annotated with fg.

The embedding 7 (IC) of IC into APC is given by:

3. Book(z,y, ). V Book(z,y, w)fe V (2 = w)te.
4. Book(z,y, 2)fe V Book(z, y, z)te
~Book (z,y, 2)fe V ~Book(z,y, 2)te.!

These formulas specify that every fact must
have one and just one constraint value.

Furthermore

5. For every true built-in atom ¢ we include ¢:t
in T(B), and @:f for every false built-in atom,
eg. (1915 = 1915+, but (1915 = 1919)£.

The A-minimal models of 7(DB,IC) = T(DB) U
T(IC)UT(B) are:

M, = {Book(kafka, metamorph, 1915 ):t,
Book(kafka, metamorph, 1919)£,},

M, = {Book (kafka, metamorph, 1915 ):fa,
‘Book(kafka, metamorph, 1919)t},

plus annotated false DB atoms and built-ins in
both cases . The corr i

DB, DBat, are the repairs of DB shown in
example 1. o

From the definition of the lattice and the fact that
no atom from the database is annotated with both
ta and f4, it is possible to show that, in the minimal
models of the annotated theory, a DB atom may get
the annotations either t or f, if the atom was an-
notated with tq, and either f or t, if the atom was
annotated with f4. In the transition from the anno-
tated theory to its minimal models, the annotations
ta,fa “disappear”, as we wished the atoms to be an-
notated in the highest possible layer in the lattice,
except for T if possible. Actually, in the minimal
models T can always be avoided.

Since only atomic formulas are annotated, the non

atomic formula —p(#):s is to be read as ~(p():s). We
will omit the parenthesis though.

to DB a first order structure, also de-
noted with DB, in the natural way, i.e. by applying
the closed world assumption that makes false any
ground atom not explicitly appearing in the set of
atoms DB, it may happen that DB, as a structure,
does not satisfy the IC. We denote with DB =5 IC
the fact that the database satisfies JC. In this case
we say that DB is consistent wrt IC; otherwise we
say DB is inconsistent.

As in [Arenas et al. 1999], we define the distance
between two database instances DBy and DB as
their symmetric difference A(DB1, DB3) = (DB —
DB5) U (DB — DBy).

Now, given a database instance DB, possibly in-
consistent wrt IC, we say that the instance DB’ is
a repair of DB iff DB' |=x IC and A(DB,DB')
is minimal under set inclusion in the class of in-
stances that satisfy IC' and conform to schema X
[Arenas et al. 1999].

Example 1. Consider the relational schema
Book(author, name, publYear), a database in-
stance DB = {Book(kafka, metamorph, 1915),
Book(kafka, —metamorph, 1919)}; and  the
functional dependency FD : author,name —»
publYear, that can be expressed by IC

—Book(z,y,z) V ~Book(z,y,w) V z = w. -
stance DB is inconsistent with respect to
IC. The original instance has two possible re-
pairs: DBy = {Book(kafka, metamorph, 1915)},
and DBj = { Book(kafka, metamorph, 1919)}. O

Let DB be a database instance, possibly not sat-
isfying a set IC of integrity constraints. Given a
query Q(Z) to DB, we say that a tuple of con-
stants £ is a consistent answer to Q(z) in DB

3 Annotating Referential ICs

Referential integrity constraints (RICs) like
p(&) = ya(&',y), 2

where the variables in Z' are a subset of the variables
in Z, cannot be expressed as an equivalent clause of
the form (1). RICs are important and common in
databases. For that reason, we need to extend our
embedding methodology. Actually, we embed (2)
into APC' by means of

p(@)fe VIy(g(@ y)te). 3)
Now we allow the given set of ICs to contain, in
addition to ICs of the form (1), RICs like (2). The
one-to-one correspondence between minimal models
of the new theory 7 (DB, IC) and the repairs of DB
still holds. Most important for us is to obtain repairs
from minimal models.

Proposition 1. Let M be a model of T(DB, IC).
If M is minimal and DB », is finite, then DB, is a
repair of DB with respect to IC. a

Example 4. Consider the relational schema
of Example 1 extended with table Author(name,
citizenship). Now, IC also contains the RIC:
Book(z,y,z) = JwAuthor(z,w), expressing that
every writer of a book in the database instance must
be registered as an author. The theory 7(IC) now
also contains:

Book(z, y, z):f. V Jw(Author(z, w)te),
Author(z, w)fe V Author(z, w)te,
- Author(z, w)fe V - Author(z, w)tc.

We might also have the functional depen-

dency FD : name — citizenship, that
in conjunction with the RIC, produces a
foreign key constraint. The database in-

stance  {Book(neruda, 20lovepoems, 1924)}  is
inconsistent wrt the given RIC. If we have the
following subdomain D(Author.citizenship) =
{chilean, dian} for the i it ip”,
we obtain the following database theory:

T(DB) = {Book(neruda, 20lovepoems, 1924):tq,
Author(neruda, chilean) £y,
Author(neruda, canadian)fy,...}.

The minimal models of 7(DB, IC) are:

M, = {Book(neruda, 20 lovepoems, 1924 ) £a,
Author(neruda, chilean)f,
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Author(neruda, canadian)£, ... }
Mg = {Book(neruda, 20lovepoems, 1924) t,
Author(neruda, chilean)ta,
Author(neruda, canadian), ...}
Ms = {Book(neruda, 20lovepoems, 1924)t,
Author(neruda, chilean),
Author(neruda, canadian)ta, ... }.

We obtain DB, =, DB, = {Book(neruda,
20lovepoems, 1924) , Author(neruda, chilean)} and
DBy, similar to DBpg,, but with a Canadian
Neruda. According to proposition 1, these are
repairs of the original database instance, actually
the only ones. o

As in [Arenas et al. 2000a], it can be proved that
when the original instance is consistent, then it is its
only repair and it corresponds to a unique minimal
model of the APC theory.

4 Annotation of Queries

According to proposition 1, a ground tuple  is a
consistent answer to a FO query Q(%) iff Q(f) is true
of every minimal model of 7(DB, IC). However, if
we want to pose the query directly to the theory, it is
necessary to reformulate it as an annotated formula.

Definition 2. Given a FO query Q(z) in |

entails ¢, written T(DB,IC) [=a ¢, iff every
A-minimal model M of T(DB,IC), such that
DBy is finite, satisfies ¢, i.e. M| . o

Now we characterize consistent query answers wrt
the annotated theory.

Proposition 2. Let DB be a database instance,
IC a set of integrity constraints and Q(Z) a query
in FO language X. It holds:

DB . Q) iff T(DB,IC) s Q™ (). ©

le 6. le 5 1) For consis-
tently answering the query Q(z), we pose the query
Q" (z) to the minimal models of 7(DB,IC). The
answer we obtain from every minimal model is
= = kafka. o

According to this proposition, in order to consis-
tently answer queries, we are left with the problem
of evaluating minimal entailment wrt the annotated
theory. In [Arenas et al. 2000a] some limited FO
queries were evaluated, but no annotated queries
were generated. The original query were answered
using ad hoc algorithms that were extracted from
theory 7(DB,IC). No advantage was taken from
a ck ization of i answers in terms of

%, we denote by Q°*(Z) the annotated formula

btained from @ by simul ly replacing, for
p € P, the negative literal —p(5) by the APC
formula p(5):f V p(5):fa, and the positive literal p(5)
by the APC formula p(5):t V p(5):ta. For p € B, the
literal p(5) is replaced by the APC formula p(5):t. O

According to this definition, logically equivalent ver-
sions of a query could have different annotated ver-
sions, but it can be shown (proposition 2), that they
retrieve the same consistent answers.

Example 5. (example 1 cont.) If we want
the consistent answers to the query Q(z) :
—Jy3z3w3t(Book(z, y, z) A Book(z,w,t) Ay # w),
asking for those authors that have at most one book
in DB, we generate the annotated query Q%*(Z) :
—3y3z3w3t((Book(z,y,z) : t V Book(z,y,z) : ta) A
(Book(z,w,t):t V Book(z,w,t):ta) A (y # w):t),
to be posed to the annotated theory with its mini-
mal model semantics. o

Definition 3. If o is a in the 1 of
T(DB,IC), we say that 7(DB,IC) A-minimally

‘We will be interested only in the Herbrand x-models
of the program that are minimal wrt set inclusion®
and plausible and coherent. Notice that in a coher-
ent model we may still find both atoms p(a, t*) and
(@, f*). Notice also that a plausible atom may be-
long to a supported disjunctive head [Lobo 1998],
without the other disjuncts being forced to be false.

It is possible to prove that every minimal, plausible
and coherent x-model of II(DB, IC) is a model of
TI(DB, IC) (in the usual sense). Furthermore, it is
easy to see from the definition of a x-model of a pro-
gram that we could keep the classical notion of sat-
isfaction by including in the program the additional
clauses p(Z,f*) + not p(Z,ta), that would include
in the models all the negative information we usu-
ally keep implicit via the closed world assumption.
Moreover, we would be left with a normal disjunc-
tive program, for which a stable model semantics
could be used [Gelfond et al. 1988] (see section 5.3
below).

Example 8. (example 7 cont.) The coherent plau-
sible minimal «-models of the program presented in
example 7 are:

My = {Eurbook(kafka, metamorph, 1919,tq),
Eurbook(kafka, metamorph, 1919 ,t*),
Book(kafka, metamorph, 1919, ta),
Book(kafka, metamorph, 1919,t*),
Book(kafka, metamorph, 1915, ta),
Book (kafka, metamorph, 1915, £*),
Book(kafka, metamorph, 1915, f,),
Book(kafka, metamorph, 1915,£%)}.

Mgz = {Eurbook(kafka, metamorph, 1919, tq),
Eurbook(kafka, metamorph, 1919 ,t*),
Eurbook(kafka, metamorph, 1919 ,fa),
Burbook (kafka, metamorph, 1919, %),
Book(kafka, metamorph, 1919, ta),
Book(kafka, metamorph, 1919, *),
Book(kafka, metamorph, 1919, £a)
Book(kafka, metamorph, 1919, £*)
Book(kafka, metamorph, 1915, ta),

Book (kafka, metamorph, 1915, £*)}. o

Notice that, in contrast to the minimal models of
the annotated theory 7(DB,IC), the +models of
the program will include the database contents with
its original annotations (tq). Every time there is an
atom in a model annotated with ta or ta, it will
appear annotated with t*. From these models we
should be able to “read” database repairs. Every

s
s

minimal entailment from 7(DB,IC). In the next
section we will address this issue by taking the orig-
inal DB instance with the ICs into a logic program
that is generated taking advantage of the annota-
tions provided by T(DB,IC). The query to be
posed to the logic program will be built from Q*".

5 Query Answering

In this section we will consider ICs of the form (1),
more precisely of the form
n m
V@) vV as)ve, 4)
i=1 j=1
where, for every i and j, p; and g; are predicates

in P, and ¢ is a formula containing predicates in B
only.

5.1 Logic programming specification of
repairs

In order to generate a first order logic program that
gives an account of annotations, for each predicate

*-model of the logic program has to be interpreted.

Definition 6. Given a coherent plausible -model
M of (DB, IC), its interpretation, i(M), is a new
Herbrand interpretation obtained from M as fol-
lows:

-

If p(a, fa) belongs to M, then p(a, f**) belongs
to i(M).

N

. If neither p(@,ta) nor p(a,ta) belongs to M,
then p(a, £**) belongs to i(M).

b

If p(@,ta) belongs to M and p(a, f,) does not
belong to M, then p(a,t**) belongs to i(M).

-~

. If p(a, ta) belongs to M, then p(a, t**) belongs
to i(M). [a]

Notice that the interpreted models contain two new
annotations, t**,f**, in the last arguments. The
first one groups together those atoms annotated ei-
ther with ta or with tgq but not f,. Intuitively, the
latter correspond to those annotated with t in the
models of T(DB, IC). A similar role plays the other
new annotation wrt the “false” annotations. These
new annotations will simplify the expression of the
queries to be posed to the program (see section 5.2).
Without them, instead of simply asking p(Z, t**) (for
the tuples in a repair), we would have to ask for
P(E ta) V (D[, ta) A ~p(E £a)).

Example 9. (example 8 cont.) The interpreted
models are:

i(M) = {Eurbook (kafka, metamorph, 1919, t**),
Book(kafka, metamorph, 1919,t**),
Book(kafka, metamorph, 1915, £**)}

i(My) = {Eurbook(kafka, metamorph, 1919, £**),

Book(kafka, metamorph, 1919, £**),

Book(kafka, metamorph, 1915,t*)}. O
The interpreted models could be easily obtained by
adding new rules to the program (DB, IC). This
will be shown in section 5.2. From an interpreted
model of the program we can obtain a database in-
stance:

Definition 7.
DBjiny = {p@) |i(M) k= p(@,t™)}. o

Example 10. (example 9 cont.) The following
datak i btained from ition 7 are the

3To distinguish them from the inimal model of
the annotated theory.

repairs of DB:

p(Z) € P, we introduce a new, predicate p(Z, -), with
an extra argument for annotations. This defines a
new FO language, 3°%, for extended . The re-
pair logic program, TI(DB, IC), for DB and IC, is
written with predicates from £ and contains the
following clauses:

1. For every atom p(a) € DB, TI(DB, IC) contains
the fact p(@, ta) .

5]

. For every predicate p € P, II(DB, IC) contains
the clauses:

p(Z,t%) ¢ p(Z,ta)
p(Z,t*) & p(Z, ta)
p(z,F%) ¢ p(z,fa),

where t*, f* are new, auxiliary elements in the
domain of annotations.

@

. For every constraint of the form (4), II(DB, IC)
contains the clause:

Vici pilti,fa) V. Visi 4(55,ta) +—
n : m - ~
Nizipiltio t%) A AL 6i(55.5) A &,

where @ represents the negation of .

Intuitively, the clauses in 3. say that when the IC
is violated (the body), then the DB has to be re-
paired according to one of the alternatives shown in
the head. Since there may be interactions between
constraints, these single repairing steps may not be
enough to restore the consistency of the DB. We
have to make sure that the repairing process con-
tinues and stabilizes in a state where all the ICs
hold?. This is the role of the clauses in 2. containing
the new annotations £*, that groups together those
atoms annotated with tq and ta, and £*, that does
the same with fg and f, (with the help of Definition 4
below).

The following example shows the interaction of a
FD and an inclusion dependency. When atoms are
deleted in order to satisfy the FD, the inclusion de-
pendency could be violated, and in a second step it
should be repaired. At that second step, the annota-
tions t* and f*, computed at the first step where the
FD was repaired, will detect the violation of the in-
clusion dependency and perform the corresponding
repairing process.

In [Arenas et al. 2000b] a direct specification of
database repairs by means of disjunctive logic programs
with a stable model semantics was presented. Those pro-
grams contained both repair triggering rules and “stabi-
lizing” rules.

DB,y = { Eurbook(kafka, metamorph, 1919),
Book(kafka, metamorph, 1919) },

DB,y = {Book(kafka, metamorph, 1915)}. O

Theorem 1. If M is a coherent minimal plausible
+-model of T(DB, IC), and DBJyy is finite, then
DBy, is a repair of DB with respect to IC. Fur-
thermore, the repairs obtained in this way are all the
repairs of DB. o

5.2 The query program

Given a first order query @, we want the consistent
answers from DB. In consequence, we need those
atoms that are simultaneously true in every inter-
preted coherent minimal plausible x-model of the
program II(DB,IC). They are obtained through
the query Q**, obtained from Q by replacing, for

Example 7. (example 1 cont.) We ex-
tend the schema with table Eurbook(author,name,
publYear), for European books. Now, DB also
contains the literal Eurbook( kafka, metamorph,
1919)}. If in addition to the ICs we had be-
fore, we include in IC' the set inclusion dependency
Vzyz (Eurbook(z,y,z) — Book(z,y,z)), we obtain
the following program II(DB, IC):

1. EurBook(kafka, metamorph, 1919 ,tq) +

Book(kafka, metamorph, 1919,t4)

Book(kafka, metamorph, 1915 ,ta) <.

2. Book(z,y,z,t*) « Book(z,y,z,ta)

Book(z,y, z,t*) + Book(z,y, z,ta)

Book(z,y, z,f*) « Book(z,y, z,fa)

Eurbook(z,y, z,t*) < Eurbook(z, y, z,ta)

Eurbook(z,y, z,t*) < Eurbook(z, y, z,ta)

Eurbook(z, y, z,£*) + Eurbook(z, y, z,fa).

3. Book(z,y,z,fa) V Book(z,y,w,fa) «
Book(z,y,z,t*) A Book(z,y, w,t*) Az # w

Eurbook(z,y,z,fa) V Book(z,y, z,ta)
Eurbook(z, y, z,t*) A Book(z,y,z,£*). u]

In order to have a semantics for our repair programs,

we define their models. Since the negative informa-

tion in a database instance is only implicitly avail-

able and we want to avoid explicitly representing it,

we need to specify when negative information of the
form p(£, f*) is true of a model.

Definition 4. (a) Let I be an Herbrand interpreta-
tion for ¢** and ¢ a FO formula in $¢*. The def-
inition of +-satisfaction of ¢ by I, denoted I |=. ¢,
is as usual, except that for a ground atomic formula
pla,f*) it holds: T =, p(a,f*) iff p(@af)el
or p(a,ta) ¢ I.

(b) An Herbrand interpretation M is a x-model of
II(DB, IC) if for every (ground instantiation of a)
clause (Vi_, ai + AL, b;) € (DB, IC), M -,
Ay by or M, Vi, s @

Definition 5. (a) An atom p(@) in a model M
of a program is plausible if it belongs to the head
of a clause in T[(DB, IC) such that M #-satisfies
the body of the clause. A model of a program is
plausible if every atom in it is plausible.

(b) A model is coherent if it does not contain both
p(@,ta) and p(a, fa). o

Book(z, y, 2,t"*) « Book(z, y, 7, ta),
not Book(z, y, 2, fa)

Book(z, y, 2,£%) « not Book(z,y, z,ta),
not Book(z, y, 2, ta)-

For the query Q(y) : 3zBook(kafka,y,z), we
generate Q**(y) : 3zBook(kafka,y, z,t**), that
is transformed into the query program II(Q*):
Answer(y) < Book(kafka,y, z, t**).

The coherent minimal plausible *models of
o™y M(Q*) are M = M; U i(M;) U
{Answer(metamorph)} and My = Mz Ui(My) U
{Answer(metamorph)}, ~where M;,M; and
i(M,),i(Mz) are given in examples 8 and 9, resp.
We can see that y = metamorph is a consistent
answer. a

53 C from the program

p € P, every positive literal p(5) by p(5,t**) and
every negative literal —p(5) by p(5,£**). This query
corresponds to the annotated version Q%" of Q (see
section 4). Now Q** can be transformed into a
query program II(Q**) by a standard transforma-
tion [Lloyd 1987, Abiteboul et al. 1995]. This query
program will be run in combination with a program,
1" that specifies the interpreted models. This pro-
gram can be obtained extending II(DB, IC) with the
following rules:

P&, ) < p(3,ta),

p(&, ) < p(Z,ta), not p(z,fa),

2@ ) < 0(a, ),

P(Z,£**) « not p(Z,ta), not p(T,ta)-

The extended program, that now contains weak
negation, is basically stratified due to the differ-
ent ground annotations in the predicates. Thus, its
models can be computed by extending the models of
the original program in a uniform manner.

Example 11. (example 7 cont.) The program T
is obtained adding to the program II(DB, IC)) of ex-
ample 7 the following clauses:

Eurbook(z, y, z,t**) < Eurbook(z, y, z,ta)
Eurbook(z, y, z, £*) « Eurbook(z, y, z, fa)

Eurbook(z, y, z,t**) + Eurbook(z, y, z,ta),
not Eurbook(z, y, 7, fa)

Eurbook(s, y, 2,£%) « not Burbook(z,y, z, ta),
not Eurbook(z, y, 7, ta)

Book(z, y, 2,t**) + Book(z,y, 2, ta)
Book(z,y, z,**) + Book(z, y, z,fa)

The repair programs II(DB, IC) introduced in sec-
tion 5.1 are based on a non classical notion of satis-
faction (definition 4). In order to compute from the
program using a stable model semantics for disjunc-
tive programs, we build a new program II"(DB, IC),
obtained from the original one by adding the clanse
p(Z,f*) « not p(Z,tq) that gives an account of the
closed world assumption. It holds:

Proposition 3. If M is a coherent stable model
of II"(DB, IC), then DBY, is a repair of DB with
respect to IC; and every repair can be obtained in
this way. u]

In consequence, the database repairs can be
specified using disjunctive logic programs with
a stable model semantics [Gelfond et al. 1988,
Gelfond et al. 1991], and an implementation of this
semantics, like DLV [Eiter et al. 2000], can be used
to compute both repairs and consistent answers.
Notice that DLV implements denial constraints
[Buccafurri et al. 2000], which can be used to keep
the coherent stable models only, by pruning those
models that do not satisfy < p(Z,ta),p(Z,fa).

Example 12. Consider the database instance
{p(a)} that is inconsistent wrt the set inclusion
dependency Vz (p(z) — g(z)). The program
II7(DB, IC) contains the following clauses:

1. The following rules do not depend on ICs
Pz, %)  p(z,fa)
p(x,t%)  p(z, ta)
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p(z,t)  plz, ta)
4z, )  q(z,fa)
q(z,t*) + q(z, ta)
(@, t*)  q(z, ta)

»

. A single rule capturing the IC
plz,fa) V q(z, ta) < p(z, t*), g(z, £*).

w

. Database contents

pla,ta) <

IS

. The new rules for the closed world assumption
plx, £*) « not p(z,ta)
q(x, ) « not q(z, ta).

o

. Denial constraints for coherence
 p(T,ta), P, fa)
 q(Z,ta), (. fa)-

o

. Rules for interpreting the models
p(@, )  p(z, ta)
p(z,t**)  p(z,ta), not p(z,fa)
pla, £7) & ple, fa)
Pz, £**) « not p(z,ta), not p(z,ta)
4z, %) < q(z, ta)
gz, t**) « q(z,ta), not q(z,fa)
a(z,£)  q(z, £a)
q(z, F**) « not q(z,ta), not q(z,ta)- o

It can be seen that the programs with annotations
we have obtained are very simple in terms of their
dependency on the ICs.

As mentioned before, consistent answers can be ob-
tained “running” the query program introduced in
section 5.2 in combination with the repair program
II" (DB, IC), under the skeptical stable model se-
mantics, that sanctions as true what is true of all
stable models.

6 Conclusions

Extending work presented in [Arenas et al. 2000a],
we have shown how to annotate referential ICs in
order to obtain a specification in annotated pred-
icate logic of the class of repairs of a relational
database. The correspondence between the mini-
mal models of the d first order ificati

and the database repairs is established. Ongoing

work considers the extension of the annotated em-
bedding methodology to the class of all ICs found in
DB praxis [Abiteboul et al. 1995, chap. 10].

‘We formulated the problem of consistent query an-
swering as a problem of non monotonic entailment
of a modified query from the annotated theory.

‘We have presented a general treatment of consistent
query answering for first order queries and universal
ICs. This is done by means of disjunctive logic pro-
grams with a stable model semantics, where annota-
tions are now arguments, that specify the database
repairs in the case of universal ICs. In consequence,
consistent query answers can be obtained by “run-
ning” the program. Ongoing work considers the ex-
tension of the logic programs to include referential
(and more general) ICs.

In [Greco et al. 2001], a general methodology for
specifying database repairs wrt universal ICs is pre-
sented. There, disjunctive logic programs with sta-
ble model semantics are used. They also consider
the problem of specifying preferences between pos-
sible repairs. Independently, [Arenas et al. 2000b]
also presents a specification of database repairs by
means of disjunctive logic programs with a stable
model semantics. The programs capture the repairs
for binary universal ICs. The programs presented
here also work for the whole class of universal ICs,
but they are much simpler than those presented in
[Greco et al. 2001, Arenas et al. 2000b]; this is due
to the simplicity of the stabilizing rules, that take
full advantage of the relationship between the an-
notations. The simplicity is expressed in a much
smaller number of rules and the syntactic properties
of the programs.

In [Blair et al. 1989, Kifer et al. 1992b,
Leach et al. 1996] paraconsistent and annotated
logic programs are introduced. In particular, in
[Subrahmanian 1994] those programs are used to
integrate databases, a problem closely related to
inconsistency handling. It is not clear how to use
those definitive non disjunctive programs to capture
database repairs. Furthermore, notice that the
programs presented in this paper have a completely
classical semantics.

In [Gaasterland 1994], annotated logic (programs)
were used to specify and obtain answers matching
user needs and preferences. Deeper relationships to
our work deserve to be explored.
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Abstract. In this article, we characterize in terms of analytic tableaux the repairs
of inconsi i that is that do not satisfy a given
set of integrity constraints. For this purpose we provide closing and opening criteria
for branches in tableaux that are built for database instances and their integrity
constraints. We use the tableaux based ization as a basis for

query answering, that is for retrieving from the database answers to queries that are
consistent wrt the integrity constraints.
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1. Introduction

The notion of consistent answer to a query posed to an inconsistent
database was defined in (Arenas et al., 1999): A tuple is a consistent
answer if it is an answer, in the usual sense, in every possible repair
of the inconsistent database. A repair is a new database instance that
satisfies the integrity constraints and differs from the original instance
by a minimal set of changes wrt set inclusion.

A computational methodology to obtain such consistent answers
was also presented in (Arenas et al., 1999). Nevertheless, it has some
limitations in terms of the syntactical form of integrity constraints
and queries it can handle. In particular, it does not cover the case
of existential queries and constraints.

In classical logic, analytic tableaux (Beth, 1959) are used as a formal
deductive system for propositional and predicate logic. Similar in spirit
to resolution, but with some important methodological and practical
differences (Fitting, 1988), they are mainly used for producing formal
refutations from a contradictory set of formulas. Starting from a set of
formulas, the system produces a tree with formulas in its nodes. The set
of formulas is inconsistent whenever all the branches in the tableau can
be closed. A branch closes when it contains a formula and its negation.

* © 2003 Kluwer Academic Publishers. Printed in the Netherlands.
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are expected to satisfy. In spite of this, there are realistic situations
where a database may not satisfy its integrity constraints (Arenas et
al., 1999). If a database instance satisfies IC', we say that it is consistent
(wrt IC), otherwise we say it is inconsistent. In any case, we will assume
from now on that IC' is a consistent set of first order sentences.

A database instance r can be represented by a finite set of ground
atoms in the database language, or alternatively, as a Herbrand struc-
ture over this language, with Herbrand domain D (Lloyd, 1987). In
consequence, we can say that a database instance r is consistent, wrt
IC, when its corresponding Herbrand structure is a model of IC, and
we write r |= IC.

The active domain of a database instance r is the set of those el-
ements of D that explicitly appear (in the extensions of the database
predicates) in r. The active domain is always finite and we denote it by
Act(r). We may also have a set of built-in (or evaluable) predicates, like
equality, arithmetical relations, etc. In this case, we have the language £
possibly extended with these predicates. In all database instances each
of these predicates has a fixed and possibly infinite extension. Of course,
since we defined database instances as finite sets of ground atoms,
we are not considering these built-in atoms as members of database
instances.

In database applications, it is usually the case that an inconsistent
database' has “most” of its data contents still consistent wrt 7C' and
can still provide “consistent answers” to queries posed to it. The notion
of consistent answer was defined and analyzed in (Arenas et al., 1999).
This was done on the basis of considering all possible changes to r, in
such a way that it becomes a i database i A consi:
answer is an answer that can be retrieved from all those repairs that
differ from the original instance in a minimal way.

The notion of minimal change, defined in (Arenas et al., 1999), is
based on the notion of minimal distance between models using sym-
metric set difference A of sets of database tuples.

Definition 1. (Arenas et al., 1999) Given databases instances® r, r'

and 1", we say that r' is closer to v than " iff rAr' C rAr". This
is denoted by r'<,r". m]

It is easy to see that <, is an order relation. Only database predicates
are taken into account for the notion of distance. This is because built-
in predicates are not subject to change; and then they have the same

' Sometimes we will simply say “database” instead of “database instance”.

? We are assuming here and everywhere in the paper that all database instances
have the same predicates and domain.
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In this paper we extend the tableaux methodology to deal with a
relational database instance plus a set of integrity constraints that the
first fails to satisfy. Consequently, both inputs together can be consid-
ered as building an inconsistent set of sentences. In this situation, we
give criteria for closing branches in a tableau for a relational database
instance.

The technique of “opening tableaux” was introduced in (Lafon et
al., 1988) for a solution to the frame problem, and in (Schwind, 1990;
Schwind et al., 1994) for applying tableaux methods to default logic. In
this paper we show how to open tableaux for database instances plus
their constraints, and this notion of opening is applied to characterize
and represent by means of a tree structure all the repairs of the original
database. Finally, we sketch how this representation could be used to
retrieve consistent query answers. At least at the theoretical level, the
methodology introduced in this paper could be applied to any kind of
first order (FO) queries and constraints.

This paper is organized as follows. In section 2, we define our notion
of repair of an inconsistent database. Section 3 recalls the definition
of analytic tableaux and shows how databases and their repairs can
be characterized as openings of closed tableaux. In section 4 we show
the relationship between consistent query answering and Winslett’s
approach to knowledge base update; this allows us to obtain some
complexity results for our methodology. Section 5 shows how consistent
answers to queries posed to an inconsistent database can be obtained
using the analytic tableaux. In section 6 we show the relationship of
consistent query answering with minimal entailment, more specifically,
in section 6.1, with circumscriptive reasoning. This yields a method for
implementing the approach, which is studied in section 6.2. Preliminary
versions of this paper appeared in (Bertossi et al., 2001; Bertossi et al.,
2002).

2. Inconsistent Databases and Repairs

In this paper a database instance is given by a finite set of finite rela-
tions on a database schema. A database schema can be represented in
logic by a typed first-order language, £, containing a finite set of sorted
database predicates and a fixed infinite set of constants D. The lan-
guage contains a predicate for each database relation and the constants
in D correspond to the elements in the database domain, that will be
also denoted by D. That is every database instance has an infinite
domain D. We also have a set of integrity constraints IC' expressed in
language L. These are first-order formulas which the database instances
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extension in all database instances. Now we can define the “repairs” of
an inconsistent database instance.

Definition 2. (Arenas et al., 1999)

(a) Given database instances v and r', v’ is a repair of r, if r' = IC
and 7' is a minimal element in the set of instances wrt the order <,.
(b) Given a database instance r, a set IC and a first order query Q(Z),
we say that a ground tuple t is a consistent answer to Q inr wrt IC

iff ' |= Q[t] for every repair r' of r (wrt IC). [m}
Example 1. Consider the integrity constraint
IC: Vz,y,z(Supply(z,y,z) A Class(z,Tu) — z=0C),

stating that C'is the only provider of items of class Ty; and the inconsis-
tent database r = {Supply(C, D1, It,), Supply(D, Do, It5), Class(It,
T,), Class(Its, Ty)}. We have only two possible (minimal) repairs of the
original database instance, namely ry = {Supply(C, D1, It,), Class(It;,
Tu),Class(Itz, Ts)} and 12 = {Supply(C, D1, Tt1), Supply(D, Dy, Ity),
Class(It,,T)}.

Given the query Q(z,y,2): Supply(z,y,2z)?, the tuple (C, Dy, It;)
is a consistent answer because it can be obtained from every repair,
but (D, Dy, Ity) is not, because it cannot be retrieved from ;. O

It is possible to prove (Arenas et al., 1999) that for every database
instance r and set IC' of integrity constraints, there is always a repair
r'. If r is already consistent, then r is the only repair. The following
lemma, which is easy to prove, will be useful.

Lemma 1.
1. If r'<pr", then TN Crnel.
2. If ' Cr, then TAr' =7\ m}

‘We have given a semantic definition of consistent answer to a query
in an inconsistent database. We would like to compute consistent an-
swers, but not via computing all possible repairs and checking answers
in common in all of them. Actually there may be an exponential
number of repairs in the size of the database (Arenas et al., 2001).

In (Arenas et al., 1999; Celle et al., 2000) a mechanism for com-
puting and checking consistent query answers was considered. It does
not produce/use the repairs, but it queries the only explicitly available
inconsistent database instance. Given a FO query @, to obtain the
consistent answers wrt a finite set of FO ICs IC, Q is qualified with
appropriate information derived from the interaction between @ and
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IC. More precisely, if we want the consistent answers to Q(Z) in r, the
query is rewritten into a new query 7(Q(Z)); and then the (ordinary)
answers to 7(Q(Z)) are retrieved from r.

Example 2. (example 1 continued) Consider the query Q : Supply(z,
y,2)? about the items supplied together with their associated infor-
mation. In order to obtain the consistent answers, the query 7(Q) :
Supply( =y, z) A(Class(z, Ty) = = = C) is generated and posed to the
original database. The extra conjunct in it is the “residue” obtained
from the interaction between the query and the constraint. Residues
can be obtained automatically (Arenas et al., 1999). m}

In general, 7 is an iterative operator. There are sufficient conditions
on queries and ICs for soundness, completeness and termination of
operator 7; and natural and useful syntactical classes satisfy those
conditions. There are some limitations though: 7 can not be applied to
existential queries like Q(X): 3Y Supplies(X,Y, It;)?. However, this
query does have consistent answers at the semantic level. Furthermore,
the methodology presented in (Arenas et al., 1999) assumes that the
ICs are (universal) constraints written in clausal form.

There are fundamental reasons for the limitations of the query rewrit-
ing approach. If a FO query can be always rewritten into a new FO
query, then the problem of consistent query answering (CQA) would
have polynomial time data complexity. However, CQA is likely to have
a higher computational complexity (see sections 4 and 6.1 for a discus-
sion).

Notice that 7 is based on the interaction between the queries and
the ICs. It does not consider the interaction between the ICs and the
database instance. In this paper we concentrate mostly on this second
form of interaction. In particular, we wonder if we can obtain an implicit
and compact repr ion of the database repairs.

Furthermore, the database, seen as a set of logical formulas, plus
IC is an inconsistent first order theory; and we know that such an
inconsistency can be detected and represented by means of an analytic
tableau.

An analytic tableau is a syntactically generated tree-like structure
that, starting from a set of formulas placed at the root, has all its
branches “closed” when the initial set of formulas is inconsistent. This
tableaux can show us how to repair inconsistencies, because closed
branches can be opened by removing literals.

In the next sections, we show how to generate, close and open
tableaux for database instances with their constraints; and we apply
the notion of opening to characterize and represent by means of a tree
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tableaux system. We can think of this tree as the set of its branches,
that we usually denote with X,Y,....

Notice that the original set of constants in the language, in our case,
D, is extended with a set of new constants, P, the so-called Skolem
functions or parameters. These parameters, that we will denote by
P,P1,---, have to be new at the point of their introduction in the tree,
in the sense that they have not appeared so far in the (same branch of
the) tableau. When applying the ~-rule, the parameter can be any of
the old or new constants.

A tableau branch is closed if it contains a formula and its nega-
tion, otherwise it is open. Every open branch corresponds to a model
of the formula: If a branch B € TP(y) is open and finished, then the
set of ground atoms on B is a model of . If the set of initial formulas is
inconsistent, it does not have models, and then all branches (and thus
the tableau) have to be closed. Actually, the completeness theorem for
tableaux theorem proving (Smullyan, 1968) states that: F' is a theorem
iff TP({=F}) is closed.

The intuitive idea of finished branch, of one to which no tableaux
rule can be applied obtaining something new and relevant, is captured
by means of the notion of saturated branch: this is a branch where all
possible rules have been applied.

Definition 3. A branch B is saturated iff it satisfies

~

If -—@pe€B, then peB
. If (Vi) €B, then pe€B or Y€B
L If (pAY) € B, then pe B and ) € B

. If 3zp € B, then ¢[c] € B for some constant ¢

@ oW W e

. If Yoy € B, then ¢[c] € B for any constant c.’ m]

A branch is called Hintikka if it is saturated and not closed (Fitting,
1996). It is easy to see that a saturated branch is Hintikka iff it does
not contain any atomic formula A and its negation —A. From now
on, tableaux branches will be assumed to be saturated. Nevertheless,
sometimes we talk about branches even when they are only partially
developed.

We consider TP not only as a theorem prover (or consistency checker)
for formulae, but also as an application from (sets of) formulas to trees
which has some useful properties. Thus, operations on tableaux can

3 If the language had function symbols, we would replace constants by ground
terms in this definition.
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structure all the repairs of the original database. We also sketch how
this representation could be used to retrieve consistent query answers.
At least at the theoretical level, the methodology introduced here could
be applied to any kind of first order queries and constraints.

3. Database Repairs and Analytic Tableaux

In order to use analytic tableaux to represent database repairs and char-
acterize consistent query answers, we need a special form of tableaux,
suitable for repr ing datab inst and their integrity con-
straints.

Given a database instance r and a finite set of integrity constraints
IC, we first compute the tableau, TP(IC Ur), for IC and r. This
tableau has as root node the set of formulas IC' U r. This tableau
should be closed, that is the tableau has only closed branches, if and
only if r is inconsistent. By removing database literals in every closed
branch we can transform r into a consistent database instance and
thus obtain a repair of the database. For all this to work, we must
take into account, when computing the tableau, that r represents a
database instance and not just a set of formulas, in particular, that the
absence of positive information means negative information, etc. (see
section 3.2). First, we give a brief review of classical first order analytic
tableaux (Beth, 1959; Smullyan, 1968; Fitting, 1996).

3.1. ANALYTIC TABLEAUX

The tablean of a set of formulas is obtained by recursively breaking
down the formulas into subformulas, obtaining sets of sets of formulas.
These are the usual Smullyan’s classes of formulas:

a ar ap B 1B B2
fAg [ f g Fve [f g
=(fve) [=f ~g[|[=(fAg)[~f ~g
=9l f e[ o9 ]-f g

[ v [+(p),p any constant 5§  [4(p),p a fresh constant
[ (va)f flz/p] (Ga)f flz/p]
REDY ~fl=/p] ~(Vz)f ~f[=/p]

A tableaux prover produces a formula tree. An o-rule adds new
formulas to branches, a S-rule splits the tableau and adds a new branch.
Given a formula ¢, we denote by TP(p) the tree produced by the

camreadAmai.tex; 27/06/2003; 16:42; p.6

8 Bertossi and Schwind

be defined on the basis of the logical connectives occurring inside the
formulas involved.

Lemma 2. Let ¢ and v be any formulae. Then TP has the following
properties.

1. TP({p v ¥}) = TP({p}) U TP({y})
2. TP({p Ay}) = {XUY : X € TP({¢}) and ¥ € TP({yp})}

3.1f B € TP(p A4), then B = B’ U B" with B' € TP(y) and
B" € TP(3). O

Property 3. follows directly from properties 1. and 2. The properties
in the lemma motivate the following definition.

Definition 4. Given tableauz T and T', each of them identified with
ined

the set of its b hes, the b bl is TT' ={XUY :
XeTandY €T}, [m]

Remark 1. The properties in lemma 2 can be used to check whether
a formula ¢ derives from a theory A. A |= ¢ iff (A — ¢) is a theorem,
what will be proved if we derive a contradiction from assuming —(A4 —
). Therefore we will have to compute TP({=(A — ¢)}) and check for
closure. Using the second property, we will check TP ({A})® TP({—¢})
for closure, allowing us to compute TP(A) only once for any number
of requests. a

The following relationship between the open branches of the tableaux
for a formula and its models has been shown, among others by (Bel-
leannee et al., 1995; Schwind et al., 1994).

Theorem 1. Let B € TP({¢}) be an open branch of the tableau for
. Then there is a model M of ¢, which satisfies B, i.e. B C M. More
precisely, there is Herbrand model of ¢ such that the ground atoms in
B belong to M.

3.2. REPRESENTING DATABASE INSTANCES BY TABLEAUX

In database theory, we usually make the following assumptions*: (a)
Unique Names Assumption (UNA): If @ and b are different constants
in D, then a # b holds in r. (b) Closed World Assumption (CWA):
If 7 is a database instance, then for any ground database atom P(c),

* Actually, it is possible to make all these assumptions explicit and transform the
database instance into a first-order theory (Reiter, 1984).
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if P(c) ¢ r, then —P(c) holds for r, more precisely, implicitly —P(c)
belongs to 7.

In consequence, if we see the relational database as the set of its
explicit atoms plus its implicit negative atoms, we can always repair
the database by removing ground database literals.

‘When computing a tableau for a database instance r, we do not add
explicitly the formulas corresponding to the UNA and CWA, rather
we keep them implicit, but taking them into account when computing
the tableau. This means, for example, that the presence on a tableau
branch of a formula a = b, for different constants a,b in D, closes the
branch.

Given a database r and integrity constraints IC, we will generate
the tableau TP(IC Ur). Notice that every branch B of this tableau
will be of the form I Ur, where I € TP(IC) (see lemma 2). I is the
“IC-part” of the branch.

Notice also that a tableau for IC' only will never be closed, because
IC is consistent. The same happens with any tableau for r. Only the
combination of 7 and IC may produce a closed tableau.

TP(IC Ur) is defined as in section 3.1, but we still have to define
the closure conditions for tableaux associated to database instances.
Before, we present some motivating examples.

Example 3. (example 1 continued) In this case, TP(IC Ur) is the
tree in figure 1. The last branch is closed because D = C is false
in the database (alternatively, because D # C is implicitly in the
database). We can see that TP(IC Ur) is closed. r is inconsistent wrt
IC. The nodes (Supply(C, D1, It1) A Class(Ity,Ty) —» C =C) and
(Supply(D, Dy, It;) A Class(Ity,Ty) — D = C) are obtained by ap-
plying the v-rule to Vz,y, 2(Supply(z,y,z) A Class(z,Ts) — z=C).
Application of the S-rule to (Supply (D, D2, Ity) A Class(Itz, Ts) — D =
C) produces the same subtree for all three leaves: = Supply(C, D1, Ity),
—Class(It;,T,) and C = C. In the figure, we indicate this subtree by
“...7. We will see later (see section 3.3) that, in some cases, we can omit
the development of subtrees that should develop under branches that
are already closed. Here we can omit the explicit further development of
the subtree from the first two leftmost branches, because these branches
are already closed. [m]

In tableaux with equality, we need extra rules. We will assume that
we can always introduce equalities of the form ¢ = ¢, for a term ¢,
and that we can replace a term t in a predicate P by t' whenever
t = t' belongs to the same tableau branch (that is, we use a form of
paramodulation (Fitting, 1996)). It will be simpler to define the closure
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Ve (P(z) = Q(z, f()))
P(a),Q(b,d)

P(a) > Q(a, f(a)

/N

—P(a) Q(a, f(a))
X

X

Figure 2. Tableau for Example 4

This branch closes because there is no « in D such that P(z) € 7
and therefore =P (z) belongs to r for any z in D. P(p) cannot belong
to this database. m}

Example 6. Let us now change the database instance in example 5 to
ro = {P(a), P(b)}, keeping the integrity constraint. Now, the database
is consistent, and we have the following tableau TP(IC Ury):

P(p)
P(a), P(b)

This time we do not want the tableau to close, and thus sanctioning
the inconsistency of the database. The reason is that we could make p
take any of the values in the active domain {a,b} C D of the database.
a

A similar situation can be found in a modified version of example 4.

Example 7. Change the database instance in example 4 to {P(a), Q(a,
d)}. Now it is consistent wrt the same IC. We obtain

vz (P(z) = Q(=, f(x)))
P(a),Q(a,d)

P(a) = Qa, f(a))

-P
@ Qa, (@)

Now we do not close the rightmost branch because we may define f
as a function from the active domain into itself that makes Q(a, f(a))
become a member of the database, actually by defining f(a) =d. O
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Vz,y, z(Supply(z,y,z) A Class(z,Ty) — z=C)
Supply(D, Da, Its)
Supply(C, D1, It:)

Class(It1,Ty)
Class(Ita, Ty)

Supply(C, D1,1t1) A Class(It1,Ts) — C=C

Supply(D, Dy, Its) A Class(Ity,Ts) — D=C

X X

=Sup(

Figure 1. Tableau for Example 3

rules for database tableaux, if we skolemize existential formulas before
developing the tableau (Fitting, 1988). We assume from now on that
all integrity constraints are skolemized by means of a set of Skolem
constants (the parameters in P) and new function symbols.

Example 4. Consider the referential IC : Vz (P(z) — 3y Q(z,y)),
and the inconsistent database instance r = {P(a), Q(b,d)}, for a,b,c €
D. With an initial skolemization, we can develop the tablean TP(ICUr)
in figure 2. In this tablean, the second branch closes because Q(a, f(a))
does not belong to the database instance. There is no z in the ac-
tive database domain, such that r contains Q(a,z). Implicitly, by the
CWA, r contains then —Q(a, ) for any z. Hence the branch containing
Q(a, f(a)) closes and r is inconsistent for 1C.

Example 5. Consider the inconsistent database r1 = {Q(a), Q(b)} wrt
the IC: 3z P(z). After having skolemized 3z P(z) into P(p), a tableau
proof for the inconsistency is the following

P(p)
Q(a), Q(b)
X
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Example 8. Consider IC : 3z —P(z) and the consistent database
instance r = {P(a)}. The tableau TP(IC Ur) after skolemization of
IC is:

—P(p)
P(a)

This tableau cannot be closed, because p must be a new parameter,
not occurring in the same branch of the tableau and it is not the case
that P(p) € r (alternatively, we may think of p as a constant that can
be defined as any element in D\ {a}, that is in the complement of the
active domain of the database). m}

In general, a tableau branch closes whenever it contains a formula
and its negation. However, in our case, it is necessary to take into
account that, due to the UNA and CWA, not all literals are explicit
on the branches. The following definition of closed branch modifies the
standard definition, and considers those assumptions.

Definition 5. Let B be a tableau branch for a database instance r
with integrity constraints IC, say B = IUr. B is closed iff one of the
following conditions holds:

1. a = b € B for different constants a,b in D.

2. a) P(¢) € I and P(c) & r, for a ground tuple € containing elements
of D only.
b) P(¢) € I and there is no substitution o for the parameters in ¢
such that P(¢)o € 1.7

s

—P(¢) € I and P(¢) € r for a ground tuple ¢ containing elements
of D only.

4. @ € B and —p € B, for an arbitrary formula .

@

.t =t € B for any term t. [m]

Condition 1. takes UNA into account. Notice that it is restricted
to database constants, so that it does not apply to new parameters®.
Condition 2(a) takes CWA into account. Alternative condition 2(b)

(actually it subsumes 2(a)) gives an account of examples 4, 5, 6, and 7.

5 A substitution is given as a pair o = (p,t), where p is a variable (parameter)
and t is a term. The result of applying o to formula F, noted Fo, is the formula
obtained by replacing every occurrence of p in F by ¢.

© That is, elements of P are treated as null values in Reiter’s logical reconstruction
of relational databases (Reiter, 1084).
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In condition 3. one might miss a second alternative as in condition
2., something like “~P(¢) € I for a ground tuple containing Skolem
symbols, when there is no way to define them considering elements of
D\ Act(r) in such a way that P(c) € r”. This condition can be never
satisfied because we have an infinite database domain D, but a finite
active domain Act(r). So, it will never apply. This gives an account
of example 8. Conditions 4. and 5. are the usual closure conditions.
Conditions 2(a) and 3. are special cases of 4.

Now we can state the main properties of tableaux for database
instances and their integrity constraints.

Propositi; 1. For a datab instance T and integrity constraints
1C, it holds:

1. r is inconsistent wrt to IC iff the tableau TP(IC Ur) is closed
(i.e. each of its branches is closed).

2. TP(IC Ur) is closed iff v does not satisfy IC (i.e. T £ I1C). 0O

3.3. OPENING TABLEAUX

The inconsistency of a database r wrt IC' is characterized by a tableau
TP(IC Ur) which has only closed branches. In order to obtain a repair
of r, we may remove the literals in the branches which are “responsible”
for the inconsistencies, even implicit literals corresponding to the CWA.
Every branch which can be “opened” in this way will possibly yield
a repair. We can only repair inconsistencies due to literals in r. We
cannot remove literals in I because, according to our approach, integrity
constraints are rigid, we are not willing to give them up; we only allow
changes in the database instances. We cannot suppress equalities a = b
neither built-in predicates.

Remark 2. According to Definition 5, we can repair inconsistencies
due only to cases 2. and 3. More precisely, given a closed branch B in
TP(ICUr):

1. If B is closed because of the CWA, it can be opened by insert-
ing P(c)o into r, or, equivalently, by removing the implicit literal
—P(¢)o from r for any substitution ¢ from the into D
(case 2(b) in definition 5).

N

If B is closed because of contradictory literals -P(¢) € I and
P() € r, then it can be opened by removing P(¢) from r (case
3 in definition 5) . [m}
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branch, each opened branch of the closed tablean might produce one
possible transformed open tableau. Since we want to modify the database
7, which should become consistent, we should try to remove a minimal
set of literals in the r-part of the branches in order to open the tableau.
This automatically excludes branches B3, Bg and By, because they close
due to the literals D = C, which do not correspond to database literals,
but come from the constraints.

In this example we observe that the sets of database literals of
some of the I; are included in others. Let us denote by I;- the set
of literals in I; that are database literals (i.e. not built-in literals), e.g.
Ii = I, I} = {~Supply(D, Dy, It;)}. We have then I D If, I} D I},
I3 D I, Iy D Iy, Iy D I, If D Ij. This shows, for example, that in
order to open Bi, we have to remove from r a superset of the set of
literals that have to be removed from r for opening B;7. Hence, we can
decide that the branches whose database part contains the database
part of another branch can be ignored because they will not produce
any (minimal) repairs. This allows us not to consider B; through Bg
in our example, and By and Bg are the only branches that can lead us
to repairs. [m]

The following lemma tells us that we can ignore branches with
subsumed I-parts, because those branches cannot become repairs.

Lemma 3. If r" Cr' Cr, then ' <, r". m]

Moreover, as illustrated in example 3, where the tableau tree is
shown, sometimes we can detect possible subsuming branches without
fully developing the tablean. There, the first formula has been split
by a tableau rule and we have already closed two branches. When we
apply another rule, we know then, that the branch C = C, which is
not closed yet, will not be closed or will be closed by a subset of the
database literals appearing in the first two branches.

Definition 6. Let B = TUr be a closed branch of the tableau TP(ICU
).

(a) If I is not closed, i.e the branch is closed due to database literals
only, we say that B is data closed.

(b) Let B=1Ur be a data closed branch in the tableau TP(IC Ur),
we define op(B) := (r\ L(B)) U K(B), where

1. LB)={l|l€rand-l€I}
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Example 9. (example 3 continued) The tableau has 9 closed branches:
(we display the literals within the branches only)
By By B3
Supply(C, Dy, Ity)  Supply(C, Dy, It1)  Supply(C, Dy, Tt1)
Supply(D, Dy, Ity)  Supply(D, Dy, Its)  Supply(D, Dy, Ity)

Class(Ity,Ty) Class(Ity, Ty) Class(Ity,Ty)
Class(Ity, Ty) Class(Ity, Ty) Class(Ity,Ts)
~Supply(C, Dy, It1) —Supply(C, Dy, It1)  —~Supply(C, Dy, It1)

=Supply(D, D, Ity) —Class(Ity,Ts) D=C

By Bs Bg
Supply(C, Dy, 1) Supply(C, Dy, It1)  Supply(C, Dy, It:)
Supply(D, Dy, Ity)  Supply(D, Da, Tty)  Supply(D, Dy, It)

Class(Ity, Ty) Class(Ity, Ty) Class(Ity,Ts)

Class(Ity, Ty) Class(Ity, Ty) Class(Ity, Ty)

—Class(It1,Ty) —Class(It1,Ty) —Class(It1,Ty)
~Supply(D, Dy, Ity)  ~Class(Tty, Ty) D=C

Br By By
Supply(C, Dy, It1)  Supply(C, Dy, It1)  Supply(C, Dy, It:)
Supply(D, Dy, Itz)  Supply(D, D, Ity)  Supply(D, Dy, Its)

Class(Ity, Ty) Class(Ity, Ty) Class(Ity,Ty)

Class(Ita, Ty) Class(Ita, Ty) Class(Ity, Ts)
c=C c=C c=C
=Supply(D, D, Ity) —Class(Ity,Ts) D=C

The first four tuples in every branch correspond to the initial in-
stance 7. Each branch B; consists of an I-part and the r-part, say
B; =rUI;. And we have

L I Iy

—Supply(C, D1, 1t1)  —~Supply(C, Dy, It1)  =Supply(C, D1, It:)

=Supply(D, Do, It,) —Class(Ity,Ts) D

I, Is Is
—Class(Ity,Ty) —Class(It,Ts) —Class(Ity,Ts)
=Supply(D, D, It,) —Class(Ity,Ts) D=C
I Iy Iy
c=C c=C c=C
=Supply(D, Do, It,) —Class(Ity,Ty) D=C

In order to open this closed tableau, we can remove literals in the
closed branches. Since a tableau is open whenever it has an open
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2. K(B) ={l |1 is a ground atom in I and there is no substi-
tution o such that lo € r}7, where 7 is any substitution of the
parameters into D.

(c) An instance r' is called an opening of r iff r' = op(B) for a data
closed branch B in TP(IC Ur). m}

If the branch B is clear from the context, we simply write 7’ =
(r\ L) UK. If no parameters have been introduced in the branch, then
we do not need to consider the substitutions above. In this case, for an
opening U’ of a branch T Ur it holds: (a) If P(¢) € I and P(c) ¢,
then P(c) € r'. (b) If =P(¢) € I and P(c) € r, then P(c) ¢ r'. Notice
that we only open branches which are closed because of conflicting
database literals.

When r = IC, then TP(ICUr) will have (finished) open branches B.
For any of those branches op(B) can be defined exactly as in definition
6. It is easy to verify that in this case op(B) coincides with the original
instance r.

Proposition 2. Let ' be an opening of r. Then 1’ is consistent with
1C,ie r'|=1IC. a

Example 10. Consider r = {P(a), Q(a), R(b)} and IC = {Vz(P(z) —
Q(z)}. Here r |= IC and TP(IC Ur) is

P(a), Q(a), R(b)

P(z) — Q(x)
Q(b)
—P(b) ;
3
-P(a)
Q(a)
P

The first branch, Bj, is closed and op(B1) = {Q(a), R(b)} that satis-
fies IC. The second branch, B,, is open and op(B;) = r. The third
branch, Bs, is closed and op(B3) = {P(a),Q(a),Q(b), R(b)} that sat-
isfies TC. Notice that we could further develop the last node there,
obtaining the same tree that is hanging from —P(b) in the tree on the
LHS. If we do this, we obtain closed branches By, Bs, with op(Bs) =
{Q(a), Q(b), R(b)}, and op(Bs) = {P(a), Q(a), Q(b), R(b)}. With these
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last two openings we do not get any closer to r than with op(Bs3), that
is still not as close to r as the only repair, r, obtained with branch Bj.
m}

Example 11. Consider IC as in example 10, but now r = { P(a), R(b)},
that does not satisfy IC. TP(IC Ur) is

P(a), R(b)
P(z) > Q(z)

Q(b)
x
B;

-P@) Q)
X
B B,

For the first branch Bi, we obtain op(B1) = {R(b)}, that is a repair.
Branch Bj gives op(B2) = {P(a), R(b), Q(a)}, the other repair.

For the closed branch B3 we have op(B3) = {P(a),Q(b), R(b)}.
This is not a model of IC, apparently contradicting proposition 2, in
particular, it is not a repair of 7. If we keep developing node Q(b) ex-
actly as = P(b) on the LHS, we obtain extended (closed) branches, with
associated instances {Q(b), R(b)} and {P(a), Q(a), Q(b), R(b)}. Both of
them satisfy IC, but are non minimal; and then they are not repairs of
7. This example shows the importance of having the open and closed
branches (maybe not explicitly) saturated (see definition 3). m}

We can see that every opening is related to a possibly non minimal
repair of the original database instance’. For repairs, we are only in-
terested in “minimally” opened branches, i.e. in open branches which
are as close as possible to 7. In consequence, we may define a minimal
opening r' as an opening such that rAr’ is minimal under set inclusion.

Openings of r are obtained by deletion of literals from r, or, equiv-
alently, by deletion/insertion of atoms from/into r. In order to obtain
minimal repairs, we have to make a minimal set of changes, therefore
we do not keep openings associated to an r”, such that r'Ar G r"Ar,

7 Strictly speaking, we should not say “non minimal repair”, because repairs
are minimal by definition. Instead, we should talk of database instances that differ
from the original one and satisfy the ICs. In any case, we think there should be no
confusion if we relax the language in this sense.
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these results, Winslett’s update operator is on the second level of the
polynomial hierarchy in the general case (i.e. without any syntactic
restriction on the propositional formulas): the problem of deciding
whether a formula ¢ is a logical consequence of the update by p of
a knowledge base T is II§ —complete.

\ Update | General case | General case | Horn | Horn

| | abitraryp | |pl<k | abittayp | [pll<k

| Top—q | I —complete | co-NP-complete | co-NP-complete | O(I T |- [l ¢ |l) |

In the above table, we summarize the results reported in (Eiter et al.,
1992). The table contains five columns. In the general case (columns
two and three), T is a general propositional knowledge base. In the
Horn-case (columns four and five), it is assumed that p and ¢ and
all formulas in T" are conjunctions of Horn-clauses. Columns two and
four account for cases where no bound is imposed on the length of the
update formula p, while columns three and five describe the case where
the length of p is bounded by a constant k. The table illustrates that
the general problem in the worst case (arbitrary propositional formulas
without bound on the size) is intractable, whereas it becomes very well
tractable (linear in the size of T and query g) in the case of Horn
formulas with bounded size.

How are these results related to CQA? If r is a database which
is inconsistent with respect to the set of integrity constraints IC, the
derivation of a consistent answer to a query @ from r corresponds to the
derivation of @ from the database r updated by the integrity constraints
IC. Hence, the (inconsistent) knowledge base instance r, which is just
a conjunction of literals, corresponds to the propositional knowledge
base T'. The integrity constraints IC correspond to the update formula
p; and deriving an answer to query @ from r (and IC) corresponds to
the derivation of Q from r updated by IC.

Update is defined above for propositional formulas. Update is de-
fined by means of models of the knowledge base r and the update
formula IC. In our case, r is a finite conjunction of grounded literals,
ie. r is a propositional Horn formula. The update formulas however
(integrity constraints 7C) are FO formulas. Since the Herbrand universe
of the database is a finite set of constants, we can consider instead of
IC the finite set of instantiations of the formulas in IC by database
constants. Let us denote the conjunction of these instantiations by ic.
Note that ic is Horn whenever all formulas in IC' are Horn, what is
common for database ICs.
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where 7' is associated to another opening. We will show subsequently
that these are the openings where L and K are minimal in the sense of
set inclusion wrt all other openings in the same tree.

The following theorem establishes a relationship between the order
of repairs defined in definition 1 and the set inclusion of the database
atoms that have been inserted or deleted when opening a database
instance.

Lemma 4. For any opening r' = (r\ L) U K, we have rAr' = LUK.
a

Proposition 3. Let 1 = (r\ L) UK; and ro = (r\ Ly) U Ky. Then
1 is closer to T than ra, i.e. 11 <, r9, iff L1 C Ly and K7 C K». m]

Theorem 2. Let r be an inconsistent database wrt IC. Then r' is a
repair of v iff there is an open branch I of TP(IC), such that IUr is
closed and TU ' is a minimal opening of I Ur in TP(IC Ur). O

Example 12. (example 9 continued) TP(IC Ur) has two minimal
openings:
7 T8
Supply(C, D1, Ity)  Supply(C, D1, It1)
Class(Ity,Ty) Class(It1,Ty)
Class(Ity, Ty) Supply(D, Dy, Its)

The rightmost closed branch cannot be opened because it is closed by
the atom D = C which is not a database predicate.

4. Repairs, Knowledge Base Updates and Complexity

Our definition of repairs is based on a minimal distance function as
used by Winslett for knowledge base update (Winslett, 1988). More
precisely, Winslett in her “possible models approach” defines the knowl-
edge base change operator o for the update of a propositional knowledge
base K by a propositional formula p by

Mod(K op) = U {m' € Mod(p) : mAm' € Minc({mAm' :
meMod(K)
m' € Mod(p)})}.

In (Eiter et al., 1992), Eiter and Gottlob present complexity results
for propositional knowledge base revision and update. According to
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It is then easy to see that the following relationship holds between
update and repairs and CQA. It follows straightforwardly from the
definitions of repairs and update.

Theorem 3. Given a database instance r and a set of integrity con-
straints IC with their propositional datab D ion ic:

(a) r' is a repair of r wrt IC iff r' € Mod(r o ic).

(b) If Q is a query, { is a consistent answer to Q wrt IC iff every model
of roic is a model of Q(f), i.e. Mod(r o ic) C Mod(Q(f)). [m}

In consequence, the results given by Eiter and Gottlob apply directly
to CQA.

The number of branches of a fully developed tableaux is very high: in
the worst case, it contains 0(2") branches, where n is the length of the
formula. Moreover, we have to find minimal elements within this expo-
nential set, what increases the complexity. Theorem 3 tells us that we do
not need to compare the entire branches but only parts of them, namely
the literals which have been removed in order to open the tableau. This
reduces the size of the sets we have to compare, but not their num-
ber. Let us reconsider in example 3 the point just before applying the
tableaux rule which develops formula Supply(D, Da, I) A Class(I2, Ty)

— D = C. As we pointed out in the discussion of example 3, it is
possible, under some conditions, to avoid the development of closed
branches, because we know in advance, without developing them, that
they will not be minimal.

Example 13. (example 3 continued) In this case, TP(ICUr) is the tree
in Figure 3. This tree has two closed branches, B; and B3, and one open
branch Bj. Each of these branches will receive an identical subtree due
to the application of the tableaux rules to the formulas not yet devel-
oped on the tree, namely (Supply(D, Do, It;) A Class(Itz, Ts) — D =
C). We know at this stage of the development that B; is closed due to
—Supply(C, D1,It;) and B; is closed due to =Class(It1,Ts); Bs is not
closed. o

In this example, we can see that if we further develop the tree, every
B; will have the same sets of sub-branches, say L1, Ly, ..., where L;
is a set of literals. The final fully developed tableau will then consist
of the branches By U Ly, By U Ly, ..., ByU Ly, BoU Ly, ... B3U Ly,
B3 ULy, ..., .... If the final tableau is closed, since Bs is not closed,
every B3 U L; will be closed due to literals within L;, say K.

We have then two cases: either the literals in K; close due to literals
in r (which is the original inconsi: database i or they close
due to literals in the part of Bs not in 7. In the first case, these literals
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from K will close every branch of the tree (also B; and By). Since B,
and B, were already closed, they will be closed due to a set of literals
that is strictly bigger than before, and therefore they will not produce
minimally closed branches (and no repairs). In this situation, those
branches can immediately be ignored and not further developed. This
can considerably reduce the size of the tableau. In this example, at the
end of the development, only Bs will produce repairs (see example 3).

In the second case, the literals in Kj; close due to literals in the part
of B; that are not in 7. If these literals are not database literals (we
have called them built-in predicates), the branch cannot be opened,
because we cannot repair inconsistencies that are not due to database
instances. Then, we only have to consider the case of database literals
that are not in r. Since Bj is open, those literals are negative literals
(in the other case, Bz would not have been open, due to condition
2. in definition 5). This is the only situation where the sub-branches
which are closed at a previous point of development may still become
minimal. In consequence, a reasonable heuristics will be to suspend the
explicit development of already closed branches unless we are sure that
this case will not occur.

Vz,y, 2(Supply(z,y,2) A Class(z,Ty) = z=C)
Supply(D, Dy, Itp)
Supply(C, Dy, It1)

Class(Ity,Ts)
Class(Ity, Ty)

Supply(C, Dy, Tt1) A Class(It;,Ty) —» C=C

Supply(D, D, Ity) A Class(Ity,Ts) — D=C

—Supply(C, D1, It:) —Class(lt1,Ta) _¢
x x

B, B, Bs

Figure 3. Tableau for Example 13
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that the query is not true in all repairs. [m]

The following example shows that, as opposed to (Arenas et al.,
1999), we are able to treat existential queries in a proper way.

Example 15. Consider the query “IzCourse(z, Ca, G2)?” for the data-
base in example 14. Here we have that op(TP(IC Ur)) ® TP(—-3z
Course(z, Ca, G2)) is closed. The second tableau introduces the for-
mulas ~Course(c, Ca,G2), for every ¢ € DU P in every branch. The
answer is “yes”. This answer has been obtained by taking c as the
same constant S; in both branches. This does not need to be al-
ways the case. For example, with the query “Jz Student(S:,z,D1)?”,
that introduces the formulas —Student(S1,c, D1) in every branch of
op(TP(ICUr))® TP(—3z Student(S1, z, D1)), the tableau closes, the
answer is “yes”, but one repair has been closed for ¢ = N; and the
other repair has been closed for ¢ = Ny.

‘We can also handle open existential queries. Consider now the query
with y as the free variable “JzCourse(S1,y,2)?". The tableaux for
op(TP(IC Ur)) ® TP(=32Course(S1,y,z)), which introduces the for-
mulas ~Course(S1,y, c) in every branch, is closed, actually by y = Ci,
and also by y = Cy, but for two different values for ¢, namely G; and
Gg, resp.

Theorem 4. Let r be an inconsistent database wrt the set of integrity
constraints IC.

1. Let Q(Z) be an open query with the free variables Z. A ground tuple
t is a consistent answer to Q(Z) iff op(TP(IC Ur)) ® TP(=Q(Z))
is closed for the substitution z t.

e

Let Q be query without free variables. The answer is “yes”, meaning
that the query is true in all repairs, iff op(TP(ICUr)) ® TP(-Q)
is closed.

6. CQA, Minimal Entailment and Tableaux

As the following example shows, CQA is a form of non-monotonic
entailment, i.e. given a relational database instance r, a set of ICs IC,
and a consistent answer @ to a query Q(Z) wrt IC, denoted r =, Q(a),
it may be the case that r' . Q(@), for an instance r’ that extends r.

Example 16. The database containing the table
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5. Consistent Query Answering

In order to determine consistent answers to queries, we can also use,
at least at the theoretical level, a tableaux theorem prover to produce
TP(IC Ur) and its openings. Let us denote by op(TP(IC U r)) the
tableau TP(IC U r), with its minimal openings: All branches which
cannot be opened or which cannot be minimally opened are pruned
and all branches which can be minimally opened are kept (and opened).
(We reconsider this pruning process in section 6.2.)

According to definition 2 and theorem 2, f is a consistent answer
to the open query Q(Z) when the combined tableau op(TP(IC Ur)) ®
TP(~Q()) (c.f. definition 4) is, again, a closed tableau. In consequence,
we might use the tableau op(TP(IC Ur)) ® TP(—~Q(E)) in order to
retrieve those values for Z that restore the closure of all the opened
branches in the tableau.

Example 14. Consider the functional dependency
IC: Y(z,y, 2z, u,v)(Student(z,y, ) AStudent(z,u,v) — y=uAz="0);

and the i i students database inst:

r = {Student(S1, N1, D1), Student(S1, Ny, D1), Course(S1,C1, G1),
Course(Sh,C2,G2)},

which has the two repairs, namely
r1 = {Student(S1, N1, D1), Course(S1,C1,G1), Course(S1,C2, Ga2)},
ro = {Student(S1, N2, D1), Course(S1,C1,G1), Course(S1,C2, Ga)}.

‘We can distinguish two kinds of queries. The first one corresponds to
a first order formula containing free variables (not quantified), and then
expects a (set of database) tuple(s) as answer. For example, we want
the consistent answers to the query “Course(z,y,z)?”. Here we have
that op(TP(IC Ur)) ® TP(~Course(z,y, 7)) is closed for the tuples
(81,C1,Gh) and (S1,Cs, Ga)-

A second kind of queries corresponds to queries without free vari-
ables, i.e. to sentences. They should get the answer “yes” or “no”. For
example, consider the query “Course(S:, Ca,G2)?". Here op(TP(ICU
1)) ® TP( =Course(S1,Ca, G2)) is closed. The answer is “yes”, meaning
that the sentence is true in all repairs.

Now, consider the query “Student(Si, N2, D1)?”. The tableau op(
TP(ICUr))® TP(~Student(S1, N2, D1)) is not closed, and Student(S1,
N3, D) is not a member of both repairs. The answer is “no”, meaning
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Employee Name Salary

J.Page 5000
V.Smith 3000
M.Stowe 7000

is consistent wrt the FD: Name — Salary. In consequence, the set of
consistent answers to the query Q(z,y) : Employee(z,y) is {(J.Page,
5000), (V.Smith, 3000), (M.Stowe, 7000)}. If we add the tuple (J. Page,
8000) to the database, the set of consistent answers to the same query
is reduced to {(V.Smith, 3000), (M.Stowe, 7000)}. m]

‘We may be interested in having a logical specification Spec, of the
repairs of the database instance 7. In this case, we could consistently
answer a query Q(Z), by asking for those £ such that

Spee, B Q) = 1 Q) (1)

where v is a new, suitable consequence relation, that, as the example
shows, has to be non-monotonic.

6.1. A CIRCUMSCRIPTIVE CHARACTERIZATION OF CQA

Notice that with CQA we have a minimal entailment relation in the
sense that consistent answers are true of certain minimal models, those
that minimally differ from the original instance. This is a more general
reason for obtaining a nonmonotonic consequence relation. Actually,
the database repairs can be specified by means of a circumscription ax-
iom (McCarthy, 1986; Lifschitz, 1994) that has the effect of minimizing
the set of changes to the original database performed in order to satisfy
the ICs.

Let Pi,..., P, be the database predicates in £. In the original in-
stance r, each P; has a finite extension that we also denote by P;. Let
Ry, ..., Ry be new copies of Py, ..., P;, standing for the corresponding

tables in the database repairs. Define, for i = 1,...,n,
VE[P(Z) aept—  (Ri(Z) A-P(@)], &)
ValP(3) agpe— (Pil@) A—FRi(@))]. ®3)

Consider now the theory 3 consisting of axioms (2), (3) plus r, i.e. the
(finite) conjunction of the atoms in the database, plus IC(P; /Ry, -,
P,/Ry), ie. the set of ICs, but with the original database predicates
replaced by the new predicates; and possibly, axioms for the built-in
predicates, e.g. equality.
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In order to minimize the set of changes, we circumscribe in paral-
lel the predicates P,"",Pl'"‘” in the theory X, with variable predicates
Ry,...,R,, and fixed predicates Pi,..., P, (Lifschitz, 1985), that is,
we consider the following circumscription

Circum (3; P, ... B" Ry, ..., By P,y Pa). (4)

The semi-colons separate the theory, the predicates minimized in par-
allel, the variable predicates and the fixed predicate, in that order.

‘We want to minimize the differences between a database repair and
the original database instance. For this reason we need the R; to be
flexible in the minimization process. The original predicates P;s are not
subject to changes, because the changes can be read from the R; (or
from their differences with the P;).

Example 17. Consider r = {P(a)} and IC = {Vz(P(z) = Q(z))}.
In this case, 3 consists of the following sentences: P(a),Vz(Rp(z) —
Ro(z)), Vo(P™(z) ¢ Rp(z) A=P(2)), V(P () ¢ P(z) A=Rp(z)),
vo(Q™ (z) ¢ Ro(z) A-Q(x)), Vz(Q”(z) ¢ Q(z) A\=Rq(x)). Here the
new database predicates are Rp and Rq. They vary when pin pout,
Q™, Q°"* are minimized.

The models of th circumscription are the minimal (classical) models
of the theory 3. A model M =< M, (P™)M (Pout)M (Qim)M (Qout)M |
RY, Rg’, PM, QM oM > is minimal if there is no other model with the
same domain M that interprets P, @, a in the same way as 9t and has at
least one of the interpretations of P, Po, Qi QU strictly included
in the corresponding in 9 and the others (not necessarily strictly)
included in the corresponding interpretations in 91. a

Circumscription (4) can be specified by means of a second-order
axiom ) )
BRI, P PR PR Ry, Rn) A (5)
VX1 - VX VY) - VYV 2+ V0 (3( X0, oy Xy Vi, -, Yoy 215, Zn) A
AN XiCP™ A NYiC P — NPTCXi A NP CY).

The first conjunct emphasizes the fact that the theory is expressed
in terms of the predicates shown there. Those predicates are replaced
by second-order variables in the ¥ in the quantified part of the formula.
The circumscription axiom says that the change predicates R{", R"!
have the minimal extension under set inclusion among those that satisfy
the ICs. It is straightforward to prove that the database repairs are in
one to one correspondence with the restrictions to Ry,..., R, of those
Herbrand models of the circumscription that have domain D and the
extensions of the predicates P, ..., P, as in the original instance .
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our case, this should not be surprising. In (Arenas et al., 1999), for
some classes of queries and ICs, CQA can be reduced to first-order
query evaluation. In (Arenas et al., 2000; Greco et al., 2001; Barcelo et
al., 2002; Barcelo et al., 2003), direct specifications of database repairs
by means of logic programs are presented.

However, there is not much hope in having the circumscription al-
ways collapsing to a first-order sentence, ¢, . If this were the case,
CQA would be feasible in polynomial time in the size of the database,
because then for a query Q, the query (.. — Q) could be posed
to the original instance . As shown in (Chomicki et al., 2002), CQA
can be coNP-complete, even with simple functional dependencies and
(existentially quantified) conjunctive queries.

Under those circumstances, it seems a natural idea to explore to
what extent our modified semantic tableaux can be used for CQA. Ac-
tually, some implementations to nomonotonic reasoning, more precisely
to minimal entailment, based on semantic tableaux have been proposed
in (Olivetti, 1992; Niemela, 1996a; Niemela, 1996b; Olivetti, 1999; Bry
et al., 2000).

6.2. TOWARDS IMPLEMENTATION

The most interesting proposal for implementing first order circumscrip-
tive reasoning with semantic tableaux is offered by Niemela in (Niemela,
1996b), where optimized techniques for developing tableaux branches
and checking their minimality are introduced. The techniques presented
there, that allow minimized, variable and fixed predicates, could be
applied in our context, either directly, appealing to the circumscriptive
characterization of CQA we gave before, or adapting Niemela’s tech-
niques to the particular kind of process we have at hand, in terms of
minimal opening of branches in the tableau TP(ICUr).® We will briefly
explore this second alternative.

As in (Niemela, 1996b), we assume in this section that (a) the se-
mantic tableaux are applied to formulas in clausal form, and (b) only
Herbrand models are considered, what in our case represents no limi-
tation, because our openings, repairs, etc. are all Herbrand structures.
Furthermore, if IC contains safe formulas (Ullman, 1988), what is com-
monly required in database applications, we can restrict the Herbrand
domain to be the finite active domain of the database.

As seen in section 5, consistently answering query @ from instance
7 wrt IC, can be based on the combination of op(TP(IC Ur)) and
TP(-Q(Z)). Nevertheless, explicitly having the first, pruned, tablean

® Notice that the input theory in this case differs from the theory to which the
circumscription is applied in the previous section.
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An alternative to externally fixing the domain D consists in min-
imizing the finite active domain, that is a subset of D. This can be
achieved by means of a circumscription as well, and then that domain
can be extended to the whole of D. Notice that in order to capture the
unique names assumption, the equality predicate could be minimized.
Furthermore, if we want the minimal models to have the extensions
for the P; as in r, we can either include in ¥ predicate closure axioms
of the form VZ(F;(z) < V'{‘ Z; = a;) if P;’s extension is non-empty
and VZ(P;(Z)) > Z # Z) if it is empty; or apply to those predicates
the closed world assumption, that can also be captured by means of
circumscription. See (Lifschitz, 1994) for details. Another alternative
is to fix the domain D and replace everywhere r in X by the first-
order sentence, o(r), corresponding to Reiter’s logical reconstruction
of database instance r (Reiter, 1984). We do not specify any of these
alternatives explicitly, but leave all this as something to be captured
at the implementation level.

Example 18. (example 17 continued) The minimal models of the cir-
cumscription of the theory are (D,0,{a},0,0,0,0,{a},0) and (D, 0,0,
{a},0,{a},{a}, {a}, ), that show first the domain and next the exten-
sions of P, P, Q™" Q°“, Rp, Rq, P, @, in this order. The first model
corresponds to repairing the database by deleting P(a); the second, to
inserting Q(a). [m}

By playing with different kinds of circumscription, e.g. introducing
priorities (Lifschitz, 1985), or considering only some change predicates,
e.g. only P?%’s (only deletions), preferences for some particular kinds
of database repairs could be captured. We do not explore here this
direction any further.

The original theory ¥ can be written as £’ A r, where ¥’ is formed
by all the conjunctions in X, except for r. It is easy to see that the
circumseription Circum (X; Ri®, ... R%; R, ..., Rp; P1,..., Py) is log-
ically equivalent to rA Circum(X'; R, ... R%; R1, ..., R; P1, ..., Py).
In consequence, we can replace (1) by

A Circum(S; R, RS Ry, ., Rn; Pry o, Pa) E Q) = 1 e QD).
()

‘We can see that in this case the nonmonotonic consequence relation
corresponds to classical logical consequence, but with the original data
put in conjunction with a second-order theory.

Some work has been done on detecting conditions and developing
algorithms for the collapse of a (second-order) circumscription to a
first-order theory (Lifschitz, 1985; Doherty et al., 1997). The same for
collapsing circumscription to logic programs (Gelfond et al., 1989). In
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amounts to having also explicitly all possible repairs of the original
database. Moreover, this requires having verified the property of mini-
mality in the data closed branches, possibly comparing different bran-
ches wrt to inclusion. It is more appealing to check minimality as the
tableau TP(IC Ur) is developed.

Notice that if a finished branch B € TP(IC U r), opened after a
preliminary data closure was reached, remains open for Z = £ when
combined with TP(=Q(Z)), then op(B) is a model of IC and —Q(%),
and in consequence op(B) provides a counterexample to IC = Q(%).
However, this is classical entailment, and we are interested in those
models of IC' that minimally differ from 7, in consequence, op(B) may
not be a counterexample for our problem of CQA, because it may not
correspond to a repair of the original instance. Such branches that
would lead to a non minimal opening in TP(IC Ur) should be closed,
and left closed exactly as those branches that were closed due to built-
ins.
As we can see, what is needed is a methodology for developing the
tableaux in such a way that: (a) Each potential counterexample is
explored, and hopefully at most once. (b) Being a non minimal opening
is treated as a closure condition (because, as we just saw, they do not
provide appropriate counterexamples). (c) The minimality condition is
checked locally, without comparison with other branches, what is much
more efficient in terms of space.

Such methodology is proposed in (Niemela, 1996b), with two clas-
sical rules for generating tableaux, a kind of hyper-type rule, and a
kind of cut rule. The closure conditions are as in the classical case, but
a new closure condition is added, to close branches that do not lead
to minimal models. This is achieved by means of a “local” minimality
test, that can also be found in (Niemela, 1996a; Eiter et al., 1993).
‘We can adapt and adopt such a test in our framework on the basis
of the definition of grounded model given in (Niemela, 1996b) and our
circumscriptive characterization of CQA given above.

Let B be a data closed branch in TP(IC Ur), with op(B) = (r\L)U
K. We associate to B a Herbrand structure M(B) over the first order
language £(K, L, P, R), where R = (Ry, ..., Ry) is the list of original
database predicates, P = (P,..., P,) is the list of predicates for the
repaired versions of the R;s, L = (Ly,..., L), K = (Ki,...,K,) are
predicates for R;\ P; and P; \ R;, resp. (Then it makes sense to identify
the list of predicates L and K with the sets of differences K and L in the
branch B). M(B) = (Act(r), LB, K#, P?  RP) is defined through (and
can be identified with) the subset A := U LEuU? KPuUt PEUU? RE
of the Herbrand base B, where U} RP coincides with the database
contents 7, and the elements in U} P? are taken from op(B).

SRR =T -Re 0]
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Now we can reformulate for our context the notion of grounded
Herbrand structure given in (Niemela, 1996b).

Definition 7. (adapted from (Niemela, 1996b)) An opening op(B) is
grounded iff for all p € K U L with p(f) € A it holds

IO(PRs, .\ PalRe) U {\(Fs = R\ P). A\ K, = AR} (7)

o U N<ER®(8) & p(),
where N<EKiR>(A) .= {~q(f) | g€ LUK U R and q(f) € B\ A} U
{a(?) | ¢ € R and q(f) € A}. O

Notice that the first set in the union that defines N <% 3R> (A) cor-
responds to the CWA applied to the minimized predicates. i.e. those in
L, K, and the fixed predicates, i.e. those in R. The second set coincides
with the original database contents r. From the results in (Niemela,
1996b) and our circumscriptive characterization of CQA, we obtain
the following theorem.

Theorem 5. An opening op(B) corresponds to a database repair iff
M(B) is a grounded model of (7). m}

Ungrounded models can be discarded, and then ungroundedness can
be used as an additional closure condition on branches. Notice that
the test is local to a branch and can be applied at any stage of the
development of a branch, even when it is not finished yet. The test
is based on classical logical consequence, and then not on any kind of
minimal entailment.

Example 19. (example 11 continued) We need some extra predicates.
Pp, Pg, Pr stand for the repaired versions of P, Q, R, resp. Lp, Lq, Lr,
Kp, Kq, K stand for P\ Pp,..., Pr\R, resp. Here L = (Lp, Lg, Lr),
K = (Kp,Kq,Kg),P = (Pp, Po, Pr), R = (P,Q, R).

In order to check groundedness for branches, we have the underlying
theory ¥ = {Vz(Pp(z) = Py(z)),Vz(Lp(z) ¢ (P(z) A =Pp(2))),.-- -,
Vz(Kr(z) > (Pr(z) A —=R(z)))}, corresponding to the LHS of (7).

In order to check the minimality of branch B;, we consider M(By),
that is determined by the set of ground atoms A(B:) = {P(a), R(b),
Lp(a), Rr(b)}. First, this structure satisfies £. Now, for this branch

N<BEE>(A(B1)) = {~Lp(b), ~Lq(a), ~Le(b), ~Lr(a), ~Lr(b),
~Kp(a),~Kp(b), ~Kq(a),~Kq(b),~Kr(a),
—KRg(b),~P(b),~Q(a), ~Q(b), ~R(a)} U

{P(a), R(b)}
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defined by Winslett in (Winslett, 1988). The treatment in (Winslett,
1988) is mainly propositional, but a preliminary extension to first order
knowledge bases can be found in (Chou et al., 1994). Those papers
concentrate on the computation of the models of the revised theory,
ie., the repairs in our case, but not on query answering. Comparing
our framework with that of belief revision, we have an empty domain
theory, one model: the database instance, and a revision by a set of ICs.
The revision of a database instance by the ICs produces new database
instances, the repairs of the original database.

Nevertheless, our motivation and starting point are quite different
from those of belief revision. We are not interested in computing the
repairs per se, but in answering queries, hopefully using the original
database as much as possible, possibly posing a modified query. If this
is not possible, we look for methodologies for representing and querying
simultaneously and implicitly all the repairs of the database. Further-
more, we work in a fully first-order framework. Other connections to
belief revision/update can be found in (Arenas et al., 1999).

‘We should emphasize that in this paper we are not addressing the
issues of database maintenance, integrity enforcement (Schewe et al.,
1999) or integrity checking (Nicolas, 1982). Techniques in those direc-
tions are intended to keep the database consistent; whereas we accept
inconsistent databases, and the database repairs are just an auxiliary
concept used to characterize those answers to queries that are consistent
with (possibly globally) violated integrity constraints.

To the best of our knowledge, the first treatment of CQA in databases
goes back to (Bry, 1997). The approach is based on a purely proof-
theoretic notion of consistent query answer. This notion, described only
in the propositional case, is more restricted than the one we used in this
paper. In (Cholvy, 1998), Cholvy presents a general logic framework
for reasoning about contradictory information which is based on an
axiomatization in modal propositional logic. Instead, our approach is
based on classical first order logic.

Other approaches to consistent query answering based on logic pro-
grams with stable model semantics were presented in (Arenas et al.,
2000; Barcelo et al., 2002; Greco et al., 2001). They can handle general
first order queries with universal ICs.

There are many open issues. One of them has to do with the pos-
sibility of obtaining from the tableaux for instances and ICs the right
“residues” that can be used to rewrite a query as in (Arenas et al.,
1999). The theoretical basis of CQA proposed in (Arenas et al., 1999)
were refined and implemented in (Celle et al., 2000). Comparisons of
the tableaux based methodology for CQA and the “rewriting based
approach” presented in those papers is an open issue. However, query

camreadAmai.tex; 27/06/2003; 16:42; p.31

30 Bertossi and Schwind

For groundedness, we have to check if Lp(a) is a classical logical conse-
quence of XU N<IKiR>(A(B,)). This is true, because, from —=Kg(a),
we obtain —Pg(a). Using the contrapositive of the IC in X, we obtain,
—Pp(a). In consequence, the opening corresponding to branch B; is a
repair of the original database.

Consider now the unfinished branch Bs, for which A(B3) = {P(a),
R(b), Kq(b), Rp(a), Ro(b), Rr(b)}, and

NEER(A(By)) = {Lp(a),~Lp(b), ~La(@), ~La(b), ~Ln(a),
—Lg(b), ~Kp(a), ~Kp(b),~Kq(a), ~Kr(a),
~Kg(b), ~P(b), ~Q(a), ~Q(b), ~R(a)} U
{P(a), R(b)}-

We have to apply the groundedness test to Ko Eb) In this case it is
not possible to derive this atom from ¥ U N<EK:7>(A(Bs)), meaning
that the set of literal is not grounded. If we keep developing that branch,
the set N can only shrink. In consequence, we will not derive the atom
in the extensions. We can stop developing branch Bz because we will
not get a minimal opening.

7. Conclusions

‘We have presented the theoretical basis for a treatment of consistent
query answering in relational databases by means of analytic tableaux.
‘We have mainly concentrated on the interaction of the database in-
stance and the integrity constraints; and on the problem of represent-
ing database repairs by means of opened tableaux. However, we also
showed how the analytic tableaux methodology could we also used for
consistent query answering.

‘We established the connections between the problem of consistent
query answering and knowledge base update, on one side, and circum-
scriptive reasoning, on the other. The relationship between knowledge
base update and circumscription has already been studied by Winslett
(Winslett, 1989; Winslett, 1991) (see also (Liberatore et al., 1997)).

The connection of CQA to updates and minimal entailment allowed
us to apply known complexity results to our scenario. Furthermore,
we have seen that the reformulation of the problem of CQA as one of
computing circumscription opens the possibility of applying established
semantic tableaux based methodologies for circumscriptive reasoning.

As we have seen, there are several similarities between our ap-
proach to consistency handling and those followed by the belief revi-
sion/update community. Database repairs coincide with revised models
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rewriting, as presented in (Arenas et al., 1999), can not be applied to
existential queries like the one in example 15, whereas the tableaux
methodology can be used. Perhaps, an appropriate use of tableaux
could make possible an extension of the rewriting approach to syntac-
tically richer queries and ICs.

Another interesting open issue has to do with the fact that we have
treated Skolem parameters as null values. It would be interesting to
study the applicability in our scenario of methodologies for query eval-
uation in databases in the presence of null values like the one presented
in (Reiter, 1986).

In this paper we have concentrated mostly on the theoretical foun-
dations of a methodology based on semantic tableaux for querying
inconsistent databases. Nevertheless, the methodology for CQA re-
quires further investigation. In this context, the most interesting open
problems have to do with implementation issues. More specifically, the
main challenge consists in developing heuristics and mechanisms for us-
ing a tableaux theorem prover to generate/store/represent TP(IC UT)
in a compact form with the purpose of: (a) applying the database
assumptions, (b) interacting with a DBMS on request, in particular,
without replicating the whole database instance at the tableau level,
(c) detecting and producing the minimal openings (only), (d) using a
theorem prover (in combination with a DBMS) in order to consistently
answer queries.

From our experience with logic programming based CQA (Arenas
et al., 2000; Barcelo et al., 2002), we know it is possible to optimize
the representations in general, obtaining simpler logic programs with
lower evaluation complexity (Barcelo et al., 2003). Similar investiga-
tions should be carried out in the tableau based approach.

An important issue in database applications is that usually queries
have free variables and then answer sets have to be retrieved as a
result of the automated reasoning process. Notice that once we have
op(TP(IC Ur)), we need to be able to: (a) use it for different queries
@, (b) process the combined tablean op(TP(IC Ur)) ® TP(=Q) in an
“reasonable and practical” way. We have seen that existing method-
ologies and algorithms like the one presented in (Niemela, 1996b),
can be used in this direction. However, producing a working imple-
mentation, considering all kinds of optimizations with respect to rep-
resentation and development of the tableaux, grounding techniques,
database/theorem-prover interaction, etc. is a major task that deserves
separate investigation.
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Appendix: Proofs

PROOF OF LEMMA 3

We have by Lemma, 1 r'Ar = 7\ v’ and 7""Ar = r \ r". Then [ € r'Ar
iff ler\r',ie l €randl¢r from which it follows that [ € 7 and
g r". Henceler\r" =r"Ar.

PROOF OF LEMMA 4

Let r' be an opening of 7. Then r' = (r \ L) UK, where L = {l : | €
rand -l € I} and K = {l : l € T and there is no substitution ¢ such
that lo € r}7. Let us first observe that LN K = () since L C r and for
L€ K, | &r. We show that rAr' = LU K. Let be z € rAr'.
1.Casez€randz € r'. Then z ¢ K and z & (r \ L). But from this,
we get £ € L, hencez € LUK
2.Casezgrandzer,iffz¢grand (z €randz ¢ L) or z € K),
iff z ¢ r or z € K from which it follows z € K U L.
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I is open, = ¢ I. From this, we get z ¢ K and, since ' = (r \ L)U K,
z & r', from which it follows that = € rAr'.

2. Case z € K, then z € I and = & r. But then z € v’ and therefore
z €rAr'.

PROOF OF PROPOSITION 3

By Lemma 4, we have rAry = L; U Ky and rAry = Ly U K. From
71 <r 79 we get then Ly U K; C Ly U K. Since L; N K; = (), we have
L; C Ly and K7 C Ko.

PROOF OF THEOREM 2

Let r' be a repair of r. Then r' |= IC and r' € Minyg, (ic). Since r' is a
model of IC, by Theorem 1, ' contains an open branch I of the tableau
TP(IC) for IC. We have r' = (r \ L) U K and since r' is minimal wrt
<,, there is no r" closer to r than r’, i.e. there isno r” = (r\ L') U K’
such that L' C L and K’ C K. Hence r' U I is a minimal opening of
rUl.

On the other hand, let 7 U r' be a minimal opening of 7 U r in
TP(IC Ur) where I is an open branch of TP(IC). Then, by Definition
6,7 =(r\L)UK where L={l:l€rand ~l€land K={l:l €T
and there is no substitution ¢ such that lo € r}. By Lemma 4, we have
rAr' = LU K. Since I Ur is a minimal opening of 7 Ur’, we have by
Theorem 3, that there is no v/, L" and K" such that r” is an opening
of rand v = (r\ L")UK" and L" C L and K" C K. By Lemma
4, this means that there is no v such that rAr” C rAr',i.e. ' is a
minimal element of Mod(IC) wrt the order <,.
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Abstract

A relational database is inconsistent if it does not satisfy a given set of integrity constraints.
Nevertheless, it is likely that most of the data in it is consistent with the constraints. In
this paper we apply logic programming based on answer sets to the problem of retrieving
consistent information from a possibly inconsistent database. Since consi

persists from the original database to every of its minimal repairs, the approach is based on
a specification of database repairs using disjunctive logic programs with ezceptions, whose
answer set ics can be and by systems that implement stable
model semantics. These programs allow us to declare persistence by default of data from
the original instance to the repairs; and changes to restore consistency, by exceptions. We
concentrate mainly on logic programs for binary integrity constraints, among which we
find most of the integrity constraints found in practice.

KEYWORDS: answer set. ing, integrity

1 Introduction

Integrity Constraints (IC) capture an important normative aspect of every database
application, whose aim is to guarantee the consistency of its data. However, it is very
difficult, if not impossible, to always have a. latat instance. Datab

may become inconsistent with respect to a given set of integrity constraints. This
may happen due, among others, to the following factors: (1) Certain ICs cannot
be expressed /maintained by existing DBMSs; (2) transient inconsistencies caused

* Current address: University of Toronto, Department of Computer Science, Toronto, Canada.
E-mail: marenas@cs.toronto.edu.
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Salary ‘ Name  Amount Salary ‘ Name  Amount
V .Smith 5000 V.Smith 8000
P.Jones 3000 P.Jones 3000
M .Stone 7000 M.Stone 7000

We can see that only tuples (P.Jones,3000) and (M.Stone, 7000) can be found
in both repairs.

In this paper, we address the problem of retrieving consistent information when
general first order queries are posed to an inconsistent relational database. Since
the i ion in the database is the one that persists across all repairs,
we solve this problem by using logic programs with answer sets semantics to specify
in a compact manner the class of repairs of the inconsistent instance.

Although the consistent answers are defined in terms of minimally repaired ver-
sion of the database, we are not interested in restoring consistency, in particular,
in computing the repairs of the database: Repairs are used as an auxiliary notion
in order to give a model-theoretic characterization of the consistent answers to
queries. Actually, it is easy to find situations where exponentially many repairs of
an inconsistent database exist (Arenas et al. 2001).

A possible computational mechanism for retrieving consistent answers, first in-
troduced in Arenas et al. (1999) and Celle and Bertossi (2000), is as follows: Given
a first-order query  and an inconsistent database instance r, instead of explic-
itly computing all the repairs of r and querying all of them, a new query T(Q)
is computed and posed to r, the only available database. The answers to the new
query are expected to be the consistent answers to Q. Such an iterative operator
for query transformation was introduced and analyzed with respect to soundness,
completeness and termination in Arenas et al. (1999) and Celle and Bertossi (2000).

Nevertheless, the query rewriting approach has some limitations. The iterative
operator introduced in Arenas et al. (1999) and Celle and Bertossi (2000) works for
some particular classes of queries and constraints, e.g. for queries that are conjunc-
tions of literals and universal integrity constraints, but completeness is lost when it
is applied to disjunctive or existential queries. The methodology for obtaining con-
sistent answers that we present in this paper can applied to any first-order query
instead.

Furthermore, the notion of consistent answer introduced in Arenas et ul (1999)
is a model theoretic notion, that is 1!

1 by a cc ional
Nevertheless, that approach is not based on or ied by a logical

of the class of all the repairs of a given database instance relative to a fixed set of
ICs. Such a specification is another contribution of this paper, namely a specification
expressed as a disjunctive logic program with answer set semantics. The database
repairs correspond to the intended models or answer sets of the program.

In this paper, we are motivated mainly by the possibility of retrieving consistent
answers to general first-order queries, extending the possibilities we developed in
Arenas et al. (1999). However, the logical specification could be also used to (1)
Reason about all database repairs, in particular about consistent query answers, (2)
derive specialized algorithms for consistent query answering, (3) analyze complexity
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by the inherent noz icity of datal tr i (3) delayed updates of a

4) i ion of k datat in particular with du-
plicated information; (5) inconsistency with respect to soft integrity constraints,
where transactions in violation of their conditions are not prevented from execut-
ing; (6) legacy data on which one wants to impose semantic constraints; (7) the
consistency of the database will be restored by executing further transactions; and
(8) user constraints than cannot be checked or maintained.

Independently of the cause of i i 'y, the i i database may be the
only source of data available, and we may still want or need to use it for a number of
reasons. Restoring the consistency of the database may not be an option since that
may require permissions we don’t have, lead to the loss of useful information, or be
a complex and non-deterministic process. Under such circumstances, one faces the
natural problem of characterizing and retrieving the consistent information from
the database. Most likely, most of the information in the database is still consistent,
and the database can still provide us with correct answers to certain queries, making
the problem of determining what kinds of queries and query answers are consistent
with the integrity constraints a worthwhile effort.

The problem of defining and retrieving consistent information from an incon-
sistent relational database has been studied in the context of relational databases.
The basic approach is based on the intuition that the information that is consistent,
despite the inconsistency of the database as a whole, is the one that is invariant
under all sensible ways in which the consistency of the database is restored. More
precisely, an answer to a query is consistent if it is obtained as an answer every
time the query is posed to a minimally repaired version of the original database
(Arenas et al. 1999).

Ezample 1
Assume we have the following database instance Salary:

Salary| Name  Amount
V.Smith 5000
V.Smith 8000
P.Jones 3000
M.Stone 7000

and FD is the functional dependency Name — Amount, meaning that Name
functionally determines Amount, that is violated by the table Salary. Actually the
tuples participating in this violation are those with the value V.Smith in attribute
Name.

‘When we ask about the tuples that are consistent wrt the FD, we should retrieve
only (P.Jones,3000) and (M.Stone, 7000), because those tuples should stay in any
reasonable way in which we restore consistency.

If we want to consider only repaired versions of the original instance that min-
imally differ from the original instance, in the sense that the set of inserted or
deleted tuples (to restore inconsistency) is minimal under set inclusion, the possi-
ble repairs of the inconsistent database are
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issues related to consistent query answering, and (4) obtain the intended models
of the specification, i.e. the database repairs, allowing us to analyze different ways
to restore the consistency of the database. That is, a mechanism for computing
database repairs could be used for conflict resolution.

Notice that consistent answers are non-monotonic in the sense that adding infor-
mation to the original databaﬁe may cause loosing previous consistent answers. In
a non- ics for the i ion (or its

should be expected.
A preliminary version of this paper appeared in Arenas et al. (2000a), where
ded disj ive logic with ions where i d and applied
to the specification of database repairs and to retrieve consistent answers to general
first-order queries. This paper extends Arenas et al. (2000a), addressing several new
issues, among which we find (1) a detailed analysis of the correspondence between
e-answer sets and database repairs for binary integrity constraints, (2) application
of the DLV system (Eiter et al. 1998) to obtain database repairs and consistent
answers, (3) extensions of the methodology to more general universal constraints
and to referential integrity constraints, (4) an analysis of the applicability of the
disjunctive well-founded semantics to consistent query answering, and (5) the use of
weak constraints to capture database repairs based on minimal number of changes.
This paper is structured as follows. In section 2 we introduce the notions of
database repair and consistent answer to a query, and the query language. Section
3 introduces extended disjunctive logic programs with exceptions. In section, 4,
the main section of the paper, we present the repair programs for binary integrity
constraints, and show how to consistently evaluate queries. In section 5 we show
some examples using the DLV system to obtain database repairs and consistent
answers. In section 6 we illustrate how to handle referential integrity constraints.
In section 7 we analyze the well-founded i ion as an app to the
set of consistent answers, and we identify cases where it provides the exact solution.
In section 8 we show how database repairs based on minimal number of changes can
be ified by i ducing weak ints in the repair programs. In section 9,
we draw conclusions, we sketch some extensions, e.g. to the case of general universal
ICs, we also mention open issues, and discuss related work.

2 Consistent query answers

A database schema can be represented by a typed language £ of first-order predicate
logic, that contains a finite set of predicates and a fixed infinite set of constants D.
A relational database instance r can be seen as an interpretation or a first order
structure for £, whose domain is also D (the interpretation of each constant is
the constant itself), and the predicates have finite extensions. In what follows, a
database instance r will be represented, in a natural way, as a finite set of ground
atoms (the atoms true in r).

The active domain of a database instance r is the set of those elements of D that
explicitly appear in r. The active domain is always finite and we denote it by Act(r).
We may also have a set of built-in (or evaluable) predicates, like equality, order
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relations, arithmetical relations, etc. In this case, we have the language £ possibly
extended with those predicates. In all database instances, for a given schema, each
of these predicates has a fixed and possibly infinite extension. Since we defined
database instances as finite sets of ground atoms, we are not considering those
built-in atoms as members of database instances.

In addition to the database schema and instances, we may also have a set of in-
tegrity constraints IC' expressed in language £. These are first-order formulas which
the database instances are expected to satisfy. If a database instance r satisfies IC
in the standard model-theoretic sense, what is denoted by r |= IC, we say that
it is consistent (wrt IC), otherwise we say it is inconsistent. In any case, we will
assume from now on that IC is logically consistent set of first-order sentences.

The original motivation in Arenas et al. (1999) was to consistently answer first-
order queries. We shall call them basic queries and define them by the grammar

B = Atom|BAB|-B|3 B.

One way of explicitly asking at the object level about the consistent answers to a
first-order query consists in introducing a new logical operator K, in such a way
that Ky(Z), where () is a basic query, asks for the values of Z that are consistent
answers to ¢(Z) (or whether ¢ is consistently true, i.e. true in all repairs, when ¢
is a sentence). The K-queries are similarly defined:

A u= KB|ANA|-A|3z. A,

In this paper, we concentrate mostly on answering basic K-queries of the form
KB, where B is a basic query.

Definition 1

(a) (Arenas et al. 1999) Given a database instance r and a set of integrity con-
straints, IC, a repair of r wrt IC is a database instance r', over the same schema,
that satisfies IC and such that rAr' = (r\ ') U (r' \ ), the symmetric difference
of r and r', is minimal under set inclusion.

(b) (Arenas et al. 1999) A tuple f is a consistent answer to a first-order query Q(z),
or equivalently, an answer to the query KQ(Z), in a database instance r iff f is an
answer to query Q(Z) in every repair ' of r wrt IC. In symbols:

ri KQE <= ' Q[ for every repair r' of r.

(c) T Q is a general K-query, then r |= Q is defined inductively as usual, (b) being
the base case.

Ezample 2

(Example 1 inued.) For the i i and the given FD, {3 =
(P.Jones,3000) is a consistent answer to the query Salary(Z), i.e. r |= K Salary(z,
y)[(P.Jones, 3000)], but r & K Salary(z, y)[(V.Smith, 8000)]. It also holds r |=
K (Salary(V .Smith,5000) V Salary(V.Smith,8000)), and r |= K 3X (Salary(
V.Smith, X) A X > 4000).

Computing consistent answer through generation of all possible repairs is not a
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where the L;s are literals.! The e-answer semantics is extended as follows. The
ground program is pruned according to a modified rule (3) above:

(3’) Delete every (positive) default having a positive conclusion A, with =4 € S;
and every (negative) defanlt having a negative conclusion —A, with A € S.

Applying (1), (2) and (3’) to the ground program, we are left with a ground
disjunctive logic program without not. If the candidate set of literals S belongs to
«(511), the set of minimal models of program 511, then we say that S is an e-answer
set.

This semantics does not capture priorities between defaults, and, in principle,
there could be conflicting defaults. In this case, the semantics seems to allow that,
defaults override other defaults, without preferences for any of them. For example,
the program containing only the defaults p < not q and —p < not r (without
exception rules), has two e-answer sets, namely {p} and {-p}. In any case, in our
applications of logic programs with exceptions, due to the kind of defaults we will
use (see Definition 6), such a situation will never appear, because the potentially
conflicting defaults apply to mutually exclusive cases.

Finally, we take advantage of the existence of a one to one correspondence be-
tween the e-answer sets of a DLPE and the answer sets of an extended disjunctive
logic program (Gelfond and Lifschitz 1991 (see section 4.1, Remark 1).

4 Logic programs for CQA

‘We shall use DLPEs for specifying database repairs and answering basic K-queries.
Given a set of ICs and an inconsistent database instance r, the first step consists
of writing a repair program, II(r), having as the e-answer sets the repairs of the
original database instance. II(r) captures the fact that when a database instance r
is repaired most of the data persists, except for some tuples. In consequence, default
rules are introduced: everything persists from the instance r to the repairs. It is
also necessary to introduce exception rules: everything persists, as stated by the
defaults, unless the ICs are violated and have to be satisfied.

Next, if a first-order query is posed with the intention of retrieving all and only its
consistent answers, then a query program, that expresses the query, is run together
with the repair program.

In this section we introduce the DLPEs for specifying database repairs, and give
a careful analysis of those programs for consistent query answering wrt Binary
Integrity Constraints (BICs), i.e. they are universally quantified sentences of the
form V(Ll V Ly V @), where V denotes the universal closure, L1, Ly are literals
associated to the database schema,; ¢ is a first-order formula containing only built-
in predicates and free variables appearing in Ly, L.

I In our application scenario we will need disjuncti jons rules, but not disjunctive defaults.
Built-in predicates have a fixed extension in every database, in particular, in cvery repair; so
they are not subject to changes.
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natural and feasible alternative (Arenas et al. (2001)). Instead, an approach based
on querying the ilable, alth is much more natural.
This rewriting approach introduced in Arenas et al. (1999) is not complete for
disjunctive or existential queries, like 3Y Salary(V.Smith,Y) in Example 2. We
would like to be able to obtain consistent answers to basic K-queries at least.

Notice that the definition of consistent query answer depends on our definition
of repair. In section 8.1 we will consider an alternative definition of repair based on
minimal number of changes instead of minimal set of changes.

h incc datat

3 Logic programs with exceptions

Logic Programs with Exceptions (LPEs) (Kowalski and Sadri 1991) have default
rules whose consequences can be overridden by the consequences of exception rules.
They turn out to be the right formalism for specifying the database repairs: by
default everything persists from the original database instance to any of its repairs,
except for the changes that are necessary to restore the consistency.

LPEs as introduced in Kowalski and Sadri (1991) consist of definite clauses,
whose head and body contain literals of the form 4, —A, where A is an atom and -
is classical negation. In the bodies, literals may be affected by weak negation, not
(negation as failure). In a LPE there are default rules, which are clauses with positive
heads, and ezception rules, which are clauses with negative heads. To capture the
intuition that exceptions have priority over defaults, in Kowalski and Sadri (1991)
a new semantics was introduced based on e-answer sets. It is defined as follows.

First, instantiate the program IT in the database domain, making it ground. Now,
let S be a set of ground literals S = {L,...}. This S is a candidate to be a model,
a guess to be verified, and accepted if properly justified.

Next, generate a new set of ground rules STI according to the following steps:

(1) Delete every rule in IT containing not L in the body, with L € S.

(2) Delete from the clauses every condition not L in the body, when L ¢ S.

(3) Delete every default rule having a positive conclusion A with -4 € S.

The result is a ground extended logic program without not. Now, S is an e-answer
set of the original program if S is the smallest set of ground literals, such that: (a)
For any clause Lo ¢— Ly, -+ ,Lym in 5IL if Ly,--- ,Lm € S, then Lo € S; (b) if
S contains two complementary literals, then S is the set of all literals.

The e-answer sets are the intended models of the original program. Above, (1),
(2) are as in the answer sets semantics for extended logic programs (Gelfond and
Lifschitz 1991), but now (3) gives an account of exceptions.

To specify database repairs, we need to extend the LPEs and their semantics
as presented in Kowalski and Sadri (1991), considering Disjunctive Logic Programs
with Exzceptions (DLPEs), that contain also negative defaults, i.e. defaults with
negative conclusions that can be overridden by positive exceptions, and extended
disjunctive exceptions, i.e. rules of the form

LyV:+-VLg ¢ Lgs1,.--,Ly,not Lyii,...,not Ly,
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‘We have three possibilities for BICs in terms of the sign of literals in them,
namely the universal closures of:

(@) V() Ve pi(@)V-a@) Ve ~a@)V-e@ Ve, (1)

where the p;(Z;),q;(7;) are database atoms. BICs with one database literal plus
possibly a formula containing built-ins are called unary ICs.

Several interesting classes of ICs (Abiteboul et al. 1995) used in database praxis
can be represented by BICs: (a) Range constraints, e.g. P(z,y) — = > 5; (b) Full
inclusion d dencies; (b) functional ds dencies (see E le 1), etc. Neverthe-
less, for referential ICs, like in P(z,y) — 32Q(z, z), we need existential quantifiers
or Skolem functions (Fitting 1996). They are considered in section 6.

4.1 Finite domain databases
In this section we will momentarily depart from our assumption that databases
have an infinite domain D (see section 1), and will analyze the case of finite domain
databases. The reason is that in the general case, we will be interested in domain
independent BICs, for which only the active domain is relevant (and finite).

4-1.1 The change program

To introduce the repair programs II(r) and analyze their behavior, we will concen-
trate first on the sub-program that does not contain defaults rules. This program,
denoted by II5(r), is responsible for the changes (but not for persistence).
Splitting the program in this way makes the analysis easier. Furthermore, keeping
IIA(r), but using different form of defaults, we can capture different kinds of repairs.
In section 4.1.2, we will introduce defaults leading to our notion of repair based on
minimal set of changes (Definition 1). In section 8.1, we will use other defaults that
lead to repairs based on minimal number of changes.
Definition 2
Given a set of BICs IC and an instance r, the change program, IIa(r), contains
the following rules:

1. Facts: (a) For every ground database atom p(@) € r, the fact p(a).
(b) For every a in D, the fact dom(a).
2. For each IC of the forms in (1), respectively, the triggering rule
AX)Vpy(Xa) ¢—  dom(X1,Xz), mot pi(X1), not pa(Xa), @
PUX) V- (V1) +—  dom(Xy), not pi(X1), ¢1(V2), P
(M) V-g(a) —  a(h), ¢(), 7
3. For an IC of the first form in (1), the pair of stabilizing rules
PX) — dom(X1), ~py(X2), B
P(Xa) = dom(X), ~pi(X), B
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For an IC of the second form in (1), the pair of stabilizing rules
(%) —  dom(%), ¢i(V2), @
S (Vi) +—  dom(Vh), -p (%), B

For an IC of the third form in (1), the pair of stabilizing rules
~¢(B) +—  dom(%h), ¢;(V2), @
g (V2) —  dom(Ya), i(V2), P

The primed versions (p/,...) of the original database predicates (p,...) stand for
the database predicates in the repairs. In these rules, dom(.,.) is an abbreviation
for the conjunction of memberships to dom of all the individual variables; and @,
an abbreviation for a representation of the negation of ¢. Depending on its syntax,
it may be necessary to unfold the formula % into additional program rules, but @
will usually be a conjunction of literals. o

Ezample 3

Consider the inclusion dependencies IC : {Vzy (P(z,y) = Q(z,y)),Vzy (Q(z,y) =
R(z,y))} and the inconsistent database instance r = {P(a,b),Q(a,b)}. The pro-
gram IIa(r) contains the following clauses:

1. Facts: P(a,b), Q(a,b).
2. Triggering ezceptions: —P'(X,Y)VQ'(X,Y) « P(X,Y), not Q(X,Y).
-Q'(X,Y)VR(X,Y) « Q(X,Y), not R(X,Y).
Each of these rules represent, the two possible ways to repair the corresponding
IC, separately: The first rule says that in order to “locally” repair the first IC,
either eliminate (X,Y) from P or insert (X,Y’) into Q. The semantics of these
DLPEs gives the disjunction an exclusive interpretation. In this example, due
to the form of the ICs, we do not need domain predicates.
Stabilizing ezceptions:  Q'(X,Y) « P'(X)Y); -P'(X,Y)« -Q'(X,Y).
R(XY) « QXY -QXY) e -R(X,Y).
These rules state that eventually the ICs have to be satisfied in the repairs.
They are necessary if, like in this example, there are interacting ICs and local
repairs alone are not sufficient. Propagation of changes are required beyond
the first triggering step. Since the ICs can be repaired by either deleting or
inserting a tuple, the contrapositive versions of the ICs are needed.

@

Notice that for BICs, the stabilizing rules in IT(r) do not contain disjunctions
in the heads.
Definition 3
A model of a DLPE, 11, is a set of ground literals, S, that does not contain comple-
mentary literals and satisfies II in the usual logical sense, but with weak negation
interpreted as not being an element of S.
Definition 4
Given a model S of TTa(r), we define the database instance corresponding to S by

1(S) = {p(@) | p'(@) € S} U {p(a) | p(a) € S and —p'(a) ¢ 5)}.
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4. P'(X,Y) « P(X,Y); ~P/(X,Y) « dom(X,Y), not P(X,Y)
QX,Y) « QX,Y);  =Q(X,Y) « dom(X,Y), not Q(X,Y).
R(X,Y) « R(X,Y);  -R(X,Y) « dom(X,Y), not R(X,Y).

This means that, by default, everything from r is put into a repair ' and
nothing else.

In this program rules 2 and 3 have priority over rule 4. It is possible to verify
that the e-answer sets of the program are the expected database repairs: {P'(a, b),
Q(a,b), R(b),Pab),Q@b),...}, {~P(a,b), =Q'(a,b),P(a,b),Q(a,b),...}.
The underlined literals represent the insertion of R(a,b) in one repair and the dele-
tion of of both P(a,b) and Q(a, b), in the other one, respectively. The original atoms
remain, because there are no rules that can change them. The literals not shown
explicitly in these e-answer sets are the negative literals, e.g. =P'(a,a),~Q’(b,a),
inherited from the original instance with the negative defaults.

Remark 1

As shown in Kowalski and Sadri (1991), the program II(r), which has an e-answer se-
mantics, can be transformed into a disjunctive extended logic program with answer
Set semantics, by transforming the persi defaults in Definition 6, respectively,
into

4. Persistence rules:
P(X) ¢ p(X), not ~p/(X);  —~p/(X) ¢ dom(X), not p(X), not p'(X).

As shown in Gelfond and Lifschitz (1991), the resulting program can be further
transformed into a disjunctive normal program with a stable model semantics. For
the one to one correspondence between answer sets and stable models, we can
interchangeably talk about (e-)answer sets and stable models.

Proposition 4

Given a database instance r over a finite domain, and a set of BICs IC, if Sy
is an answer set of TIa(r), then S = Sy U {p/(a) | p(a) € Su and —p'(a) ¢
Su} U {-p'(@) | p(@) & Su and p'(a) ¢ Sm} is an answer set of II(r).

The following lemma. says that whenever we build an answer set S with literals
taken from S(r,r'), and r' satisfies the ICs and is already as close as possible to r,
then in S we recover 7' only. The condition that S is contained in S(r,r') makes
sure that its literals are taken from the right, maximal set of literals.

Lemma 1

Let r and r' be database instances over the same schema and domain, and IC', a set
of BICs. Assume that r' |= IC and the symmetric difference A(r,r') is a minimal
element under set inclusion in the set {A(r,r*) | r* |= IC}. Then, for every answer
set S of I (r) contained in S(r, '), it holds r' = I(S).

Theorem 1
I TI(r) s the program IIa(r) plus rules 4., for a finite domain database instance r
and a set of BICs IC, it holds:
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Notice that, for a given model S of the change program, I(.S) merges in one new
instance all the positive primed tuples with all the old, non primed tuples that
persisted, i.e. that their negative primed version do not belong to the model. Since
there are no persistence defaults in I1 (r), persistence is captured explicitly in I(S).

Proposition 1
Given a database instance r and a set of BICs IC, if S is a model of IIa(r), then
I(S) satisfies IC.
Definition 5
Given database instances r and r’ over the same schema and domain, we define
S(r.r) = {p@|rE=p@} U {p@ |7 Er@} U {-p'@ | Er@}

U {dom(a) | a € D}. o

S(r,r') collects the maximal consistent set of literals that can be obtained from
two database instances, e.g. the original instance and a repair. The atoms corre-
sponding to the second argument are primed. Negative literals corresponding to the
first argument are not considered, because weak negation will be applied.
Proposition 2
Given a database instance r and a set of BICs IC, if r’ satisfies IC, then S(r,r’)
is a model of Ia(r).

This result tells us that subsets of S(r, ') could be potential models of the change
program. S(r,r') can be a large model, in the sense that the difference between r
and ' may not be minimal.

Proposition 3
For BICs, the change program Il (r) has an answer set; and all the answer sets are
consistent, i.e. they do not contain complementary literals.?

4.1.2 The repair program

Program T4 (r) gives an account of changes only. The fact that repairs contain data.
that persists from the original instance is captured with persistence defaults.

Definition 6
The repair program TI(r) consists of the rules in program T (r) (Definition 2) plus
the following two rules for each predicate p in the original database:

4. Persistence defaults:
P(X) — p(X); —p'(X) +— dom(X), not p(X). o
Ezample 4

(example 3 continued) We have the following persistence defaults:

3In MA(r) there are no defaults. In consequence, we can talk about answer scts as in Gelfond
and Lifschit (1991) instead of c-answer sets (Kowalski and Sadri 1991).
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=

For every repair r' of r wrt IC, there exists an answer set S of II(r) such that
r'={p(a) | ¥'(a) € S}.
For every answer set S of II(r), there exists a repair r’ of 7 wrt IC' such that

' ={p(a) | P'(a) € S}

In the case of finite domain databases, the domain can be and has been declared.
In this situation, we can handle any set of binary ICs, without caring about their
safeness or domain independence (Ullman 1988).

~

Ezample 5
Consider D = {a,b,c}, IC = {Vzp(z)} and the inconsistent instance r = {p(a)}.
TI(r) contains the default rules p'(X) ¢— p(X), not —p'(X); —p'(X) ¢— dom(X),
not p(X),not p'(X); the triggering exception p/(X) +— dom(X), not p(X), the
stabilizing exception p'(X) «— dom(X); and the facts dom(a), dom(b), dom(c),
p(a). The only answer set is {dom(a), dom (b), dom(c), p(a),p'(a), p'(b), p'(c)}, that
corresponds to the only repair ' = {p(a), p(b),p(c)}-

The IC requires that every element in the finite domain D belongs to table p;
and this can be achieved. However, with an infinite domain D, we could not obtain
a finite program nor an instance with a table p containing finitely many tuples.

4.2 Infinite domain databases

Now we consider ICs that are domain independent, for which checking their satis-
faction in an instance r can be done considering the elements of the finite active
domain Act(r) only (Ullman 1988). The IC in Example 5 is not domain indepen-
dent.

For domain independent BICs all previous lemmas and theorems still hold if we
have an infinite domain D. To obtain them, all we need to do is to use a predicate
act,(x), standing for the active domain Act(r) of instance r, instead of predicate
dom(z). This is because, for domain independent BICs, the database domain can
be considered to be Act(r). Furthermore, in this case we can omit the dom facts
and goals from II(r). In cc we have the foll theorem.

Theorem 2

For a set of domain independent binary integrity constraints and a database instance
r, there is a one to one correspondence between the answers sets of the repair
program II(r) and the repairs of r.

4-3 Evaluating basic K-queries

The specification of database repairs we have obtained provides the underpinning
of a general method of evaluating a basic K-query of the form 8 = Ka, where « is
a basic query.

First, from c, that is expressed in terms of the database predicates in £, we
obtain a stratified logic program I1(c) (this is a standard construction (Lloyd 1987;
Abiteboul et al. 1995)) in terms of the new, primed predicates introduced in II(r).
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One of the predicate symbols, Answer,, of II() is designated as the query answer
predicate. Second, determine all the answers sets Si,..., Sy of the logic program
1I = I(a)UII(r). Third, compute the intersection rg = [, <;<;, Si/ Answera, where
Si/ Answerq is the extension of Answer, in S;. The set afiuples rg is the set of
answers to 3, or equivalently, the set of consistent answers to «, in r.

Ezample 6

(example 4 continued) Consider the query for the consistent answers to a;(z):
(P(x,a) V Q(a,x)), in the database instance. This query can be transformed into
the query program II(a;) containing the rules Answerq,(X) «— P'(X,a), and
Answerq, (X) +— Q'(a,X).

To obtain consistent answers it is necessary to evaluate the query goal Answer,, (X) wrt

the program obtained by combining II(r), already obtained in Examples 3 and 4,
and program II(c). Each of the answer sets of the combined program will contain
a set of ground Answer,,-atoms. The arguments of the Answer,,-atoms that are
present simultaneously in all the answer sets will be the consistent answers to the
original query.

As a second example, consider the query a;(y): 3zQ(z,y). In order to obtain
the consistent answers, we keep II(r) as before, but we run it in combination with
the new query program Il(az): Answerq,(Y) +— Q'(X,Y).

Notice that consistent answers to a query are those that can be obtained from
the repair program plus the query program under the cautious or skeptical answer
set semantics for the combined logic program: what is true of the program is what
is true of all its answer sets. In section 5 we give computational examples.

The program II = II(a) U II(r), where « is a first order query, is naturally split
into TI(a) and TI(r), but also split in the precise sense introduced in Lifschitz and
Turner (1994) as follows: the set U of literals consisting of all the primed database
literals, (=)p'(£) plus and all the non primed database literals, (—)p(t) appearing in
II(r), form a splitting set for II, because whenever a literal in U appears in a head
of a rule in II, all the literals in the body of that rule also appear in U. U splits I1
precisely into the two expected parts, TI(r) and T1(Q), because the literals in U do
not appear in heads of rules of TI() (for TI(a) the literals in U act as extensional
literals).

As a consequence of this splitting, we know from Lifschitz and Turner (1994),
that every answer set of II can be represented as the union of an answer set of II(r)
and an answer set of II(r), where each answer set for II(r) acts as an extensional
database for the computation of the answer sets of II(a). Since program II(a) is
stratified, for each answer set of II(r), there will only one answer set. for II(c).

5 Computational examples

In this section we will assume that, according to Remark 1, the repair programs
are given as extended disjunctive logic programs with answer set semantics. In
consequence, We can use any impl ion for that ics. In particular, we

Answer sets for consistent query answers 15

To pose the query Emp(X,Y)?, asking for the consistent tuples in table Employee,
we add a new query rule to the program: answer (X,Y) :- emp_p(X,Y).
Now, the two answer sets contain answer-literals, namely

'952-223-564") ,answer ("Mike Baneman","334-454-991")}
'677-223-112") ,answer("Mike Baneman","334-454-991")}

{..,answer ("Irwin Koper"
{..,answer ("Irwin Kope:

There is only one ground answer-atom in the intersection of the answer sets of the
new program. Then, the only consistent answer is the tuple: X="Mike Baneman",
Y="334-454-991".

6 Referential integrity constraints

In this section, we show how to extend the specifications of repairs given for binary
integrity ints to R ial Integrity Cc ints (RICs). This can be done
via an appropriate repr ion of existential ifiers as program rules.

Consider the RIC: Vi (P(z) — 3j R(z,7)), and the inconsistent database in-
stance r = {P(a), P(b), R(b,a)}. We assume that there is an underlying database
domain D. The repair program has the persistence default rules

P'(X) + P(X); -P'(X)« dom(X), not P(X);

R'(X,Y)« R(X,Y); -R'(X,Y)+ dom(X,Y), not R(X,Y).
In addition, it has the triggering exception rule
—~P'(X) Vv R(X, null) « P(X), not auz(X), (2)
with aus(X) « R(X,Y); null ¢ D; and the stabilizing exception rules
-P'(X) « -R'(X,null),not auz'(X), ¢
R'(X,null) + P'(X),not auz'(X);
with auz'(X) « R'(X,¥).

The variables in this program range over D, that is, they do not take the value
null. This is the reason for the first literal in clause (3). The last literal in clause (4)
is necessary to insert a null value only when it is needed; this clause relies on the
fact that variables range over D only. Instantiating variables on D only?, the only
two answer sets are the expected ones, namely delete P(a) or insert R(@, null).

It would be natural to include here the functional dependency X — ¥ on R,
expressing that X is a primary key in R and a foreign key in P. This can be done
without problems, actually the two constraints would not interact, that is, repairing
one of them will not cause violations of the other one.

Finally, if only elimination of tuples were considered admissible changes, but
not introduction of null values, then the triggering exception (2) would have to be
changed into —~P'(X) « P(X), not auz(X).

=

4 A simple way to enforce this at the object level is to introduce the predicate D in the clauses,
to force variables to take values in D only, excluding the null value. Alternatively, conditions of
the form X # null can be placed in the bodies.
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will give examples of the application of the DLV system (Eiter et al. 1998) to the
computation of database repairs and consistent query answers.

5.1 Computing database repairs with DLV

Ezample 7

Consider the schema Emp(Name, SSN), and the functional dependencies Name —
SSN, SSN — Name, stating that each person should have just one SSN and differ-
ent, persons should have different SSNs. The foll is an i i i

Emp Name SSN
Irwin Koper  677-223-112
Irwin Koper  952-223-564
Mike Baneman ~ 334-454-991

The following DLV program corresponds to the repair program. In it, the re-
paired, primed version of table Emp is now denoted by emp_p:

% domains of the database
dom_name ("Irwin Koper"). dom_name("Mike Baneman"). dom_number("677-223-112").
dom_number ("952-223-564") . dom_number ("334-454-991") .

% initial database
emp("Irwin Koper","677-223-112"). emp("Irwin Koper","952-223-564").
emp("Mike Baneman","334-454-991").

% default rules
emp_p(X,Y) :- emp(X,Y), not -emp_p(X,Y).
~emp_p(X,Y) :- dom_name(X), dom_number(Y), not emp(X,Y), not emp_p(X,¥).

Y% triggering rules
—emp_p(X,Y) v -emp_p(X,Z) :- emp(X,Y), emp(X,Z), Y!=Z.
-emp_p(Y,X) v -emp_p(Z,X) :- emp(Y,X), emp(Z,X), Y!=Z.

% stabilizing rules.
~emp_p(X,Y) :- emp_p(X,Z), dom_number(Y), Y!=Z.
—emp_p(Y,X) :- emp_p(Z,X), dom_name(Y), Y!=Z.

If DLV is asked to compute the answer sets, we obtain two of them, corresponding
to the two possible repairs:

Emp Name SSN
Trwin Koper  952-223-564
Mike Baneman ~ 334-454-991

Emp Name SSN
Trwin Koper  677-223-112
Mike Baneman ~ 334-454-991

16 M. Arenas and others

6.1 Referential ICs and strong constraints

Tt is possible to use DLV to impose preferences on repairs via an appropriate repre-
sentation of constraints. For RICs, for example, preference for introduction of null
values or for a cascade policy can be captured.

Ezample §
(Example 7 continued.) Consider the same schema and FDs as before, but now we
have the following instance:

Emp Name SSN
Irwin Koper  677-223-112
Irwin Koper  952-223-564
Mike Baneman  952-223-564

The DLV repair program is as in Example 7, but with the facts:
dom_number ("677-223-112") .  dom_number("952-223-564") .

emp ("Irwin Kope: "677-223-11! . emp("Irwin Koper","952-223-564") .
emp("Mike Baneman","952-223-564") .

If DLV is run with this program as input, we obtain two answer sets:

{..,emp_p("Irwin Koper","677-223-112") ,~emp_p("Irwin Koper","952-223-564"),
emp_p("Mike Baneman","952-223-564") ,~emp_p("Nike Baneman","677-223-112")}

{..,-emp_p("Irwin Koper","677-223-112"),emp_p("Irwin Koper","952-223-564"),
*emp_p("l‘like Baneman" , "952-223-564") ,*emp_p("Hike Baneman","677-223-112")}

corresponding to the database repairs:

Emp Name SN
Irwin Koper 677-223-112
Mike Baneman 952-223-564

Emp Name SSN
Irwin Koper 952-223-564

Adding the query rule answer (X):- emp_p(X,Y) ., we can ask for those persons
who have a SSN. Two answer sets are obtained:

{..,answer ("Irwin Koper"),answer ("Mike Baneman")}, {..,answer("Irwin Koper")}

From them, we can -consistently- say that only Irwin Koper has a SSN.
Let us now extend the schema with a unary table Person(Name), whose contents,
together with the original contents of table Emp, is

Person Name

Irwin Koper
Mike Baneman
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If we want every person to have a SSN, we may impose the RIC V z(Person(z)
— 3 yEmp(z,y)), stating that every person must have a SSN, that we saw how
to repair at the beginning of this section, either by introducing null values or by
cascading deletions.

‘We may not want any of these two options (we do not want null values in the key
SSN) or we do not want to delete any employees (in this case, M. Baneman from
Person). An alternative is to use DLV’s possibility of specifying strong constraints,
that have the effect of pruning those answer sets that do not satisfy them. This can
be done in DLV by introducing the denial :~ dom_name(X), not has_ssn(X).,
with has_ssn(X) :- emp_p(X,Y).. The answer sets of the original program that
do not satisfy the ICs are filtered out; and now, only one repair is obtained:
{..,emp_p("Irwin Koper","677-223-112"),-emp_p("Irwin Koper",'"952-223-564"),
emp_p("Mike Baneman","952-223-564"),-emp_p("Mike Baneman',"677-223-112"),
has_ssn("Irwin Koper"), has_ssn("Mike Baneman"), answer("Irwin Koper"),
answer ("Mike Baneman")}

In it, every person has a SSN (according to the has_ssa predicate). As expected,
the answers to the original query are X="Trwin Koper" and X="Mike Baneman".
Notice that strong constraints differ from the database integrity constraints in that
they are not used in the generation of repairs, but only at a final step where some
repairs are discarded. Furthermore, strong constraints are constraints on the answer
sets, but not directly on the semantics of the database.

7 Well-founded consistent answers

The intersection of all answer sets of a extended disjunctive logic program contains
the well-founded interpretation for such programs (Leone et al. 1997), which can be
computed in polynomial time in the size of the ground program. This interpretation
may be partial and not necessarily a model of the program. Actually, it is a total
interpretation if and only if it is the only answer set.

In Leone et al. (1997) it is shown how to compute the answer sets of a program
starting from the well-founded interpretation. This is what DLV basically does,
but instead of starting from the well-founded interpretation, it starts from the also
efficiently computable set of deterministic consequences of the program, that is still
contained in the intersection of all answer sets, and in its turn, contains the well-
founded interpretation (Calimieri et al. 2002). Actually, DLV can be explicitly asked
to return the set of deterministic consequences of the program®, and it can be also
used as an approximation from below to the intersection of all answer sets.

On the other side, in the general case, computing the stable model semantics for
disjunctive programs is I1}-complete in the size of the ground program®.

The well-founded interpretation, Wy = (W*, W=, W"), of program II(r),
where W+, W=, W* are the sets of true positive, true negative, and unknown lit-
erals, resp., is given by the least fixpoint Wﬁ(,_)(ﬂ) of operator Wryr), that maps

5 By means of its option —det.
6 See Dantsin et al. (2001) for a review of ity results in logic
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'}, but for

The answer sets are: {¢',s',—r'} and {~¢’,s’,r'}. Then Core(Il(r)) = {
Wri(r), one has WHU W= =0.

The results obtained so far in this section apply to the repair program II(r).
Nevertheless, when we add an arbitrary query program II(a) to II(r), then it is
possible that the new core properly extends the well-founded interpretation of the
extended program, even for FDs.

Ezample 10
Consider r = {P(a,b), P(a,c)}, with the FD, P(X,Y): X — Y, and the query
a(z): 3y P(r,y). The combined II program is:

dom(a). dom(b). dom(c). P(a,b). P(a,c).

Answer(X) «+ P'(X,Y)

P'(X,Y) « P(X,Y),not ~P'(X,Y).

—P!(X,Y)  dom(X),dom(Y),not P(X,Y),not P'(X,Y).
-P'(X,Y)V-P'(X,Z)+ P(X,Y),P(X,Z),Y # Z.

—P'(X,Y) + dom(Y), P'(X, Z),Y # Z.

The answer sets are S1 = {Answer(a), P'(a,b), P(a,b), P(a,c),...} and Sz =
{Answer(a), P'(a,c), P(a,b), P(a, c),...}. The well-founded interpretation is Wn
— (W W, W, with W* — {P(a,b), P(a,c),dom(a), ..}, W~ — {~P'(a,a),
...}, and W¥ = {P'(a,b), P'(a,c), Answer(a)}. In particular, Answer(a) € Core(II),
but Answer(a) ¢ W+.

We know, by complexity results presented in Arenas et al.(2001) for functional
dependencies that, unless P = NP, consistent answers to first-order queries cannot
be computed in polynomial time. In consequence, we cannot expect to compute
Core(IT) of the program that includes the query program by means of the well-
founded interpretation of II alone.

8 An alternative semantics

As discussed in Arenas et al.(1999), our database repairs can be obtained as the revi-
sion models corresponding to the “possible model approach” introduced in Winslett
(1988) and Chou and Winslett (1994) in the context of belief update. When the
database instance (a model) is updated by the set of ICs, a new set of models
is generated, the database repairs. Winslett’s revision models, as our repairs, are
based on minimal set of changes wrt the original model.

8.1 Cardinality-based repairs and weak constraints

In Dalal (1988), again in the context of belief revision/update, an alternative notion
of revision model based on minimal number of changes is introduced.

Definition 7
Given a database instance r, an instance ' is a Dalal repair of r wrt IC iff r' |= IC
and |A(r,7")| is a minimal element of {|A(r,r*)| | r* = IC}. o
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interpretations to interpretations Leone et al. 1997). More precisely, assuming that
we have the ground instantiation of the repair program II(r), Wi (I) is defined on
interpretations I that are sets of ground literals (without pairs of complementary
literals) by: Wri(ny(I) = Tni(ry(I) U~ GUS () (1)

itively, Tyy(y) is the i di operator that declares a literal
true whenever there is ground rule containing it in the head, the body is true in I
and the other literals in the (disjunctive) head are false in I. =. GUSr(y)(I) denotes
the set of complements of the literals in GUSm(,)(I), being the latter the largest
set of unfounded literals, those that definitely cannot be derived from the program
and the set T of pti in their compl are declared true.

The intersection of all answer sets of TI(r) is

Core(TI(r)) := ({5 | S is an answer set of II(r)}.

Interpretation Wry(y), being a subset of Core(II(r)), can be used as an approxima-
tion from below to the core, but can be d more efficiently than all datab.
repairs, or their intersection, in the general case. However, it is possible to identify
classes of ICs for which Wiy, coincides with Core(II(r)).

Proposition 5

For a database instance r, and a set of ICs cc ining fi and
unary ICs only, the Core(II(r)) of program II(r) coincides with the set of true
ground literals in Wry,), the well-founded interpretation of program TI(r).

1d d

Results like the previous one can be established using the repair programs intro-
duced in section 4.1, for finite database domains D. Then, the results are known
to still hold for infinite domain datab but domain ind dent integrity con-
straints, like the ones in Proposition 5.

As corollary of Proposition 5, we obtain that, for FDs and unary constraints,
Core(Il(r)) can be computed in polynomial time in the size of the ground instan-
tiation of II(r), a result first established in Arenas et al.(2001) for FDs. The core
alone can be used to consistently answer non-existential conjunctive queries. Fur-
thermore, in Arenas et al.(2001), for the case of fi 1d denci diti
on queries are identified under which one can take advantage of computations on
the core to answer aggregate queries more efficiently.

As the following example shows, for other BICs, the core of the repair program
may not. coincide with the well-founded interpretation.

Ezample 9
Consider the BICs IC = {qVr, sV~-gq, sV -r} and the empty database instance.
The program II(r) contains

Triggeringrules: ¢'Vr’ «— not q,notr; s'V-q' «— q,nots; s'V-r' «— r,nots.
Stabilizing rules: ¢’ ¢— —r'; 1 —q’; 8" —q; —q — s
se—r1'y or e— st
Persistence rules: ¢' +— g,not ~¢'; s' «— s,not —s'; 7' — r,not —r';
—¢' +— notq,notq'; —s' +— nots,not s'; —r' +— notr,notr'.
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We could give a definition of Dalal consistent answer exactly in the terms of
Definition 1, but replacing “repair” by “Dalal repair”. We can also specify Dalal
repairs using the same repair programs we had in section 4, but with the persistence
defaults replaced by weak constraints (Buccafurri et al. 2000). The latter will not
be imposed on the original database, but rather on the answer sets of the change
program, I (r), that is responsible for the changes, and was introduced in section
4.1.1.

‘Weak constraints are of the form < Li,...,Lg,not Lyi1,...,not Ly, where the
Ly’s are literals. These constraints are added to an extended disjunctive program,
with the effect that only those answer sets that minimize the number of violated
ground instantiations of the weak constraints are kept.

In order to capture Dalal repairs, we need very simple weak constraint. The
program I17(r) that specifies the Dalal repairs of a database instance r wrt a set
of BICs consists of program T4 (r) of section 4.1.1 (rules 1 3) plus

4”. For every database predicate p, the weak constraints

«  p(X), not p(X), (5)
< (&), p(X).

These constraints say that the original database and a repair are expected to
coincide. Since they are weak cc i they allow viol but only a
number of tuples that belong to the repair and not to the original instance, or the
other way around, are be accepted.

The results for the change program ITa(r) still hold here. In consequence, the
program TP(r) will have answers sets that correspond to repairs that are minimal
both under set inclusion and number of changes, i.e. only answer sets corresponding
to Dalal repairs.

Ezample 11
Let D = {a}, r = {p(a)} and IC = {~p(z) V q(z),~q(z) V r(z)}. T’ (r) contains
Facts: dom(a). p(a).
Triggering exceptions: —p'(X)V ¢'(X) «— p(X), not q(X)

=¢'(X)Vr'(X) +— q(X), not r(X)
Stabilizing exceptions: ¢'(X) «— p'(X); -p'(X) +— —¢'(X)

r(X) +— ¢(X); ~q'(X) «— -r'(X)
Weak constraints: < p/(X), not p(X); «< ¢'(X), not q(X); <« r'(X), not r(X);

< p'(X),p(X); & -g(X),q(X); & or'(X),r(X).

Weak constraints are implemented in DLV?, that run on this program returns the
answer set {dom(a), p(a), =p' (a)}, corr ding to the empty datat repair, but
not the other Winslett’s repair {domn(a), p(a),q'(a),’'(a)}, whose set of changes
wrt r has two elements, whereas the first repair differs from r by one change only.

7 They are specified by :~ Conj., where Conj is a conjunction of (possibly negated) literals. Sce
DLV’s user manual in_http://www.dbai.tuwicn.ac.at/proj/dly/man.
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Notice that in Example 11, from the change program IIa(r), without the weak
constraints, we obtain the eventually discarded answer set {dom(a), p(a), ¢'(a),r'(a)},
that only implicitly contains p'(a). The reason is that now we do not have the per-
sistence rules that cause p(a) to persist in the database as p/(a). In we
have to interpret these answer sets to establish the correspondence between them
and the repairs. This is done in Theorem 3 via the interpretation I of Definition 4.
In consequence, for BICs and finite domain databases we have

Theorem 3
Given a (finite domain) database instance r and a set of BICs IC:

1. For every Dalal repair ' of 7 wrt IC, there exists an answer set S of IIP(r)
such that I(S) =r'.

2. For every answer set S of I1”(r), there exists a Dalal repair r’ of r wrt IC
such that I(S) =r'. o

As with Winslett’s repairs, the theorem still holds for infinite domain databases
when the BICs are domain independent.

Instead of interpreting the answer sets due to the only implicit presence of primed
literals caused by the lack of persistence defaults, when we pose queries expecting
consistent answers, we may transform the original query according to the following
table:

original query| query in the program ]

p(z) queryy(X) « p'(X).
query,(X) « p(X), not —p'(X).
-p(z) query(X) « —p'(X).
query 4(%) « dom(X), not p(%), not p'(%).

That is, everywhere in the original query, we replace p and —p by query,, and
query—p, respectively, and we add the rules on the right-hand side of the table.

Finally, as an alternative, we could avoid interpreting answer sets or transforming
queries, and explicitly obtain the Dalal repairs, by imposing the weak constraints
on the repair program TI(r), that contains the default rules.

9 Conclusions

‘We have presented a general methodology to consistently answer first order queries
posed to relational databases that violate given ICs. We have restricted ourselves
mainly to the case of binary integrity contraints, i.e. universal ICs containing at
most two database literals. However the methodology can be extended to universal
ICs with a larger number of database literals. Facts, persistence and triggering
exceptions rules are as before, but the number of stabilizing rules grows according
to the number of subsets of database literals in each IC. We sketch the solution by
means of an example.

Ezample 12
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default rules. In practical applications this should and could be avoided by restoring,
via the program, the implicit closed world assumption applied to the repairs.

‘We have not addressed the problem of obtaining query answers to general K-
queries. The method we presented for basic K-queries needs to be combined with
some method of evaluating first-order queries. For example, safe-range first-order
queries (Abiteboul et al. 1995) can be translated to relational algebra. The same
approach can be used for K queries with the subqueries of the form K« replaced by
new relation symbols. Then when the resulting relational algebra query is evaluated
and the need arises to ialize one of the new the above method can
be used to accomplish that goal.

There are several interesting open issues related to computational implementation
of the methodology we have presented.

The existing implementations of stable models semantics are based on grounding
the rules, what, in database applications, may lead to huge ground programs. Some
“intelligent” grounding techni have been impl d in DLV. Furtl
those impl ions are geared to ing stable models, possibly only one
or some of them, whereas consistent query answering requires, at least implicitly,
having all stable models, or the “relevant parts” of all of them. In particular, this
opens the interesting issue of having the construction of (the relevant parts of)
the stable models guided by the query, because query answering is our primary
goal, but not the computation of repairs. Current query evaluation methodologies
under the stable model ics, specially for disjunctive programs, are
insensitive to the query at hand. The goal is to avoid irrelevant computations.

In database applications, posing and answering open queries (with variables)
is more natural and common that answering ground queries. However, existing
implementations of stable model semantics are better designed to do the latter.

It would be useful to implement a consistent query answering system based on the
interaction of our repairs logic programs with relational DBMS. For this purpose,
some functionalities and front-ends included in DLV’s architecture (Eiter et al. 2000)
could be used. Trying to push most of the computation to the DBMS seems to be
the right way to proceed.

9.2 Related work

‘Work on inconsistency handling has been done for long time and by different com-

e.g. phi ical and lassical logic, k led logic

prC ing, datab software ifi etc. We mentmn only some related

work that has, or may have, some relation to our notions of repair and consistent
answer, or are based on some form of logic programming.

There are several similarities between our approach to consistency handling and

those followed by the belief revision/update ity. As already mentioned in
section 8, database repairs coincide with the revised models defined in Winslett
(1988). The treatment there is mainly propositional, but a

to first order knowledge bases can be found in Chou and Winslett, (1994) Those
papers concentrate on the computation of the models of the revised theory, i.e. the
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Consider r = {P(a),Q(a), R(a)} and the ternary integrity constraints IC' =
{=P(z)vV-Q(z)VR(z), ~P(z)V-Q(z)V-R(z), ~P(z)VQ(z)V-R(z), P(z)V-Q(z)V
=R(z),~P(z)VQ(z)VR(z), P(z)V-Q(z)VR(z), P(z)VQ(z)V-R(z)}. Therepair
program II(r) contains the usual persistence defaults for P,Q, R, and triggering
exception rules, e.g. for the first IC in IC:
“P@)V-Q@VEE) « P),Qw),not R).
‘We also need the stabilizing rules, e.g. for the first IC
=P'(z)V-Q'(z) « -R'(z), (6)

~Pl(z)VR(z) « Q'),

—Q'(z)VR(z) « Pz);
but also for the first IC:

-P'(z) « Q'(z),~R'(z), )
R(z) « P'(z),Q'(),
Q@) « P'(z),~R(z).

In this case we obtain as answer set the only repair, namely the empty instance,
represented by {P(a),Q(a), R(a),~P'(a), Q' (a), ~R'(a)}. Using rules (7) as the
only stabilizing rules, without using the disjunctive stabilizing rules (6), the empty
repair cannot be obtained.

Extending the current hodol lational datab with view d

should be straightforward.

9.1 Ongoing and future work

There are several open issues that deserve further investigation, among them: (a)
Analyze conditions under which simpler and optimized programs can be obtained;
(b) a more detailed treatment of referential ICs (and other existential ICs); (c) iden-
tification of other classes of ICs for which the well-founded interpretation a.nd the
intersection of all database repairs coincide; and (d) r ion of

for certain kinds of repair actions. In principle, the prefe could be d
by choosing the right disjuncts in the triggering rules.

The approach to CQA is based on the specification of all repairs, where each of
them letely restores the i of the database, independently from the
query that is posed and from the fact that it might have nothing to do with some
of the violated ICs. This approach work well if the repairs are stored and different
queries are posed after that. However, it would be useful to specify and compute
“repairs” that partially restore the consistency of the database, only wrt the ICs
that are relevant to the query. Possibly appropriate grounding techniques could be
used in this case.

The repair programs we presented materialize the closed-world assumption by
explicitly producing the negative primed literals. This is due to the persistence
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repairs in our case, but not on query answering. The revision of a database instance
by the ICs produces new database instances, the repairs of the original database.

Nevertheless, our motivation and starting point are quite different from those
of belief revision. We are not interested in computing the repairs per se, but in
answering queries, hopefully using the original database as much as possible. If
this is not possible, we look for methodologies, as our logic programming approach,
for ing and querying 1 ly and implicitly all the repairs of the
database.

Bry (1997) was, to our knowledge, the first author to consider the notion of con-
sistent query answer in inconsistent databases. He defined consistent query answers
using provability in minimal logic. The proposed inference method is nonmonotonic
but fails to capture minimal change (thus Bry’s notion of consistent query answer
is weaker than ours). Moreover, Bry’s approach is entirely proof-theoretic and does
not provide a 1 mect to obtain consi answers to first-order
queries.

Sevetal papers studled the problem of making inferences from a possibly in-

1 or first-order, knowledge base. The basic idea is to infer
the classical of all maxlma.l i subsets of the knowledge base
(Lozinskii 1994; Baral et al. 1991), or all most consistent models of the knowledge
base (Kifer and Lozinskii 1992; Arieli and avron 1999) (where the order on models
is defined on the base of atom annotations drawing values from a lattice or a bi-
lattice). This provides a non-monotonic consequence relation but the special role
of the integrity constraints (whose truth cannot be given up) is not captured. Also,
the issue of processing general first-order queries is not considered.

Now we briefly review specification and logic programming based approaches to

handling in datab In this direction, the closest approach to ours was
presented, independently, in Greco et al. (2001) (see also Greco and Zumpano 2000,
2001). There, disjunctive programs are used to specify the minimal sets of changes,
under set inclusion, that lead to database repairs in the sense of Arenas et al. (1999).
The authors present a compact schema for generating repair programs for general
universal integrity constraints. The application of such a schema leads to programs
that involve ially all possible disjunctions of database literals in the heads,
ending up with programs like the one in Example 12. They concentrate mainly
on producing the set of changes, rather than the repaired databases explicitly. In
particular, they do no have persistence rules in the program. In consequence, the
program cannot be used directly to obtain consistent answers. An interpretation
of the results, possibly like the one introduced in section 8 would be necessary.
They also introduce “repair constraints” to specify preferences for certain kinds of
repairs.

The annotated predicate logic introduced in Kiffer and Lozinskii (1992) was ap-
plied in Arenas et al. (2000) to the task of computing consistent query answers via
a specification of the database repairs. The specification was used to derive algo-
rithms for consistently answering some restricted forms of first order queries and
to obtain some complexity results. As expected, the database repairs correspond
to certain minimal models of the specification. This approach is based on a non-
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classical loglc, and computing consistent answers from it is not straightforward.
The hodology was ded from universal ICs to referential ICs
in Barcelo and Bertossi (2002).

There are several proposals for language constructs extending stratified Datalog
programs with the purpose of specifying nondeterministic queries. Essentially, the
idea is to construct a maximal subset of a given relation that satisfies a given set
of functional dependencies. Since there is usually more than one such subset, the
approach yields nondeterministic queries in a natural way. Clearly, maximal con-
sistent subsets, choice models in Giannotti et al (1997), correspond to our repairs
in the case of functional d ies. Stratified Datalog with choice (Giannotti et

al. 1997) bines enforcing functional d dencies with inference using stratified
Datalog programs. Answering queries in all choice models (VG-queries (Greco et
al. 1995)) corresponds to our notion of computation of consistent query answers for
first-order queries.

The revision programs (Marek and Truszczynski 1998) are logic programs for
updating databases, and could be used to restore consistency, and then to compute
database repairs. The rules in those programs allow explicitly declaring how to
enforce the satisfaction of an integrity constraint, rather than explicitly stating
the ICs, e.g. in(a) « in(ay),...,in(ag), out(by),. .., out(by,) has the intended
procedural meaning of inserting the database atom a whenever ai, . . ., aj are in the
database, but not b1, ..., by,. They also give a declarative, stable model semantics
to revision programs. Preferences for certain kinds of repair actions can be captured
by declaring the corresponding rules in program and omitting rules that could lead
to other forms of repairs. Revision programs could be used, as the programs in
Greco et al. (2001), to obtain consistent answers, but not directly, because they
give an account of changes only.

Blair and Subrahmanian (1989) introduced paraconsistent logic programs. They
have a non-classical ics, inspired by par i first-order n
Kifer and Subrahmanian (1992), general annotated logic programs are presented.
Their lattice-based ics is also lassical. Atoms in clauses have anno-
tations, as in Kifer and Lozinskii (1992), but now annotations may also contain
variables and functi providing a stronger jon formalism. T
tation of annotated logic programs and query answering mechanisms are discussed
in Leach and Lu (1996). In Subrahmanian (1994), annotated programs are further

generalized, in order to be used for 1 b resolving
conflicts between integrated data. For this purpose the product of the lattices under-
lying each database is constructed as the semantic basis for the integrated database.
Conflict resolutions and are d by means of function-based an-
notations. Other approaches to par i logic prc ing are di 1 in
Damasio and Moniz-Pereira (1998).

In Barcelo and Bertossi (2002, 2003), starting from the lattice and specification
introduced in Arenas et al. (2000b), logic programs containing annotations as ar-
guments (as opposed to annotated programs that contain annotated atoms) were
used to specify datat repairs and i answers to queries. The
approach works for general universal ICs and referential ICs. The logic programs
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If S(r, r') satisfies the body of the rule ¢'(b) + dom(b), p'(a), P, then r' must
satisfy dom(b), p(a) and —p. But r' |= q(b)V—p(@) Ve, since VEVE(q(Z)V-p(H)Vy) €
IC, and, therefore, ' |= (b). Thus, ¢'() € S(r,r').

Analogously, it is possible to prove that S(r,r’) satisfies the remaining types of
ground stabilizing rules. o

Proof of Proposition 3

From the previous proposition, we know that the change program has models; so it
is a consistent program. If the program has a consistent (i.e. non trivial) answer set,
they are all consistent (Lifschitz and Turner 1994). Now we show how to obtain such
consistent answer sets. The program can be split into two subprograms (Lifschitz
and Turner 1994). The first one contains the domain and database facts plus the
rules p*(X) « not p(X). The second one containing the stabilizing rules and the
triggering rules modified by replacing the literals of the form not p in the bodies
by by p*.

The first program is stratified and has one (consistent) answer set. The second
subprogram does not contain weak negation, it is a positive program in that sense,
and its minimal models coincide with its answer sets. By a result in Lifschitz and
Turner (1994), the original program has as answer sets the unions of the answer
sets of the first program and the answer sets of the second one, where the atoms p*
are treated as extensional database predicates for the computation of the answer
sets of the second subprogram. o

Proof of Proposition 4

Let S’ be the set added to Sar. It is easy to verify that STI(r) D Tz (r). Then,
since Sy is an answer set of TIa(r), to prove that S is an answer set of TI(r), it
suffices to prove (I) and (II) below.

(1) S} CNa(SI(r)). Let I(a) be an element of S},. i I(@) = p(a), then p(a) €
Su and —p'(@) ¢ Sar, and, therefore, p(@) and p'(@a) < p(@) are rules
in STI(r). Thus, /(@) is in Na(SI(r)). If {(@) = —p/(a), then p(a@) & Su and
P/(@) & Su, and, therefore, -p/(a@) « dom(a) is a reduced ground persistence
rule in STI(r). Thus, =p'(a) is in Na(STI(r)).

(II) From Sj, is not possible to deduce an element that is not in S by using the
stabilizing rules.
Assume that ¢'(V) « dom(Y), p'(X), @isarulein IIa(r), and ¢'(h)
dom(b), p/(a)is a rule in STI(r). If p'(a@) € S}, we need to show that ¢'(b) €
S. By contradiction, suppose that ¢'(b) € S. Then ¢'(b) & Sar and ¢'(b) & Siy,
and, therefore, q(b) ¢ Sar or —¢'(b) € Sar, by definition of Sj,. If ¢(b) is
not in Sar, then given that p'(a) € Shy, Sur satisfies the body of the rule:
¢'(b)V-p'(@ « dom(b), p(@), notq(b), p.But, this implies that ¢'(b) €
S, a contradiction, or —p/ (@) € S, also a contradiction (since p'(@) € S};).
Otherwise, if ~¢’(b) € Sar, then by using the rule —p'(a) < dom(a), —¢'(b),
we can conclude that ~p'(@) is in Shr, a contradiction.
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have stable model semantics. The cost of using annotations as extra arguments in
the program is balanced by the fact that the program contains only a linear number
of rules, what is not the case if the number of literals per IC grows beyond two (see
Example 12). In consequence, for ICs that are non binary, the approach in Barcelo
and Bertossi (2003) should be more convenient.
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Appendix: Proofs

Proof of Proposition 1

Consider an arbitrary element in IC. Assume that this element is of the form
p(T)V—q(7) Ve (the proof is for binary cc i ining either two
positive literals or two negative literals). We have to prove that I(S) satisfies any
instantiation of this formula, say p(@) V —q(b) V . We consider two cases.

(1) Tf r does not satisfy this ground constraint, then S satisfies the body of the
ground triggering rule: p'(@) V~q'() + dom(a), not p(a), q(b), P. Thus,
P'(@) € Sor~q'(b) € S. I p'(a) € S, then I(S) |= p(@), and if ~¢'() € S, then
¢'(b) ¢ S and, therefore, I(S) |= —q(b). In any case, I(S) |= p(@) vV ~q(b) V ¢.

(II) If r satisfies the ground constraint, then r satisfies ¢, p(@) or —q(5). In the
first case, I(S) |= ¢ and, therefore, I(S) |= p(a) V =q(b) V ¢. Thus, assume
that 7 & ¢ and r |= p(@) or r |= —q(b).

By contradiction, assume that I(S) [ p(@)V-q(b). i r |= p(@), then p(a) € S
and, therefore, —p/(@) € S, by definition of 7(S). But in this case S satisfies
the body of the ground stabilizing rule: =¢'(h) + dom(b), —p'(a), P
and, therefore, ~¢'(b) € S. We conclude that I(S) = =q(b), a contradiction.
If r = —q(b), then —q(b) ¢ S and, therefore, ¢'(b) € S, by definition of
I(S). But in this case S satisfies the body of the ground stabilizing rule:
p'(@ « dom(a), ¢'(b), P- and, hence, p'(a) € S. We conclude that I(S) =
p(a), again a contradiction.

Proof of Proposition 2
To prove that S(r,r') satisfies IIa(r), we need to consider only the four different
types of ground stabilizing rules (the satisfaction of the other rules follows from the
fact that r' satisfies IC).
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Analogously, it is possible to prove the same property for any other type of
stabilizing rule.

Proof of Lemma 1

Let S be a answer set of IIa(r) such that S is a subset, of S(r,r'). First, we prove
that A(r, I(S)) C A(r,r'). If p(@) € A(r,I(S)), then one of the following cases
holds.

(I) r |= p(@) and I(S) £ p(@). In this case, p(@) € S and p'(a) ¢ S. Thus,
by definition of I(.S) we conclude that —p/(@) € S and, therefore, ~p/(@) €
S(r,r"). But this implies that ' [£ p(@). Thus, p(@) € A(r,r').

(I) r j~ p(a@) and I(S) |= p(@). In this case, p(@) ¢ S (S is a minimal model and
p(a) does not need to be in S if it was not in r). Thus, by definition of I(S)
we conclude that p/(@) € § and, therefore, /(@) € S(r,r'). But this implies
that ' |= p(a). Thus, p(a) € A(r,r").

Hence, A(r, I(S)) C A(r,r"). But, by Proposition 1, I(S) satisfies IC, and therefore,
A(r,I(S)) must be equal to A(r,r'), since A(r,r") is minimal under set inclusion
in {A(r,r*) | r* = IC}. Then, we conclude that 1(S) = r'. o

Proof of Theorem 1
‘We shall prove the first part of this theorem. The second one can be proved analo-
gously.

Given a repair r’ of r, by Lemma 1, r' = I(Sy), where Sy is an answer set
of TIa(r), with Sy C S(r,r'). Define S from Sy as in Proposition 4. Then,
S is an answer set of II(r). By construction of S, I(S) = I(Sum). Furthermore,
1(8) = {pla) | p'(a) € 5. o

Proof of Proposition 5
Since it is always the case that Wi,y S Core(I1(r)) (Leone et al. 1997), we only
need to show that Core(II(r)) € Wi(r). In consequence, it is necessary to check that
whenever a literal (—)p’(a) belongs to Core(TI(r)), where a is tuple of elements in
the domain D and p is a database predicate, (-)p'(a) can be fetched into Wi, (0)
for some finite integer n.

For each literal L in the original database r, and its primed version L' and each
answer set S, either L' or its complement L7 € S.5 We will do the proof by cases,
considering for a literal L' : (—)p(a) contained in Core(II(r)) all the possible tran-
sitions from the original instance to the core: (a) negative to positive, i.e. ~p(a) € r,
and p'(a) € Core(II(r)), (b) positive to positive. (c) negative to negative. (d) posi-
tive to negative. We will prove only the first two cases, the other two are similar. For
each case, again several cases have to be verified according to the different ground
program rules that could have made p'(a) get into Core(II(r)).

(a) Assume p'(a) € Core(Il(r)), and p(a) ¢ r. To prove: p'(a) € Wry)-

8 Actually only positive literals appear in r, but we are invoking the CWA. All the literals in the
original instance will belong to Core(TI(r)).
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Since FDs can only produce deletions p/(a) has to be true due to an unary con-
straint that was false for p(a): (p(a) V ¢(a)) € ICp is false, with ¢(a) is false,
where ICp is the instantiation of the ICs in the domain D. In the ground program
we find the rule p(a) «— dom(a),—p(a). The second subgoal becomes true of §).
Since dom(a) € Wy, (9), we obtain p'(a) € Wi, ().

(b) Assume that p'(a) € Core(II(r)) and p(a) € 7.
This means that p(a) persisted from the original instance to every answer set.
1. There is (p(a) V ¢(a)) € ICp with ¢(a) false. Then the ground program has
arule p'(a) «— dom(a),—p(a). The body becomes true, dom(a) gets into
WFES after the first step, then, as in case (a), p'(a) € Wi, (0).
. There is no ground constraint as in item 1, i.e. there is no Ep(a) Vi(a)) € ICD
or the w(a)’s are true. In this case, there is no applicable rule of the form
7'(a) «+— dom(a), ~p(a) in the ground program.
Since rules associated to FDs delete tuples only, we must have obtained p'(a)
via a default rule p/'(a) «— dom(a),p(a),not —p'(a) and the unfoundedness
of —p'(a) in the ground program. If the Wy, operator declares —p'(a) un-
founded, then p'(a) will belong to Wi,. So, we have to concentrate on the
unfoundedness of —p'(a).

o

(a) We can never get —p'(a) from rules of the form —p’(a) «— dom(a), ~¢(a),
obtained from unary ICs. If this were the case, we would have —p/(a) €
Core(TI(r)), what is not possible, since p/(a) € Core(TI(r)).

(b) —p/(a) cannot be obtained via the default rule

=p'(a) «— dom(a),not p(a),not p'(a),

because it has the second subgoal false.

(c) —p'(a) cannot be obtained via a possible unfoundedness of p'(a), because
p'(a) belongs to answer sets.

(d) We are left with rules associated to FDs. Assume that

(=p(a) V -p(b) V ¢ = d) € ICp. (8)

i If ¢ = d, the associated triggering rule —p'(a)V-p'(b) <— p(a), p(b),c #
d. cannot be applied.

ii If ¢ # d, then in principle the triggering rule could be applied, but
since p'(a) belongs to all answer sets, without being forced to by a
unary ICs, it must be case that p(b) is false (otherwise, some repairs
would get p’(a) and others p'(b), but not p'(a)).

For the same reason, there is no (p(b) V x(b)) € ICp with x(b) false,
because this would force p'(b) to be true via the corresponding trig-
gering rule; and this in its turn would force —p/(a) to be true (to be in
every answer set) due to the FD. This is not possible, because p'(a) is
already in Core(II(r)).

In consequence, the rule

—p'(a) V=p'(b) <— p(a),p(b),c # d
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cannot be applied.
Now, we have to analyze the stabilizing rule —p'(a) «— p'(b),c # d
associated to (8).

i If ¢ = d, the rule does not apply.

ii If ¢ # d, we have (as above) p(b) ¢ r. Then, —p(b) € W}‘(”(ﬂ).
Furthermore, p/(b) cannot be obtained from the default p'(b) ¢—
dom(b), p(b),not —p'(b), because p(b) is false. We already saw that
p'(b) cannot be obtained from a rule p'(b) «— dom(b), —x(b).

In consequence, p'(b) is unfounded, i.e. —p'(b) € W‘Z,(r) (0), then, from the
stabilizing rule, =p'(a) turns out to be unfounded too: p/(a) € Wi, (9).

The two remaining cases that we will not prove are: (c) p(a) ¢ r and —p'(a) €
Core(Il(r)); (d) p(a) € r and —p'(a) € Core(Il(r)). It is possible to show that
always Core(IL(r)) € Wi, (0). o
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Abstract. A relational database may not satisfy certain integrity con-
straints (ICs) for several reasons. However most likely most of the infor-
mation in it is still consistent with the ICs. The answers to queries that
are consistent with the ICs can be considered semantically correct an-
swers, and are characterized [2] as ordinary answers that can be obtained
from every minimally repaired version of the database. In this paper we
s the problem of specifying those repaired versions as the mini-
mal models of a theory written in Annotated Predicate Logic [27). Tt is
also shown how to specify database repairs using disjunctive logic pro-
gram with annotation arguments and a classical stable model semantics.
Those programs are then used to compute consistent answers to general
first order queries. Both the annotated logic and the logic programming
approaches work for any set of universal and referential integrity con-
straints. Optimizations of the logic programs are also analyzed.

1 Introduction

In databases, integrity constraints (ICs) capture the semantics of the application
domain and help maintain the correspondence between that domain and its
model provided by the database when updates on the database are performed.
However, there are several reasons why a database may be or become inconsistent
wrt a given set of integrity constraints (ICs) [2]. This could happen due to the
materialized integration of several, possibly consistent data sources. We can also
reach such a situation when we need to impose certain, new semantic constraints
on legacy data. Another natural scenario is provided by a user who does not
have control on the database maintenance mechanisms and wants to query the
database through his/her own semantics of the database. Actually such a user
could be querying several data sources and needs to impose some semantics on
the combined information.

More generally speaking, we could think ICs on a database as constraints
on the answers to queries rather than on the information stored in the database

of the database repairs was achieved. The annotated theory was used to de-
rived some algorithms for obtaining consistent answers to some simple first order
queries.

The results presented here extend those presented in [3] in different ways.
First, we show how to annotate other important classes of ICs found in database
praxis, e.g. referential integrity constraints [1], and the correspondence results
are extended. Next, the problem of consistent query answering is characterized
as a problem of non monotonic entailment.

We also show how the the APC theory that specifies the database repairs
motivates the generation of new logic programs to specify the database repairs.
Those programs have a classical stable model semantics and contain the annota-
tions as constants that appear as new arguments of the database predicates. We
establish a one to one correspondence between the stable models of the program
and the repairs of the original database. The programs obtained in this way are
simpler than those presented in in [4,6,26] in the sense that only one rule per
IC is needed, whereas the latter may lead to an exponential number of rules.

The logic programs obtained can be used to retrieve consistent answers to ar-
bitrary FO queries. Some computational experiments with DLV [21] are shown.
The methodology for consistent query answering based on logic programs pre-
sented here works for arbitrary FO queries and universal ICs, what considerable
extends the cases that could be handled in (2,4, 3].

This paper improves, combines and extends results presented in [8,9]. The
main extensions have to do with the analysis and optimizations of the logic
programs for consistent query answering introduced here.

This paper is structured as follows. In Section 2 we give some basic back-
ground. In section 3, we show how to annotate referential ICs, taking them, in
addition to universal ICs, into a theory written in annotated predicate calculus.
The correspondence between minimal models of the theory and database repairs
is also established. Next, in Section 4, we show how to annotate queries and for-
mulate the problem of consistent query answering as a problem of non-monotonic
(minimal) entailment from the annotated theory. Then, in Section 5, on the basis
of the generated annotated theory, disjunctive logic programs with annotation
arguments to specify the database repairs are pre
to use them for consistent query answering. Some computational examples are
presented in Section 6. Section 7 gives the first full treatment of logic program
for computing repairs wrt referential integrity constraints. In Section 8 we in-
troduce some optimizations of the logic programs. Finally, in Section 9 we draw
some conclusions and consider related work. Proofs and intermediate results can
be found in http://www.scs.carleton.ca/~bertossi/papers/proofsChap.ps.

also shown how

2 Preliminaries

2.1 Database repairs and consistent answers

Tn the context of relational databases, we will consider a fixed relational schema
X = (D, PUB) that determines a first order language. It consists of a fixed, pos-

[32]. In this case, retrieving answers to queries that are consistent wrt the ICs
becomes a central issue in the development of DBMSs.

In consequence, in any of the scenarios above and others, we are in the pres-
ence of an inconsistent database, where maybe a small portion of the information
is incorrect wrt the intended semantics of the database; and as a an important
and natural problem we have to characterize and retrieve data that is still correct
wrt the ICs when queries are posed.

The notion of consistent answer to a first order (FO) query was defined in
[2], where also a computational mechanism for obtaining consistent answers was
presented. Intuitively speaking, a ground tuple ¢ to a first order query Q(z)
is consistent in a, possibly inconsistent, relational database instance DB, if it
is an (ordinary) answer to Q(Z) in every minimal repair of DB, that is in ev-
ery database instance over the same schema and domain that differs from DB
by a minimal (under set inclusion) set of inserted or deleted tuples. In other
words, the consistent data in an inconsistent database is invariant under sensi-
ble restorations of the consistency of the database.

The mechanism presented in [2] has some limitations in terms of the ICs and
queries that can handle. Although most of the ICs found in database praxis are
covered by the positive cases in [2], the queries are restricted to conjunctions of
literals. In [4,6], a more general methodology based on logic programs with a
stable model semantics was introduced. There is a one to one correspondence
between the stable models of the logic programs and the database repairs. More
general queries could be considered, but ICs were restricted to be “binary”, i.e.
universal with at most two database literals (plus built-in formulas). A simi-
lar, independent approach to database repair based on logic programs was also
presented in [26].

The basic idea behind the logic programming based approach to consistent
query answering is that since we need to deal with all the repairs of a database,
we had better specify the class of the repairs. From a manageable logical speci-
fication of this class different reasoning tasks could be performed, in particular,
computation of consistent answers to queries.

Notice that a specification of the class of database repairs must include in-
formation about (from) the database and the information contained in the ICs.
Since these two pieces of information may be mutually inconsistent, we nee
a logic that does not collapse in the presence of contradictions. A non classical
logic, like Annotated Predicate Calculus (APC) [27], for which a classically incon-
sistent set of premises can still have a model, is a natural candidate. In [3], a new
declarative semantic framework was presented for studying the problem of query
answering in databases that are inconsistent with respect to universal integrity
constraints. This was done by embedding both the database instance and the
integrity constraints into a single theory written in APC, with an appropriate,
non classical truth-values lattice Latt.

In [3] it was shown that there i
minimal models of the annotated theory and the repairs of the inconsistent
database for universal ICs. In this way, a non monotonic logical specification

a one to one correspondence between some

sibly infinite, database domain D = {1, cz, ...}, a fixed set of database predicates
P ={p1,....pn}. and a fixed set of built-in predicates B = {ey,...,em}.

A database instance over X is a finite collection DB of facts of the form
¢n), where p is a predicate in P and ¢y, ... ¢, are constants in D. Built-
a fixed and same extension in every database instance, not

subject to changes.
A universal integrity constraint (IC) is an implicitly universally quantified
clause of the form

(b)) VoV ga(ta) Vopr(51) VeV o (5m) (]

in the FO language £(X) based on X, where each p;, ¢; is a predicate in P U B
and the #;, 5; are tuples containing constants and variables. We assume we have
a fixed set IC of ICs that is consistent as a FO theory. The database DB is
always logically consistent if considered in isolation from the ICs.

It may be the case that DBUIC is inconsistent. Equivalently, if we associate
to DB a first order structure, also denoted with DB, in the natural way, i.e. by
applying the domain closure and unique names assumptions and the closed world
assumption [33] that makes false any ground atom not explicitly appearing in
the set of atoms DB, it may happen that DB, as a structure, does not satisfy the
IC. We denote with DB =5 IC' the fact that the database satisfies IC'. In this
case we say that DB is consistent wrt IC; otherwise we say DB ent.
The distance [2] between two database instances DBy and DBj is their sym-
metric difference A(DBy, DB3) = (DB — DB3) U (DB3 — DBy). Now, given a
database instance DB, possibly inconsistent wrt IC, we say that the instance
DB’ is a repair [2] of DB wrt IC iff DB’ |=x IC and A(DB, DB') is minimal
under set inclusion in the class of instances that satisfy IC' and are compatible
with the schema .

s inconsis

© W

Example 1. Consider the relational schema  Book(author, name, publ Year), a
database instance DB = {Book(kafka, metamorph, 1915), Book(kafka, meta-
morph, 1919)}; and the functional dependency FD : author, name — publYear,
that can be expressed by IC : ~Book(x,y, z) V ~Book(x,y,w) V z = w. Instance
DB is inconsistent with respect to IC. The original instance has two possible re-
pairs: DBy = { Book(kafka, metamorph, 1915)}, and DBy = { Book(kafka, meta-
morph, 1919)}. u]

Let DB be a database instance, possibly not satisfying a set IC' of integrity
constraints. Given a query Q(z) € L(X), we say that a tuple of constants  is
a consistent answer to Q(z) in DB wrt IC, denoted DB |=. Q(1), if for every
repair DB’ of DB, DB’ =5 Q(f) [2].) If Q is a closed formula, i.e. a sentence,
then true is a consistent answer to @, denoted DB =, @, if for every repair DB’
of DB, DB' =5, Q.

! DB’ =5 Q(f) means that when the variables in # are replaced in @ by the constants
in f we obtain a sentence that is true in DB’
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Ezample 2. (example 1 continued) The query @y : Book(kafka, metamorph,
1915) does not have true as a consistent answer, because it is not true in every
repair. Query Qa(y) : Jx3zBook(z,y, z) has y = metamorph as a consistent
answer. Query Qs () : 3zBook(x, metamorph, z) has @ = kafka as a consistent
answer. o

2.2 Annotating DBs and ICs

Annotated Predicate Calculus (APC) was introduced in [27] and also studied in
[12] and [28]. It constitutes a non classical logic, where classically inconsistent
information does not trivializes logical inference, reasoning about causes of in-
consistency becomes possible, making one of its goals to study the differences in
the contribution to the inconsistency made by the different literals in a theory,
what is related to the problem of consistent query answers.

The syntax of APC is similar to that of classical logic, except for the fact
that the atoms (and only the atoms) are annotated with values drawn from a
truth-values lattice. The lattice Latt we will use throughout this paper is shown
in Figure 1, first introduced in [3].

Fig. 1. Latt with constraints values, database values and advisory values

The lattice contain the usual truth values t,f, T, L, for true, false, inconsistent
and unknown, resp., but also six new truth values. Intuitively, we can think
of values te and f. as specifying what is needed for constraint satisfaction and
will be used to annotate atoms appearing in ICs. The values tq and f4 rep-
resent the truth values according to the original database and will be used to
annotate atoms inside, resp. outside, the database. Finally, ta and f, are con-
sidered advisory truth values. These are intended to solve conflicts between the
original database and the integrity constraints. Notice that lub(tq, fc) = fa and

Book(x. y. z)fe V Book(x. y. w)fe V (z = w)tc.

Book(x, y, z):fc V Book(x,y, 2):te, —Book(x,y,z)fe V - Book(x,y, =
These formulas specify that every fact must have one and just one constraint
value.

Lol

Furthermore

5. For every true buili-in atom ¢ we include :t in T(B), and @:f for every
.. (1915 = 1915)t, but (1915 = 1919)

false built-in atom,
The A-minimal models of T(DB, IC) = T(DB) UT(IC) UT(B) are:

My = {Book(kafka, metamorph, 1915):t, Book(kafka, metamorph, 1919):f,},
My = {Book(kafka, metamorph, 1915):f, Book(kafka, metamorph, 1919):t}.

They also contain annotated false DB atoms and built-ins, but we will show
only the most relevant data in them. The corresponding database instances,
DBy, DB, are the repairs of DB shown in Example 1. o

From the definition of the lattice and the fact that no atom from the database is
annotated with both tq and fg, it is possible to show that, in the minimal models
of the annotated theory, a DB atom may get as annotation either t or f, if the
atom was annotated with tq; similarly either f or t, if the atom was annotated
with fg. In the transition from the annotated theory to its minimal models, the
annotations tq,faq “disappear”, as we want the atoms to be annotated at the
highest possible layer in the lattice; except for T, that can always we avoided in
the minimal models.

3 Annotating Referential ICs
Referential integrity constraints (RICs) like
Vi(p(z) = Jye(@,y)), 2

where the variables in Z’ are a subset of the variables in Z, cannot be expressed
as an equivalent clause of the form (1). RICs are important and common in
databases. For that reason, we need to extend our embedding methodology.
Actually, we embed (2) into APC' by means of

P(@)fe V 3y(a(@', y)te). 3)

In the rest of this section we allow the given set of ICs to contain, in addition to
universal ICs of the form (1), also RICs like (2). The one-to-one correspondence
between minimal models of the new theory 7(DB,IC) and the repairs of DB
still holds. Most important for us is to obtain repairs from minimal models.

3 Since only atomic formulas are annotated, the non atomic formula —~p(%):s is to be
read as —(p(Z):s). We will omit the parenthesis though.

lub(fq, te) = ta. This means that whenever we have an atom, e.g. annotated
with both tq and fe, i.e. it is true according to the DB, but false according to
the ICs, then it becomes automatically annotated with f,, meaning that the ad-
vise is to make it false. This will be made precise through the notion of formula
satisfaction in APC below.

The intuition behind is that, in case of a conflict between the constraints and
the database, we should obey the constraints, because the database instance only
can be changed to restore consistency. This lack of symmetry between data and
ICs is precisely captured by the lattice. Advisory value tq is an indication that
the atom annotated with it must be inserted into the DB; and deleted from the
DB when annotated with f,.

Herbrand interpretations are now se
of formula satisfaction in an Herbrand interpretation I is defined classically,
except for atomic formulas p:  we say that I |= p:s, with s € Latt, iff for some
s’ such that s <'s’ we have that p:s’ € I [27].

Given an APC theory 7, we say that an Herbrand interpretation I is a A-
minimal model of 7, with A = {t,.fa}, if I is a model of 7 and no other model
of T has a proper subset of atoms annotated with elements in A, i.e. the set of
atoms annotated with tq or f in I is minimal under set inclusion. Considering
A-minimal models is natural, because they minimize the set of changes, which
in their turn are represented by the atoms annotated with ta or f.>

Given a database instance DB and a set of integrity constraints IC of the
form (1), an embedding 7 (DB, IC) of DB and IC into a new APC theory was
defined [3]. The new theory reconciles in a non classical setting the conflicts
between data and ICs. In [3] it was also shown that there is a one-to-one corre-
spondence between the A-minimal models of theory 7 (DB, IC') and the repairs
of the original database instance. Actually, repairs can be obtained from minimal
models as follows:

s of annotated ground atoms. The notion

Definition 1. [3] Given a minimal model M of T(DB,IC), the corresponding
DB instance is defined by DBy = {p(a) | M |=p(a)t v p(a)ta}. u]

Ezample 3. (example 1 cont.) The embedding 7(DB) of DB into APC is given
by the following formulas:

1. Book(kafka, metamorph, 1915):t4, Book(kafka, metamorph, 1919):tq.
Every ground atom that is not in DB is (possibly implicitly) annotated with
fa.

2. Predicate closure axioms:
((x = kafka)ta A (y = metamorph)ta A (z = 1915):tq) V
((x = kafka)ta A (y = metamorph)ta A (z = 1919):tq) V Book(z,y. z)fq.

The embedding 7 (IC) of IC into APC is given by:

2 Most of the time we will simply say “minimal” instead of A-minimal. In this case
there should be no confusion with the other notion of minimality in this paper,
namely the one that applies to repairs.

Given a pair of database instances DBy and DBj over the same schema (and
domain), we construct the Herbrand structure M(DB1,DB,) = (D, Ip,Ig),
where D is the domain of the database and I'p, Ig are the interpretations for
the predicates and the built-ins, respectively. I'p is defined as follows:

t pla) € DBy, p(a) € DBy

_\_ )f pla) & DBy, p(a) ¢ DB,
U@ =\, 4a) € DB pla) ¢ DB
ta p(a) € DB1, p(a) € DB,

The interpretation I is defined as expected: if ¢ is a built-in, then Ip(g(a)) =t
iff g(a) is true in classical logic, and Ip(g(a)) = f iff ¢(a) is false.

Lemma 1. Given two database instances DB and DB’, if DB’ l=x IC, then

M(DB, DB') |= T(DB, IC). o
Lemma 2. If M is a model of T(DB,IC) such that DB is finite*, then
DB 5 IC. o

The following results shows the one-to one correspondence between the minimal
models of 7(DB, IC) and the repairs of DB.

Proposition 1. If DB is a repair of DB with respect to the set of integrity
constraints IC, then M(DB, DB') is minimal among the models of T(DB, IC).
a

Proposition 2. Let M be a model of T(DB,IC). If M is minimal and DB ap
is finite, then DB aq is a repair of DB with respect to IC'. o

Ezample 4. Consider the relational schema of Example 1 extended with the ta-
ble Author(name, citizenship). Now, IC also contains the RIC: Book(z, y, 2) —
JwAuthor(z, ), expressing that every writer of a book in the database instance
must be registered as an author. The theory 7 (IC) now also contains:

Author

Book(z, y, 2)fe V 3w (Author (z, w)te
—Author(z, w)fe V ~Author(z, w) te.

Ve V Autho

Jite,

‘We might also have the functional dependency FD : name — citizenship, that
in conjunction with the RIC, produces a foreign key constraint. The database in-
stance {Book(neruda, 20lovepoems, 1924)} is inconsistent wrt the given RIC. If
we have the following subdomain D(Author. hip) = {chilean, dian}
for the attribute “citizenship”, we obtain the following database theory:

T(DB) = {Book(neruda, 20lovepoems, 1924): ta, Author(neruda, chilean): fa,
Author(neruda, canadian)fy, ... }

4 That is, the extensions of the database predicates are finite. These are the models
that may lead to database instances, because the latter have finite database relations.
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The minimal models of 7 (DB, IC) are:

My = {Book(neruda, 20lovepoems, 1924 ):fa, Author(neruda, chilean)f,
Author(neruda, canadian)£, ...}

My = {Book(neruda, 20lovepoems, 1924)t, Author (neruda, chilean)ta,
Author (neruda, canadian)£,

My = { Book(neruda, 20lovepoems
Author(nerud

-}
924)t, Author(neruda, chilean):,
canadian)ta, ... }.

We obtain DB, = 0. DB, = {Book(neruda, 20lovepoems, 1924). Author(
neruda, chilean)} and DB, similar to DB aq,, but with a Canadian Neruda.
According to Proposition 2, these are repairs of the original database instance,
actually the only ones.

As in [3], it can be proved that when the original instance is consistent, then
it is its only repair and it corresponds to a unique minimal model of the APC
theory.

3.1 Annotating general ICs

The class of ICs found in database praxis is contained in the class of FO formulas
of the form:

vz (o(z) — 3z
where ¢ and ¢ are (possibly empty) conjunctions of literals
This class [1, chapter 10] includes the ICs of the form (1), in particular, rang
constraints (e.g. Va (p(z) — x > 30)), join dependencies, functional dependen-
cies, full inclusion dependencies; and also ial integrity constraints, and
in consequence, also foreign key constraints.
The annotation methodology introduced so far can be extended to the whole
class (4). We only sketch this extension here.
I in (4) o(@) is ALy pi(@) A ALy ~pi(@) and $(7) is Aj_ 4;(7;) A
Nj—i1174;(#;), we embed the constraint into APC as follows:

) (4)

and z z.

<<=

m 1 r
pi@)fe v\ pi@te v IEN 4 @)te AN 0 (5)Ee)-
1 i=k+1 i=1 j=l+1

If we allow now that IC contains ICs of the form (4), it is still possible to
establish the one-to-one correspondence between minimal models of 7(DB, IC)
and the repairs of DB.

4 Annotation of Queries

According to Proposition 2, a ground tuple  is a consistent answer to a FO
query Q(z) iff Q(f) is true in every minimal model of 7 (DB, IC). However, if

5 Logic Programming Specification of Repairs

Tn this section we will consider ICs of the form (1). Our aim is to specify database
repairs using classical first order logic programs. However, those programs will
be suggested by the non classical annotated theory.

ical framework, we will first
consider the annotations in the lattice Latt as new constants in the language.
Next, we will replace each predicate p(Z) € P by a new predicate p(z, ), with
an extra argument to be occupied by annotation constants. In this way we can
simulate the annotations we had before, but in a classical setting. With all this,
we have a new FO language, £(£)™", for annotated £(X).

In order to accommodate annotations in this

Definition 4. The repair logic program, I1(DB, IC), for DB and IC, is written
with predicates from L£(X)*" and contains the following clauses:

For every atom p(a) € DB, II(DB,IC) contains the fact p(a,tq).
For every predicate p € P, II(DB, IC) contains the clauses:

P, 8) < p(z,ta).  p(@,t") — p(Z, ta).

p(@.£) < p(3,fa). *) < mnot p(z.ta)..

where t*,* are new, augiliary elements in the domain of annotations.
. For every constraint of the form (1), II(DB, IC) contains the clause:

Visipiltifa) V Vi i(55.80) — ALipifi %) A AJL a5(55.£%) A @,

where @ represents the negation of ¢.

© =

Intuitively, the clauses in 3. say that when the IC is violated (the body), then
DB has to be repaired according to one of the alternatives shown in the head.
Since there may be interactions between constraints, these single repairing steps
may not be enough to restore the consistency of DB. We have to make sure
that the repairing process continues and stabilizes in a state where all the ICs
hold. This is the role of the clauses in 2. containing the new annotations t*, that
groups together those atoms annotated with tgq and t,, and £*, that does the
same with fq and f,. Notice that the annotations t*, f*, obtained through the
combined effect of rules 2. and 3., can be fed back into rules 3. until consistency
is restored. This possibility is what allows us to have just one program rule for
each IC.

Example 7 shows the interaction of a functional dependency and a full in-
clusion dependency. When atoms are deleted in order to satisfy the functional
dependency, the inclusion dependency could be violated, and in a second step it
should be repaired. At that second step, the annotations t* and f*, computed
at the first step where the functional dependency was repaired, will detect the
violation of the inclusion dependency and trigger the corresponding repairing
proc

Example 7. (example 1 continued) We extend the schema with the table Burbook(
author, name, publYear), for European books. Now, DB also contains the literal

we want to pose the query directly to the theory, it is necessary to reformulate
it as an annotated formula.

Definition 2. Given a FO query Q(z) in language £(5), we denote by Q™ ()
the APC formula obtained from Q by simultaneously replacing, for p € P, the
negative literal —p(s) by the APC' formula p(5):£V p(5)fa, and the positive literal
p(5) by the APC' formula p(5):t V p(5):ta. For p € B, the atom p(s) is replaced
by the APC formula p(3)t. o

According to this definition, logically equivalent versions of a query could have
different annotated versions, but it can be shown (Proposition 3), that they
retrieve the same consistent answers.

Ezample 5. (example 1 cont.) If we want the consistent answers to the query
Q(x) : =IyIz3w3t(Book(z, y, z) A Book(z,w,t) Ay # w), asking for those au-
thors that have at most one book, we generate the annotated query Q®(z) :
—Jy3z3w3t((Book(z, y, 2)tV Book(x, y, 2):ta) A (Book(z, w, t)t V Book(z, w, t):
ta) A (y # w):t), to be posed to the annotated theory with its minimal model
semantics. [m]

Definition 3. If ¢ is an APC sentence in the language of T(DB, IC), we say
that T(DB,IC) A-minimally entails ., written T(DB,IC) [=a ¢, iff every
A-minimal model M of T(DB, IC), such that DB is finite, satisfies
M Eapc ¢

Now we characterize consistent query answers wrt the annotated theory.

Proposition 3. Let DB be a database instance, IC' a set of integrity constraints
and Q(z) a query in FO language £(X). It holds:

DB QW) iff T(DB.IC) Fa Q™ (). o

Example 6. (example 5 continued) For consistently answering the query Q(z),
we pose the query Q" (z) to the minimal models of 7 (DB, IC'). The answer we
obtain from every minimal model is z = kafka. a

According to this proposition, in order to consistently answer queries, we are left
with the problem of evaluating minimal entailment wrt the annotated theory. In
[3] some limited FO queries were evaluated without passing to their annotated
versions. The algorithms for consistent query answering were rather ad hoc and
were extracted from the theory T (DB, IC). However, no advantage was taken
from a characterization of consistent answers in terms of minimal entailment
from 7(DB,IC). In the next section we will address this issue by taking the
original DB instance with the ICs into a logic program that is inspired by the
annotated theory 7 (DB, IC). Furthermore, the query to be posed to the logic
program will be built from Q".

Eurbook( kafka, metamorph, 1919)}. 1f in addition to the ICs we had before, we
consider the full inclusion dependency Vayz (Eurbook(z,y.z) — Book(z,y, z))
we obtain the following program II(DB, IC):

1. BurBook(kafka, metamorph, 1919,tq).  Book(kafka, metamorph, 1919, tq).
Book(kafka, metamorph, 1915, tq).

2. Book(z,y. z,t*) « Book(z,y. 2 ta). Book(z,y,z.t*) — Book(z,y, z,ta).

Book(z,y, z,£*) — Book(z,y.z £a). Book(z,y,z,£*) — not Book(z,y,z,ta).

Burbook(z, y, ,t*) — Burbook(z, y, 2, ta).

Burbook(z, y, z,t*) — Eurbook(z, y, 2, ta).

Y. 2,8%) — Burbook(z, y, 2, £a).

y,2,£%) — not Burbook(z,y, z,tq).

3. Book(z,y, 2,£a) V Book(z,y,w,fy) «— Book(z,y,z,t*), Book(z,y,w,t*),

w.

Burbook(z, y, 2, £2) V Book(z, . 2, ta) — Eurbook(z, y, z,t*), Book(z, y, z, £*).

a

Our programs are standard logic programs (as opposed to annotated logic pro-
grams [28]) and, finding in them negation as failure, we will give them an also
standard stable model semantics.

Let IT be the ground logic program obtained by instantiating the disjunctive
program I1(DB,IC) in its Herbrand universe. A set of ground atoms M is a
stable model of IT(DB, IC) iff it is a minimal model of IT*, where IT™M = {4, v
<V Ay — By, By | AV VA, — Byyoes  Byy,mot Cy,e-- ot Gy, € 11T
and C; ¢ M for 1 <i <k} [23,24].

Definition 5. A Herbrand model M is coherent if it does not contain a pair of
literals of the form {p(a,ta), p(a, £a)}- o

Ezample 8. (example 7 continued) The coherent stable models of the program
presented in Example 7 are:

My = {Book(kafka, metamorph, 1919,tq), Book(kafka, metamorph, 1919,t*),
Book(kafka, metamorph, 1915, tq), Book(kafka, metamorph, 1915,t*),
Book(kafka, metamorph, 1915 £), Book(kafka, metamorph, 1915, £*),
Eurbook (kafka, metamorph, 1919, ta), Eurbook(kafka, metamorph, 1919,*)};

Mg = { Book(kafka, metamorph, 1919, t4), Book(kafka, metamorph, 1919, *),
Book(kafka, metamorph, 1919, £,), Book(kafka, metamorph, 1919, £*),
Book(kafka, metamorph, 1915 ,ta), Book(kafka, metamorph, 1915,t*),

Burbook (kafka, metamorph, 1919, tq), Eurbook(kafka, metamorph, 1919,t*),
Burbook (kafka, metamorph, 1919, fy), Eurbook(kafka, metamorph, 1919.£*)}. O

The stable models of the program will include the database contents with its
original annotations (t4). Every time there is an atom in a model annotated
with tq or ta, it will appear annotated with t*. From these models we should be
able to “read” database repairs. Every stable model of the logic program has to
be interpreted. In order to do this, we introduce two new annotations, ™, £+,
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in the last arguments. The first one groups together those atoms annotated with
ta and those annotated with tq, but not f,. Intuitively, they correspond to those
annotated with t in the models of 7(DB, IC). A similar role plays the other new
annotation wrt the “false” annotations. These new annotations will simplify the
expression of the queries to be posed to the program. Without them, instead of
simply asking p(Z, t**) (for the tuples in p in a repair), we would have to ask for
P(Z,ta) V (p(Z,ta) A —p(Z.fa)). The interpreted models can be easily obtained
by adding new rules.

Definition 6. The interpretation program IT*(DB, IC) extends I1(DB, IC) with
the following rules:
p(a.f**) « p@fa).  p(@f=) < not p(a ta), not p(ata).
pat) — plats).  pat™) — p(a ta), not p(afa). o
Ezample 9. (example 8 continued) The coherent stable models of the interpre-
tation program extend
My with { Burbook (kafka, metamorph, 1919, t**),
Book (kafka, metamorph, 1919, t**), Book (kafka, metamorph, 1915, £**)};
My with { Eurbook (kafka, metamorph, 1919, £**),
Book(kafka, metamorph, 1919, £**), Book(kafka, metamorph, 1915, t**)}. O

From an interpretation model we can obtain a database instance.

Definition 7. Let M be a coherent stable model of program IT*(DB,IC). The
database associated to M is DBy = {p(a) | p(a,t**) € M}.

The following theorem establishes the one-to-one correspondence between coher-
ent stable models of the program and the repairs of the original instance.

Theorem 1. If M is a coherent stable model of IT*(DB,IC), and DBaq is
finite, then DBy is a repair of DB with respect to IC. Furthermore, the repairs
obtained in this way are all the repairs of DB. o

Ezample 10. (example 9 continued) The following database instances obtained
from Definition 7 are the repairs of DB:

DBy, = { Eurbook(kafka, metamorph, 1919), Book(kafka, metamorph, 1919)},
DBy, = { Book(kafka, metamorph, 1915)}. o

5.1 The query program

Given a first order query Q, we want the consistent answers from DB. In conse-
quence, we need those atoms that are simultaneously true of Q in every stable
model of the program IT(DB, IC). They are obtained through the query Q**,
obtained from Q by replacing, for p € P, every positive literal p(s) by p(s, t**)
and every negative literal —p(5) by p(, £**). Now Q** can be transformed into a
query program I1(Q**) by a standard transformation [30, 1]. This query program
will be run in combination with I7*(DB, IC)

Ezample 13. (example 12 continued) Let us now add an extra full inclusion
dependency, Va(q(x) — r(x)), keeping the same instance. One repair is obtained
by inserting g(a), what causes the insertion of r(a). The program is as before,
but with the additional rules

@, £1) — not r(z.ta). (@ E) o r(nfa). (@ tt) o (@ t).

PO — (X ta). (@ t) o r(a,ta). (@ t) — r(z, ta), not r(z, fa).
r(x, £%) —r(z,fa).  r(z, £*) — not r(z, tq), not r(x,ta).

(@, fa) V (e, ta) — q(e, t4),r(@,£9). (@, ta),r(@, fa).

If we run the program we obtain the expected models, one that deletes p(a), and
a second one that inserts both ¢(a) and r(a). However, if we omit the coherence
denial constraints, more precisely the one for table g, we obtain a third model,
namely {p(a, ta),pla. t°). a(a. ), (0, £, q(a. £a), q(a, ta). pla, ), q(a. %),

q(a,t**),q(a, £**),7(a,£**)}, that is not coherent, because it contains both g(a, fa)
and g(a,ta), and cannot be interpreted as a repair of the original database. O

Notice that the programs with annotations obtained are very simple in terms of
their dependency on the ICs. As mentioned before, consistent answers can be
obtained “running” a query program together with the repair program IT*(DB,
1C), under the skeptical stable model semantics, that sanctions as true what is
true of all stable models.

Ezample 14. (example 12 continued) Assume now that the original database is
{p(a),p(b),q(b)}, and we want the consistent answers to the query p(x). In this
case we need to add the facts p(b,ta),q(b,ta), and the query rule ans(x) «—
p(z, ™) to the program.

Now the stable models we had before are extended with ground query atoms.
In M; we find ans(a), ans(b). In My we find ans(b) only. In consequence, the
tuple b is the only consistent answer to the query. a

7 Repair Programs for Referential ICs

So far we have presented repair programs for universal ICs. Now we also want
to consider referential ICs (RICs) of the form (2). We assume that the variables
range over the underlying database domain D that now may may contain the
null value (a new constant). A RIC can be repaired by cascaded deletion, but
also by insertion of this null value, i.e. through insertion of the atom g(a, null).
If this second case, it is expected that this change will not propagate through
other ICs like a full inclusion dependency of the form VZ(q(Z,y) — r(Z,y)).
The program should not detect such inconsistency wrt this IC. This can be
easily avoided at the program level by appropriately qualifying the values of
variables in the disjunctive repair clause for the other ICs, like the full inclusion
dependency above.

Ezample 11. For the query Q(y) : 3zBook(kafka, y, z), we generate Q**(y) :
3z Book (kafka, y, z, t**), that is transformed into the query program clause
Answer(y) < Book(kafka, y, z,t**). [u]

6 Computing from the Program

The database repairs could be computed using an implementation of the disjunc-
tive stable models semantics like DLV [21], that also supports denial constraints
as studied in [13]. In this way we are able to prune out the models that are not
coherent, imposing for every predicate p the constraint «— p(Z,ta), p(Z, fa).

Ezample 12. Consider the database instance {p(a)} that is inconsistent wrt the
full inclusion dependency Va(p(x) — q(z)). The program IT*(DB, IC) contains
the following clauses:

1. Database contents: pla,tq).
2. Rules for the closed world assumption:
pla, f*) — not p(x,ta).  q(x,f*) — not q(x,tq).
3. Annotation rules:
plo. %) — plo.fa).  pla,t*) —pla,ta).  pla,t*) — p(z, ta).
g £%) < gz fa). (@ ") —qlz,ta).  qlz,t") < g(2, ta)-
4. Rule for the IC:  p(x,fa) V q(x, ta) — p(x, t*), q(x,£*).
5. Denial constraints for coherence
(T ta) p(7.6a). (T, ta),q(7, fa).
6. Interpretation rules:
p(z.t**) —p(z,ta).  pz,t™) < p(z,ta), not p(z,fa).
pla, £%) — p(a,fa).  p(x,£*) — not p(x,ta), not p(x,ta).
o) —q(oite).  aw %) — q(e.ta), not qla,Lu).
gz, £**) — q(z, fa). q(x,£*) — not q(x,ta), not q(x,ta).

Running program IT*(DB, IC) with DLV we obtain two stable models:
My = {p(a ta), pla, t*),q(a. £*). q(a, ta), p(a, t**), g(a, t*), ga, t*)},
Mz = {p(a, ta) pla, t*), p(a. £*)), q(a, £*), p(a. £*), g(a, £**), p(a, fa)}.

The first model says, through its atom g(a, t**), that q(a) has to be inserted in
the database. The second one, through its atom p(a, £**), that p(a) has to be
deleted. o

The coherence denial constraints did not play any role in the previous example,
we obtain exactly the same model with or without them. The reason is that we
have only one IC; in consequence, only one step is needed to obtain a repair of
the database. There is no way to obtain an incoherent stable model due to the
application of the rules 1. and 2. in Example 12 in a second repair step.

The program IT*(DB, IC) we presented in previous sections is, therefore,
extended with the following formulas:

p(z,£a) V q(&, null, ta) — p(z.t*), not aux(z’), not q(z', null,tq). (5)
aux(z') — q(',y.ta), not q(7',y,fa). (6)
auz(r') — q(7',y, ta). (7)

Intuitively, clauses (6) and (7) detect if the formula 3y(q(a’, y):t V q(a’,y)ta)) is
satisfied by the model. If this is not the case and p(a, t*) belongs to the model
(in which case (2) is violated by a), and g(a’,null) is not in the database, then,
according to rule (5), the repair is done either by deleting p(a) or inserting
q(a', null).

Notice that in this section we have been departing from the definition of
repair given in Section 2, in the sense that repairs are obtained now by deletion
of tuples or insertion of null values only, the usual ways in which RICs are
maintained. In particular, if the instance is {p(a)} and IC contains only p(z) —
Jyq(z,y), then {p(a),q(a.b)}, with b € D, will not be obtained as a repair
(although it is according to the initial definition), because it will not be captured
by the program. This makes sense, because allowing such repairs would produce
infinitely many of them, all of which are not natural from the perspective of
usual database praxis.

If we want to establish a correspondence between stable models of the new
repair program and the database repairs, we need first a precise definition of a
repair in the new sense, according to which repairs can be achieved by insertion
of null values that do not propagate through other ICs. We proceed by first
redefining when a database instance, possibly containing null values, satisfies a
set of ICs.

Definition 8. For a database instance DB, whose domain D may contain the
constant null and a set of integrity constraints IC = ICy UIC g, where ICy is a
set of universal integrity constraints of the form V&, with ¢ quantifier free, and
IC, is a set of referential integrity constraints of the form VE(p(z) — Jyq(z',y)),
with ' C &, we say that r satisfies IC, written DB =x IC iff:

1. For each Vap € ICy, DB s gla) for alla € D — {null}, and
2. For each Vi(p(z) — Jya(#',y)) € IC g, if DB =y, p(a), witha € D— {null}
then DB =5 Jyq(a,y).

Definition 9. Let DB, DB;, DBy be database instances over the same schema
and domain D (that may now contain null). It holds DBy <pp DBy iff:

1. for every atom p(a) € A(DB,DBy), with a € D — {null}, it holds p(a) €
A(DB,DBs3), and

2. for every atom p(a,null) € A(DB, DBy), it holds p(a, null) € A(DB, DBQ)
or p(a,b) € A(DB, DBy) with b€ D — {null}.
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Definition 10. Given a database instance DB and a set of universal and ref-
erential integrity constraints IC, a repair of DB wrt IC is a database instance
DB’ over the same schema and domain (plus possibly null if it was not in the
domain of DB), such that DB' =5 IC (in the sense of Definition 8) and DB’
is <pp-minimal in the class of database instances that satisfy IC. o

Ezample 15. Consider the universal integrity constraint Vay(q(z,y) — r(2,y))
together with the referential integrity constraints Va(p(z) — Jyq(x,y)) and
Va(s(x) — 3yr(z,y)) and the inconsistent database instance DB = {q(a,b), p(c),
s(a)}. The repairs for the latter are:

i DB; | A(DB, DB;)
1[{q(a,b),r(a,b), p(c), q(c,null), s(a)} {r(a,b), q(c, null)}

2 {ala.). (a.b), 5(a)} {#(0).7(0, )}

3| {p(e). ale.null), s(a), r(a, null)} |{q(a.b), q(c, null),r(a, null)}
4 {p(c). q(c, null)} {q(a,b),q(c,null), s(a)}

5 {s(a),r(a,null)} {a(a,b), p(c),r(a,null)}

6 0 {aa,b),p(). 5()}

In the first repair it can be seen that the atom g(c, null) does not propagate
through the universal constraint to r(c, null). For example, the instance DB7 =
{q(a,b),7(a,b), p(c),q(c,a),r(c,a),s(a))}, where we have introduced r(c,a) in
order to satisfy the second RIC, does satisfy IC, but is not a repair because
A(DB,DB;) <pp A(DB, DB7) = {r(a,b).q(c,a), r(c,a)}.

If r(a,b) was inserted due to the universal constraint, we do want r(a, null)
to be inserted in order to satisfy the second referential constraint. This fact
is captured by both the definition of repair and the repair program. Actually,
the instance DBg = {q(a.b),r(a,b),s(a),r(a, null))} is not a repair, because
A(DB,DBy) € A(DB,DBs) = {p(c),r(a,b).r(a,null)} and, in consequence,
A(DB,DB,) <pp A(DB, DBsg). The program also does not consider DBg as a
repair, because the clauses (6) and (7) detect that r(a, b) is already in the repair.
o

If the set of IC' contains both universal ICs and referential ICs, then the repair
program I1*(DB, IC) contains now the extra rules we introduced at the begin-
ning of this section. As before, for a stable model M of the program, DB
denotes the corresponding database as in Definition 7. With the class of repairs
introduced in Definition 10 it holds as before

Theorem 2. If M is a coherent stable model of II*(DB.IC), and DB,y is
finite, then DB a4 is a repair of DB with respect to IC'. Furthermore, the repairs
obtained in this way are all the repairs of DB. o
Ezample 16. Consider the database instance {p(a)} and the following set of
ICs: p(x) — Jyq(z,y). q(x,y) — r(x,y). The program IT*(DB, IC) is written
i as follows (ts, tss, ta, etc. stand for t*, t**, ta, etc.):®

® The domain predicate used in the program should contain all the constants different
from null that appear in the active domain of the database.

corresponding to the database instances () and {p(a), q(a,null)}.

If the fact g(a, null) is added to the original instance, the fact q(a,null,td)
becomes a part of the program. In this case, the program considers that the
new instance {p(a), q(a,null)} satisfies the RIC. It also considers that the full
inclusion dependency q(x,y) — r(z,y) is satisfied, because we do not want null
values to be propagated. All this is reflected in the only model of the program,
namely

{domd(a), p(a,td), p(a,ts), q(a,null,td), p(a,tss), q(a,a,fs), o
r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)}.
If we want to impose the policy of repairing the violation of a RIC just by
deleting tuples, then, rule (5) should be changed by
p(&.fa) « p(Z,t%), not aux(z'), not q(&', null, tq),

that says that if the RIC is violated, then the fact p(a) that produces such
violation must be deleted.

If we insist in keeping the original definition of repair (Section 2), i.e. allowing
{p(a), q(a,b)} to be a repair for every element b € D, clause (5) could be replaced

by:

p(@.1a) V q(&

".y).

- (8)
where choice(X,Y) is the static non-deterministic choice operator [25] that se-
lects one value for attribute tuple Y for each value of the attribute tuple X. In
equation (8), choice(#',y) would select one value for y from the domain for each
combination of values #'. Then, this rule forces the one to one correspondence
between stable models of the program and the repairs as introduced in Section

Ly, ta) — p(Z,t*), not aux(z’). not q(z'. null. ta),c

8 Optimization of Repair Programs

The logic programs used to specify database repairs can be optimized in sev-
eral ways. In Section 8.1 we examine certain program transformations that can
lead to programs with a lower computational complexity. In Section 8.2, we ad-
dress the issue of avoiding the explicit computation of negative information or
of materialization of absent data, what in database applications can be a serious
problem from the point of view of space and time complexity.

Other possible optimizations, that are not further discussed here, have to do
with avoiding the complete computation of all stable models (the repairs) when-
ever a query is to be answered. The query rewriting methodology introduced
in [2] had this advantage: inconsistencies were solved locally, without having to
restore the consistency of the complete database. In contrast, the logic program-
ming base methodology, at least if implemented in a straightforward manner,
computes all stable models. This issue is related to finding methodologies for
minimizing the number of rules to be instantiated, the way ground instantiations

are done, avoiding evaluation of irrelevant subgoals, etc. Further impl ation

issues are discussed in Section 9.

Database contents

domd(a) .

p(a,td).
Rules for CWA

p(X,fs)  :- domd(X), not p(X,td).

q(X,Y,fs) :- domd(X), domd(Y), not q(X,Y,td).

r(X,Y,fs) := mot r(X,Y,td), domd(X), domd(Y).
Annotation rules

p(X,fs)  :- p(X,fa), domd(X).

pX,ts) :- p(X,ta),domd(X) .

p(X,ts) := p(X,td), domd(X).

q(X,Y,£s) :- q(X,Y,fa),domd(X),domd(¥) .

q(X,Y,ts) :- q(X,Y,ta), domd(X), domd(Y).
q(X,Y,ts) :- q(X,Y,td), domd(X), domd(Y).
r(X,Y,fs) :- r(X,Y,fa), domd(X), domd(Y).
r(X,Y,ts) :- r(X,Y,ta), domd(X), domd(Y).
r(X,Y,ts) :- r(X,Y,td), domd(X), domd(Y).

Rules for the ICs

p(X,fa) v q(X,null,ta) :- p(X,ts), not aux(x), not q(X,null,td),domd(X).

aux(X) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).
aux (X) q(X,Y,ta), domd(X), domd(Y).

q(X,Y,fa) v r(X,Y,ta) :- q(X,Y¥,ts), r(X,Y,fs), domd(X), domd(Y).

Interpretation rules

p(X,tss) - p(X,ta).

p(X,tss) - p(X,td), not p(X,fa).

p(X,fs8) - p(X,fa).

p(X,fss) - domd(X), not p(X,td), not p(X,ta).

q(X,Y,tss) :- q(X,Y,ta).

q(X,Y,tss) :- q(X,Y,td), not q(X,Y,fa).

q(X,Y,fss) :- q(X,Y,fa).

q(X,Y,fss) :- domd(X), domd(Y),not q(X,Y,td), not q(X,¥,ta).

r(X,Y,tss) :- r(X,Y,ta).

r(X,Y,tss) :- r(X,Y,td), not q(X,Y,fa).

T(X,Y,fs8) :- r(X,Y,fa).

r(X,Y,fss) :- domd(X), domd(Y), not r(X,Y,td), not r(X,Y,ta).

Denial constraints
:- p(X,ta), p(X,fa).
i- q(X,Y,ta), q(X,Y,fa).
t- r(X,Y,ta),r(X,Y,fa).

The stable models of the program are:

{domd(a), p(a,td), p(a,ts), p(a,fs), p(a,fss), p(a,fa), q(a,a,fs),
r(a,a,fs), q(a,a,fss), r(a,a,fss)}

{domd(a), p(a,td), p(a,ts), p(a,tss), q(a,null,ta), q(a,a,fs),
r(a,a,fs), q(a,a,fss), r(a,a,fss), q(a,null,tss)},

8.1 Head cycle free programs

In some cases, the repair programs we have introduced may be transformed into
equivalent non disjunctive programs. This is the case of head-cycle-free programs
[10] introduced below. These programs have better computational complexity
than general disjunctive programs in the sense that the complexity is reduced
from I75 -complete to coNP-complete [18, 29].

The dependency graph of a ground disjunctive program II is defined as a
directed graph where each literal is a node and there is an arch from L to L’
iff there is a rule in which L appears positive in the body and L’ appears in
the head. IT is headeycle free (HCF) iff its dependency graph does not contain
directed cycles that go through two literals that belong to the head of the same
rule.

A disjunctive program IT is HCF if its ground version is HCF. If this is
the case, I can be transformed into a non disjunctive normal program sh(II)
with the same stable models that is obtained by replacing every disjunctive
rule of the form: /i, pi(;) < AJL; ¢;(y;) by the n following rules p;(z;) —
ALy 43(5) A Nszi not pi(@), @ = 1, ..., n. Such transformations can be justified
or discarded on the basis of a careful analysis of the intrinsic complexity of
consistent query answering [15]. If the original program can be transformed into
a normal program, then also other efficient implementations could be used for
query evaluatios . XSB [34], that has been already ully applied in
the context of c fent query answering via query transformation, with non-
existentially quantified conjunctive queries [14].

Ezample 17. (example 12 continued)

The repair program is HCF because, as it can be seen from the (relevant part
of the) dependency graph, there is no cycle involving both p(z,fa) and g(z, ta),
the atoms that appear in the only disjunctive head.

The non disjunctive version of the program has the disjunctive clause re-
placed by the two definite clauses p(x,fa) — p(z,t*), q(x,£*), not q(x,ta), and
4, ta) — p(x,t*), (2, £*), not p(x, fa). The two programs have the same stable
models. o
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In the rest of this section we will consider a set IC' of universal ICs of the form
@(t) VoV ga(tn) = pr(5) Ao Apm(Sm)- (9)
(the rule version of (1)). We denote with ground(IC) the set of ground instan-
tiations of the clauses in IC'in D. A ground literal [ is bilateral with respect to
ground(IC) if appears in the head of a rule in ground(IC) and in the body of a
possibly different rule in ground(IC).
Ezample 18. In ground(IC) = {s(a,b) — s(a,b) V r(a,b), r(a,b) — r(b,a)}, the
literals s(a,b) and 7(a,b) are bilateral, because they appear in a head of a rule
and in a body of a rule. Instead, (b, a) is not bilateral. o

The following theorem tells us how to check if the repair program is HCF by
analyzing just the set of ICs.

Theorem 3. The program IT1*(DB, IC) is HCF iff ground(IC) does not have
a pair of bilateral literals in the same rule. o

Ezample 19. 1 IC = {s(z,y) — r(z), r(z) — p(z)} and the domain is D =
{a,b}, we have ground(IC) = {s(a,a) — r(a), s(a,b) — r(a), s(b,a) —
r(b), s(b,b) — r(b), r(a) — p(a), r(b) — p(b)}. The bilateral literals are r(a)
and r(b). The program IT*(DB, IC) is HCF because r(a) and r(b) do not ap-
pear in a same rule in ground(IC). As a consequence, the clause s(z, y, fa) V
r(2,ta) — s(z,y,£%),r(z,t*) of II*(DB,IC), for example, can be replaced in
sh(IT*(DB, IC)) by the two clauses s(z,y, ,,) — s(z,y, £),r(z,t*), not r(x, ta)
and (. ta) — 5(z,y, £%), 7(z, t*), not s(z,y, fa). o

Ezample 20. If IC = {s(x) — r(x), p(x) — s(x), u(z,y) — p(z)} and the do-
main is D = {a, b}, we have ground(IC) = {s(a) — r(a), p(a) — s(a), u(a,a) —
pla), s(b) — r(b), p(b) — s(b), u(b,b) — p(b), u(a,b) — p(a), u(b,a) —

p(b)}. The bilateral literals in ground(IC) are s(a), s(b), p(a), p(b). The program
I1*(DB, IC) is not HCF, because there are pairs of bilateral literals appearmg
in the same rule in ground(IC), e.g. {s(a),p(a)} and {s(b), p(b)}.

Corollary 1. If IC contains only denial constraints, i.c. formulas of the form
" pilli) — ¢, where pi(F;) is an atom and @ is a formula containing built-in
predicates only, then IT*(DB, IC) is HCF. o

Erample 21. For IC = {Yayzuv(p(z,y,2) A p(z,u,v) — y = u), Yeyzuv(p(z,
y,2) Ap(z,u,v) — z = v), Yayzu(q(z,y,z) Ap(z,y,v) — z = v)}, and any
ground instantiation, there are no bilateral literals. In consequence, the program
II*(DB, IC) will be always HCF. o

This corollary includes important classes of ICs as key constraints, functional
dependencies and range constraints. In [15] it was shown that, for this kind of
1Cs, the intrinsic lower bound complexity of consistent query answering is coNP-

complete. The corollary shows that by means of the transformed program this
lower bound is achieved.

r(X,Y,tss) :- r(X,Y,ta).
r(X,Y,tss) :- r(X,Y,td), not q(X,Y,fa).

:- p(X,ta), p(X,fa).
i- q(X,Y,ta), q(X,Y,fa).
:- r(X,Y,ta),r(X,Y,fa). o

The optimization for HCF programs of Section 8.1 and the one that avoids the
materialization of unnecessary negative data can be combined.

Theorem 4. If [1*(DB, IC) is HCF, then sh(IT*(DB, IC))*"" and IT*(DB, 1(‘)
compute the same database repairs in the sense of Definition 7.

9 Conclusions

We have presented a general treatment of consistent query answering for first or-
der queries and universal and referential ICs that is based on annotated predicate
calculus (APC). Integrity constraints and database information are translated
into a theory written in APC in such a way that there is a correspondence
between the minimal models of the new theory and the repairs of the original
database.

‘We have also shown how to specify database repairs by means of classical
disjunctive logic programs with stable model semantics. Those programs have
annotations as new arguments, and are inspired by the APC theory mentioned
above. In consequence, consistent query answers can be obtained by “running” a
query program together with the specification program. We illustrated their use
by means of the DLV system. Finally, some optimizations of the repair programs
were introduced.

The problem of consistent query answering was explicitly presented in [2],
where also the notions of repair and consistent answer were formally defined. In
addition, a methodology for consistent query answering based on a rewriting of
the original query was developed (and further investigated and implemented in
[14]). Basically, if we want the consistent answers to a FO query expressed in, say
SQL2, a new query in SQL2 can be computed, such that its usual answers from
the database are the ¢ ent answers to the original query. That methodology

has a polynomial data complexity, and that is the reason why it works for some
restricted classes of FO ICs and queries, basically for non existentially quantified
conjunctive queries [1]. Actually, in [15] it is shown that the problem of CQA is
coNP-complete for simple functional dependencies and existential queries.

In this paper, we have formulated the problem of CQA as a problem of non-
monotonic reasoning, more precisely of minimal entailment, whose complexity,
even in the propositional case, can be at least IT5 -complete [19]. Having a prob-
lem of nonmonotonic reasoning with such complexity, it is not strange to try to
use disjunctive logic programs with negation with a stable or answer set seman-
tics to solve the problem of CQA, because such programs have nonmonotonic
consequences and a I7}’-complete complexity [18]. Answer set programming has

8.2 Avoiding materialization of the CWA

The repair programs introduced in Section 5 contain clauses of the form p(z, f*)
« not p(Z,t4), that have the consequence of materializing negative information
in the stable models of the programs. The repairs programs can be optimized,
making them compute only that negative data that is needed to obtain the
database repairs.

First, by unfolding, atoms of the form p(z, £*) that appear as subgoals in the
bodies are replaced by their definitions. More precisely, replace every rule that
contains an atom of the form p(z,f*) in the body, by two rules, one replacing
the atom by p(z,fa), and another replacing the atom by not p(#,tq). Next,
eliminate from the repair program those rules that have atoms annotated with
f** or f* in their heads, because they compute data that should not be explicitly
contained in the repairs. If IT*°?*(DB, IC) denotes the program obtained after
applying these two transformations, it is easy to see that the following holds

Proposition 4. I1*°?"(DB,IC) and I1*(DB,IC) produce the same database
repairs, more precisely, they compute exactly the same database instances in the
sense of Definition 7. o

Ezample 22. (example 16 continued) The optimized program IT*P(DB,IC) is
as below and determines the same repairs as the original program. Notice that
the second disjunctive rule in the original program was replaced by two new
rules in the new program.

domd(a) .
pa,td).
p(X,ts)  :- p(X,ta),domd(X).
p(X,ts) - p(X,td), domd(X).

q(X,Y,ts) :- q(X,Y,ta), domd(X), domd(Y).
q(X,Y,ts) :- q(X,Y,td), domd(X), domd(Y).

r(X,Y,ts) :- r(X,Y,ta), domd(X), domd(Y).
r(X,Y,ts) :- r(X,Y,td), domd(X), domd(Y).

p(X,fa) v q(X,null,ta) :- p(X,ts), not aux(x), not q(X,null,td),domd(X).

aux(X) :- q(X,Y,td), not q(X,Y,fa), domd(X), domd(Y).
aux(X) :- q(X,Y,ta), domd(X), domd(Y).
q(X,Y,fa) v r(X,Y,ta) q(X,Y,ts), r(X,Y,fa), domd(X), domd(Y).
q(X,Y,fa) v r(X,Y,ta) :- q(X,Y,ts), not r(X,Y,td), domd(X), domd(Y).
p(X,tss) - p(X,ta).
p(X,tss) :- p(X,td), not p(X,fa).

q(X,Y,tss) :- q(X,Y,ta).
q(X,Y,tss) :- q(X,Y,td), not q(X,Y,fa).

1

been successfully used in formalizing and i

reasoning tasks [7].

ementing complex stonic

Under those circumstances, the problem then is to come up with the best
logic programming specifications and the best way to use them, so that the
computational complexity involved does not go beyond the intrinsic, theoretical
lower bound complexity of consistent query answering.

TImplementation and applications are important directions of research. The
logic programming environment will interact with a DBMS, where the incon-
sistent DB will be stored. As much of the computation as possible should be
pushed into the DBMS instead of doing it at the logic programming level.

The problem of developing query evaluation mechanisms from disjunctive
logic programs that are guided by the query, most likely containing free variables
and then expecting a set of answers, like magic sets [1], deserves more attention
from the logic programming and database communities. The current alternative
relies on finding those ground query atoms that belong to all the stable models
once they have been computed via a ground instantiation of the original program
(see Example 11). In [20] intelligent grounding strategies for pruning in advance
the instantiated program have been explored and incorporated into DLV. It
would be interesting to explore to what extent the program can be further pruned
from irrelevant rules and subgoals using information obtained by querying the
original database.

As shown in [6], there are classes of ICs for which the intersection of the
stable models of the repair program coincides with the well-founded semantics,
which can be computed more efficiently than the stable model semantics. It could
be possible to take advantage of this efficient “core” computation for consistent
query answering if ways of modularizing or splitting the whole computation into
a core part and a query specific part are found. Such cases were identified in [5]
for FDs and aggregation queries.

In [26], a general methodology based on disjunctive logic programs with stable
model semantics is used for specifying database repairs wrt universal ICs. In
their approach, preferences between repairs can be specified. The program is
given through a schema for rule generation.

Independently, in [4] a specification of database repairs for binary uni
ICs by means of disjunctive logic programs with a sta
presented. Those programs contained both “triggering” rules and “stabilizing”
rules. The former trigger local, one-step changes, and the latter stabilize the
chain of local changes in a state where all the ICs hold. The same rules, among
others, are generated by the rule generation schema introduced in [26].

The programs presented here also work for the whole class of universal ICs,
but they are much simpler and shorter than those presented in [26,4]. Actually,
the schema. presented in [26] and the extended methodology sketched in [4],
both generate an exponential number of rules in terms of the number of ICs
and literals in them. Instead, in the present work, due to the simplicity of the
program, that takes full advantage of the relationship between the annotations, a
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linear number of rules is generated. Our treatment of referential ICs considerably
extends what has been sketched in [4, 26].

There are several similarities between our approach to consistency handling
and those followed by the belief revision/update community. Database repairs
coincide with revised models defined by Winslett in [35]. The treatment in [35] is
mainly propositional, but a preliminary extension to first order knowledge bases
can be found in [16]. Those papers concentrate on the computation of the models
of the revised theory, i.e., the repairs in our case, but not on query answering.
Comparing our framework with that of belief revision, we have an empty domain
theory, one model: the database instance, and a revision by a set of ICs. The
revision of a database instance by the ICs produces new database instances, the
repairs of the original databa:

Nevertheless, our motivation and starting point are quite different from those
of belief revision. We are not interested in computing the repairs per se, but
in answering queries, hopefully using the original database as much as possible,
possibly posing a modified query. If this is not possible, we look for methodologies
for representing and querying simultaneously and implicitly all the repairs of the
database. Furthermore, we work in a fully first-order framework.

The semantics of database updates is treated in [22], a treatment that is
close to belief revision. That paper represents databases as collections of theo-
ries, in such a way that under updates a new collection of theories is generated
that minimally differ from the original ones. So, there is some similarity to our
database repairs. However, that paper does not consider inconsistencies, nor
query answering in any sense.

Another approach to database repairs based on a logic programming seman-
tics consists of the revision programs [31]. The rules in those programs explicitly
declare how to enforce the satisfaction of an integrity constraint, rather than ex-
plicif ating the ICs, e.g. in(a) — in(ay), ..., in(ax), out(by),. .., out(by,) has
the intended procedural meaning of inserting the database atom a whenever
ay,...,a; are in the database, but not by,....b,. Also a declarative,
model semantics is given to revision programs. Preferences for certain kinds of
repair actions can be captured by declaring the corresponding rules in program
and omitting rules that could lead to other forms of repairs.

table

In [12,28] paraconsistent and annotated logic programs, with non classical
semantics, are introduced. However, in [17] some transformation methodologies
for paraconsistent logic programs [12] are shown that allow assigning to them
extensions of classical semantics. Our programs have a fully standard stable
model semantics.
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Appendix: Intermediate Results and Proofs

Proofs for Section 3

Proof of Lemma 1: This result extends a similar result in [3]. We concen-
trate on the cases not covered there. We have to show M(DB, DB') |= p(z):
fo v 3y(q(z',y):ta A q(F, y)tc) V Iy(q(T', y):fa A (', y):tc). We have that IC
contains the formula p(z) — Jyq(z',y). As DB’ |=x IC we must analyze two
cases. The first one is DB’ =5 —p(@). Then Ip(p(a)) = f or Ip(p(a)) = f.

so M(DB,DB') = p(a):f.. The second case is DB' x5 q(@',h),...,q(@,b,)
for elements by,...,b, in the domain (n > 1). Hence, Ip(g(@’,b;)) = t or
Ip(q(@',b;)) = ta, for every 1 < i < n. Then, M(DB,DB'") | 3y(q(@',y):
ta A q(@,y):te) or M(DB,DB') = Jy(q(a',y)fa A q(@’,y):tc). As the analysis
was done for an arbitrary value @, we have that M(DB,DB') = T(DB,IC). O

Proof of Lemma 2: This result extends a similar result in [3]. We concentrate
on the cases not covered there. We have to show DB =5 p(Z) — Jyq(Z',y). Let
us suppose first M |= p(a@):f.. Then, we either have M |= p(a):f or M |= p(a)f.
Hence, DB =5 —p(a), and from there DB oy f=5 p(@) — Jyq(a,y)- Let us
suppose now M |= 3y(q(@',y):ta Aq(@’,y):te). Therefore, M = (@', b)t for some
element b in the domain. Hence DB =5 ¢(@',b), and from there DBy =5
p(a) — Jyq(@,y). Finally, we will assume M |= Jy(q(@',y)faAq(@, y):t.). Then,
M |= q(@',b):t, for some element b in the domain. Hence, DB =5 q(@,b),
and from there DB p [=x p(@) — Jyq(@’,y). As this is valid for any value @, we
have that DBy |=x p(Z) — Jyqa(z',y). o

Proof of Proposition 1: By Lemma 1, we conclude that M(DB, DB') |=
T(DB, IC). Let us suppose that M(DB, DB') is not A-minimal in the class of
models of T(DB IC). Then, there exists M |= T(DB, IC), such that M <4
M(DB, DB'). By using this it is possible to prove that A(DB, DBx) G A(DB,
DB').

1. Let us suppose that p(a) € A(DB,DBy). Then p(a) € DB and p(a) ¢
DBy, or p(@) € DB and p(@) € DB . In the first case we can conclude
that p(a):ta € T(DB,IC) and M |= p(a):f V p(a):fa. If we suppose that
M |= p(a):f, then M £ p(a):ta, a contradiction. Thus, we have that M =
p(a):fa. But M <s M(DB,DB'), and therefore M(DB, DB') |= p(a) fa.
Then, we conclude that p(a) g DB’, and therefore in this case it is possible
to conclude that p(a) € A(DB, DB'). In the second case we can conclude
that p(a):fa € T(DB,IC) and M |= p(@):t V p(a):ta. If we suppose that
M |= p(a):t, then M [ p(a):fa, a contradiction. Thus, we have that
M [ p(@):ta. But M <o M(DB, DB'), and therefore M(DB,DB') =
p(@):ta. Then, we conclude that p(a) € DB’, and therefore in this case it is
possible to conclude that p(a) € A(DB, DB'). Thus, we can conclude that
A(DB, DB ) € A(DB, DB').

Since M(DB,DB') £ M, there exists p(@) such that M(DB,DB')
p(@):ta V p(@):fa and M |= p(@):t V p(a):f. By using the first fact it is

N

Proofs for Section 4

Lemma 3. For a minimal model M of T(DB,IC) and APC formula ¢(Z),
M Earc (-¢)*(@) iff M EFapc ™ (D).

Proof: By induction on .

Tnitial step: (f) = p(f). Trivial, by the fact that every model of T(DB,IC)
annotates atoms either with t, f, ta or fa.

Inductive step:

— ¢ = na(f). M | (-ma)(f) it M = (@)™() ff M -()() iff
M £ (ma)*™(f) (by induction hypothesis) iff M |= =(=a)?"(f).

— ¢(f) = a(f) V B(f2) = (aV B)(f), where ; is the restriction of f to a (the
same for £ and 8). Now, M |= (=(a V 8))**(f) iff M |= (-a)*"(f;) and
M = (=B)""(f2) iff M |= =(a)*(f1) and M = =(8)*"(f2) (by mduchon
hypothesis) iff M |=-(aV 8)*(#).

Proof of of Proposition 3: We will prove it by induction on ¢.

Initial step: @(Z) = p(z). DB [=. p(f) iff for every repair DB’ of DB, DB’ |=x
p(f) iff for every minimal model M of T(DB,IC), M |= p(f):t V p(f):ta iff
T(DB, 10) Ea p(BR V p(Dta.

Inductive step:

— (%) = ~a(z). DB |=. —a(f) iff for every repair DB’ of DB we have that
DB' |5 aft) Hf for every minimal model M of T(DB,IC), M [ a®(f)
(by induction hypothesis) iff for every minimal model M of T(DB, IC),
M E —a®(f) iff M (~a)™ (%) (by Lemma 3).

— (@) = o(a1) V f(#) = (aV p)(z). DB | (aV B)({) iff for every repair
DB’ of DB it is true that DB’ =5 a(f;) or DB’ =5 B(£), where f; is the
restriction of substitution £ to the variables &, iff for every minimal model
M of T(DB,IC), M = a®™(£,) or M |= f*"(£3) (by induction hypothesis)
i T(DB, IC) - (a® v §4%)(B) iff T(DB, IC) Fa (aV 8)n (B). o

Proofs for Section 5

Lemma 4. If M is a coherent stable model of IT*(DB,IC), i.c. a coherent
minimal model of (IT*(DB, IC))M, then exactly one of the following cases holds:

— p(a,ta), p(a,t*) and p(a,t**) belong to M, and no other p(a,v), for v an
annotation value, belongs to M.

— p(a,ta), p(a,t*), p(a,fa), p(a,f*) and p(a,f**) belong to M, and no other
p(@,v), for v an annotation vakue, belongs to M.

- p(a,ta), p(a,f*), p(a,t*) and p(a,t**) belong to M, and no other p(a,v),
for v an annotation value, belongs to M.

— p(a,f*) and p(a, £**) belongs to M, and no other p(a,v), for v an annotation
value, belongs to M.

possible to conclude that p(a) € A(DB, DB'). If we suppose that p(a) € DB,
then p(a):ta € T(DB,IC), and therefore by considering the second fact it
is possible to deduce that M must satisfy p(@):t. Thus, we can conclude
that in this case p(@) € DB, and therefore p(a) ¢ A(DB, DB ). By the
other hand, if we suppose that p(@) ¢ DB, then p(a):fq € T(DB,IC), and
therefore by considering the second fact it is possible to deduce that M must
satisfy p(a):f. Thus, we can conclude that in this case p(@) ¢ DB, and
therefore p(a) ¢ A(DB, DB ). Finally, we conclude that A(DB,DB')
A(DB, DB ).

We know that DB’ is a database instance, and therefore A(DB, DB') must be
a finite set. Thus, we can conclude that A(DB, DB y4) is a finite set, and there-
fore DBy, is a database instance. With the help of Lemma 2, we deduce that
DBy |= IC. But this s a contradiction, since DB’ is a repair of DB with respect
to IC and A(DB, DB ) G A(DB, DB'). o

Proof of Proposition 2: By Lemma 2, we conclude that DB =x IC. Now,
we need to prove that DB 4 is minimal. Let us suppose this is not true. Then,
there is a database instance DB” such that DB* |=x IC and A(DB,DB™) g
A(DB, DB ).

1. From Lemma 1, we conclude that M(DB,DB") |= T(DB, IC).

2. Now, we are going to prove that M(DB, DB") < M.
I M(DB, DB") |= p(a)ta, then we can conclude that p(a) ¢ DB and p(a) €
DB", and therefore p(a) € A(DB, DB"). But A(DB, DB") G A(DB, DB ),
and therefore p(a) € DB . Thus, we can conclude that M [= p(a)£Vp(a)ta.
If we suppose that M |= p(@):t, then M & p(@):fa, but we know that M |=
T(DB,IC) and p(a):fa € T(DB,IC), since p(a) ¢ DB, a contradiction.
Therefore, M |= p(a)ta.
If M(DB, DB") |= p(a)-fa, then we can conclude that p(a) € DB and p(a) ¢
DB*, and therefore p(a) € A(DB, DB"). But A(DB, DB*) G A(DB, DB ),
and therefore p(a) ¢ DB . Thus, we can conclude that M & p(@)fVp(a)fa.
¥ we suppose that M = p(@)f, then M & p(a)ta, but we know that M =
T(DB,IC) and p(a):ta € T(DB, IC), since p(a) € DB, a contradiction.
Therefore, M |= p(a)fa. Thus, we can deduce that M(DB, DB*) <4 M.
Finally, we know that there exists p(@) such that it is not in A(DB,DB™)
and it is in A(DB, DB ). Thus, p(@) € DB and p(@) € DB", and therefore
M(DB,DB") |= p(a):t, or p(@) ¢ DB and p(a@) ¢ DB", and therefore
M(DB, DB*) = p(a):f. Then, we have that M(DB, DB") | p(a)ta and
M(DB, DB") |£ p(a):f.. Additionally, since p(a) € A(DB, DB), we can
conclude that p(a) € DB and p(a) ¢ DB, or p(a) ¢ DB and p(a) € DB .
Tn the first case we can conclude that M |= p(@):fa. In the second case we
can conclude that M |= p(@):t.. Thus, we can conclude that M |= p(a):
ta V p(@)fa. Therefore we can deduce that M £ M(DB, DB*).

Finally, we deduce that M is not minimal in the class of the models of 7(DB, 10),
with respect to A, a contradiction.

Proof: For an atom p(a) we have two possibilities:

1. p(a,ta) € M. Then, p(a,t*) € M. Two cases are possible now: p(a, f.) € M
or p(a,f.) ¢ M. For the first one we also have p(a,f**), p(a,f*) € M
and p(a,ta) € M (because M is coherent). For the second one, p(a,f*) ¢
M (since M is minimal), p(a,ta) € M (because p(a,f*) € M and M is
minimal) and p(@, t**) € M. This covers the first two items in the lemma.
p(a,ta) g M. Then, p(a, f*) € M. Two cases are possible now: p(a,ta) € M
or p(a,ta) ¢ M. For the first one we also have p(a, t**), p(a,t*) € M and
p(a,fa) M (because M is coherent).

For the second one, p(a,t*) ¢ M (since M is minimal), p(a,f.) € M (be-
cause p(a,t*) ¢ M and M is minimal) and p(a, £**) € M. This covers the
last two items in the lemma. o

~

From two database instances we can define a structure.

Definition 11. For two database instances DB, and DB over the same schema
and domain, M*(DBi, DBy) is the Herbrand structure (D, Ip, Ig), where D is
the dumam of the database® and Ip, I are the interpretations for the database

ded with ion arguments) and the built-ins, respectively.
Ip is deﬁned as follows:

— If p(a) € DBy and p(a) € DB, then p(a, ta), p(a,t*) and p(a,t"*) € Ip.

— If p(a) € DB, and p(@) ¢ DBs, then p(a, ta), p(@,t*), p(a, fa), p(a, £*) and
p(a,£*) € Ip.

— If p(a) & DB, and p(a) & DB, then p(a,£*) and p(a, £*) € Ip.

— Ifp(a) ¢ DB, and p(a) € DB, then p(a, *), p(a, ta), p(a, t*) and p(a, t**) €
Ip.

The interpretation I is defined as eapected: if q is a built-in, then q(a) € In |1f
q(a) is true in classical logic, and q(a) & Ip iff q(a) is false.

Notice that the database associated to M*(D By, DBy) corresponds exactly to
DB, ie. DBu-(pp,,pp;) = DBa.

Lemma 5. If DB' |=5 IC, then there is a coherent model M of the program
(I1*(DB, IC))M such that DB pq = DB'. Furthermore, the model M corresponds
to M*(DB, DB').

Proof: As DB y-(pB,pBr) = DB', we only need to show that M*(DB, DB') is a
model of (IT*(DB, IC))M"(PB:PT). Since DB' =5 /I, —pi(a@i) V V-, ¢;(8;) V
0, we have three possibilities to analyze with respect to the satisfaction of this
clause. The first possibility is DB’ |=x —p;(a). Then, two cases arise

6 Strictly speaking, the domain D now also contains the annotations values.
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— pi(@) € DB. Then, p;(a,f*), pi(a, ta), pi(a, fa), pi(a, t*) and p; (@, £*) belong
to M*(DB, DB'), and the program (IT*(DB, IC))M" (P8.D1') contains the
following clauses: p;(@,ta) <, pi(@,t*) « pi(a,ta), pi(@,t*) < pi(@ ta),
pi(a,£*) « pi(a,fa), pi(@, t**) « pi(a,ta) and pi(a, £*) < pi(a, fa). Then,
all these formulas are satisfied by M*(DB, DB'). The program also contains
the clause Vi_,; pi(a, fa)V Vs, 05(a, ta) + Afy pi(@, t1) ANTL, g;(a, £4)Ag,
which is satisfied since p;(a, fa) belongs to M*(DB, DB').

— pi(@) ¢ DB. Then, p;(a,f*) and p;(a, f**) € M*(DB,DB'), and p;(a,f*),
pi(a,t*) « pi(@ ta), pi(@,t*) < pi@, ta), pi(@ ) « pi(afa), pi(a,£*)
«, pi(@,t**) « pi(@,ta) and py(a,f**) « pi(a,f.) are in the program
(IT*(DB, IC))M (PB.DB) _ A]l these are satisfied by the model considered.
Also the clause VI, pi(@ Ea) VI, 458 ta) Nl 2i(@ )AL, 4@, £)
A @ is present, and is trivially satisfied since p;(a, t*) ¢ M*(DB, DB').

The second possibility is DB’ |5 ¢;(a). The following cases arise:

— g¢;(@) € DB. Then, M*(DB, DB') contains g; (@, ta), ¢;(a,t*) and g;(@,t"),
and program (IT*(DB, IC))M"(PB.DB') contains the formulas gj(a, ta) ¢,
9j(a,t*) « ¢;(@ ta), 4;(@t*) « q;(@,ta), ¢;(a, ) « ¢;(a,fa), ¢;(a t*)
< ¢;(@ta), ¢;(a t") « ¢;(a ta) and ¢;(a,£**) « ¢;(@,f). The struc-
ture M*(DB,DB') satisfies all these clauses. The clause \/™ , p;(@,fa) V
Vi1 45(@ ta) < ALy pi(@t*) A AT, ¢;(@,F*) A @ is also in the program,
and is trivially satisfied since it holds that g;(a,f*) does not belong to
M*(DB, DB').

= 4;(@ ¢ DB. Then, g;(@ ), 4;(ata), ¢;(a,t*) and g;(@,t**) are in the
structure M*(DB, DB'), and the following formulas are in the program
(U*(DBJC))M"D”’D”’! 4j(a,£%) «, q;(@t*) < ¢;(@ta), ¢;(@t*) «
9;(@,ta), g;(a, ) « g;(@,fa), ¢;(a,t**) < g;(a,ta), ¢;(@,t*) + ¢;(@ta)
and ¢;(a,f**) + q;(a,fa). These are satisfied by M*(DB, DB'). Also the
clause V7, pi(@,£a) V V]2, 0i(8 ta) < AL pi(@ ) AN, 4@, F) A G is
in the program, and is satisfied since ¢;(a, ta) belongs to M*(DB, DB').

The third possibility is DB’ |=5; (. Then, ¢ is true. The clause \/7_, p;(@, fa) V

Vi 65(@,ta) ALy pil@ t)AATL, 0;(@, £)Ap is in (IT*(DB, IC))M (PB.DE),

and is satisfied since M*(DB, DB') - .

As the analysis was done for an arbitrary value @, it holds that the Herbrand
structure M*(DB, DB') is a model of (IT*(DB, IC))M" (°B-PB") Moreover, it
is also coherent, since M*(DB, DB') was defined in such a way that does not
contain both p(@,ta) and p(a, f.). o

The next lemma shows that if M is a coherent and minimal model of the program
(IT*(DB,IC))™, and represents a finite database instance, then the instance
satisfies the constraints.

Lemma 6. If M is a coherent stable model of the program IT*(DB,IC) and
DBy is finite, then DBy =5 IC.

the first case, p(@,ta), p(@,t*), p(a,fa) and p(a,f*) are in M’. These atoms
are also in M and, by our assumption, they are also in M*(DB, DB'). Hence,
p(@) € A(DB,DB'). In the second case, p(a,f*), p(a, ta) and p(a,t*) are in
M'. These atoms are also in M and, by our assumption, these are also in
M*(DB, DB'). Hence, p(a) € A(DB, DB').
We will now prove A(DB, DB ) G A(DB, DB'). We know for some fact
p(@) there is an element related to it Wth]l is in M*(DB, DB') and which is
not in M. One possible case is p(a,f ) and p(a,f*) are in M*(DB, DB') and
not in M. Then, p(a) € A(DB,DB"), but p(@) ¢ A(DB,DBa). The other
possible case is that p(a, ta) and p(a,t*) are in M*(DB, DB') and not in M
Then, p(a) € A(DB, DB'), but p(a) ¢ A(DB, DB ).

Proposition 5. If DB’ is a repair of DB with respect to IC, then there is a
coherent stable model M of the program II*(DB, IC) such that DBy = DB'.
Furthermore, the model M corresponds to M*(DB, DB').

Proof: By Lemma 5 we have M*(DB, DB') is a coherent model of the program
IT1*(DB, IC) M (PB.PB')  We just have to show it is minimal. Let us suppose first
there exists a model M of (IT*(DB, IC))™M’ (PB:DB') such that it is the case that
M G M*(DB, DB') (it is also coherent since it is contained in M*(DB, DB")).
Smce M G M*(DB, DB'), the model M contains the atom p(a, tq) iff p(a) €
DB. Then, we can assume without loss of generality that M is minimal (if it
is not minimal, we can always generate from it a minimal model M’, such that
M’ G M, by deleting its non-supported atoms).

By Lemma 7, there exists model M’ such that A(DB, DBu) G A(DB, DB')
and M' is a coherent and minimal model of (II*(DB,1C))M'. By Lemma 6
DBy [=5 IC. This contradicts our fact that DB’ is a repair.

Proposition 6. If M is a coherent and minimal model of (I1*(DB, IC))™ and
DBy is finite, then DB oy is a repair of DB with respect to IC.

Proof: From Lemma 6, we have DB =5 IC. We just have to show mini-
mality. Let us suppose there is a database instance DB', such that DB’ |=5 IC
and A(DB, DB) G A(DB, DB ). Then, by Lemma 5, M*(DB, DB') is a co-
herent model of (II*(DB 1C))yM’(PB.DB) We will first show it is the case that
M*(DB, DB') € M and that M*(DB, DB') is a model of (IT*(DB, IC))M. No-
tice that since M is a minimal model of (IT*(DB, IC'))M, this program contains
the clause p(a, £¥) « for every p(a) ¢ DB. The rest of the program must look ex-
actly like (IT*(DB, IC))M (PB:DB')_ This is true because the only other clauses
in IT*(DB, IC) that contain negation in their bodies are the interpretation rules
p(@,£*) « not p(a, ta),not p(a, ta) and p(a, t**)  p(a, ta),not p(a,fa). Since
A(DB, DB’ )G C A(DB, DB px), if M does not satisfy p(@, fa) then M*(DB, DB')
does not satlsfy it either (this is, either both programs, (II*(DB, IC))M’ (PB,DB’)
and (IT*(DB, IC))M, contain the clause p(a,t**) < p(a,ta) or both do not

Proof: We want to show DBy = iz, —pi(@:) V Vi, ¢5(3) V , for every
constraint in IC. Since M is a model of (IT*(DB,IC))™, we have that M |=
Visi i@, ) V VI 050, ta) < Afy PilEi, %) A T2, 6555, £%) A . Then, at
least one of the following cases is satisfied:

— M = pi(a,fa). Then, M | p;(a,f**) and p(a) ¢ DB (by lemma 4).
Hence, DB |=x —pi(a). Since the analysis was done for an arbitrary value
@, DBy F=x Ve, ~pil i) V Vi ¢5(3) V ¢ holds.

— M k= gj(a, ta). It is symmetrical to the previous one.

— It is not true that M |= @. Then M |= . Hence, ¢ is true, and DBy =5
Vim1 —pil@i) V VL, 4;(75) V i holds.

— M £ pi(a, t*). Given the model is coherent and minimal, just the last item in
Lemma 4 holds. This means M |= p;(a,f**), p;(a@) € DBy and DBy =5
—pi(a). Since the analysis was done for an arbitrary value a, DBy |Ex
Visy =pi(@:) V VIL, 45 () V ¢ holds.

— M £ gj(a, £*). Given the model is coherent and minimal, just the first item
in lemma 4 holds. Then, M |= g;(a,t**), ¢;(@) € DB and DBy f=x
q;(@). Since the analysis was done for an arbitrary value @, DB =x Vi
—pi(#i) V VjZ, 4 (F5) V i holds.

Lemma 7. Consider two database instances DB and DB’ over the same schema
and domain. If M is a coherent and minimal model of (IT* (DB, IC))M"(PB.DB')
such that M g M*(DB,DB'), then there ezists model M' such that M’ is a co-
herent and minimal model of (IT*(DB, IC))M' and A(DB, DBv) G A(DB, DB').

Proof: Since M is a coherent and minimal model of (IT*(DB, IC))M’ (PB:DB)
we have that p(a,ta) € M iff p(a) € DB. By the way we defined M*(DB, DB')
and given M G M*(DB DB'), the only two ways that both models can differ
is that, for some p(a) € DB, {p(a, £a),p(@, £*),p(@, £*)} C M*(DB, DB') and
none of these atoms belong to M, or for some p(@) ¢ DB, {p(a, ta),p(a,t*),
p(a,t**)} C M*(DB, DB') and none of these atoms belong to M. Now, some
of the atoms in M may have not received an interpretation in terms of t** and
£+, i.e. M is not a minimal model of (IT*(DB, IC))™. Anyway, if we use the
interpretation rules over M, we will finish with a model M’ that is a minimal
model of (IT*(DB, IC))M'. From M the model M’ is constructed as follows:

— If p(@, ta) € M and p(a, fa) # M, then p(@, ta), p(a, t*) and p(a, t*) € M.

— I p(a, ta) € M and p(a,fa) € M, then p(a, ta), p(a, t*), p(a, fa), p(a, £*) and
p(a, £*) € M.

— If p(a, ta) ¢ M and p(a, ta) ¢ M, then p(a, £*) and p(a, £**) € M.

— I p(a, ta) # M and p(@, ta) € M, then p(@, £*), p(a, ta), p(a, t*) and p(@, t**)
eM.

1t is clear that M’ is a coherent and minimal model of (IT*(DB,IC))M . Ii

just rests to prove that A(DB, DBav) G A(DB,DB'). First, we will prove
A(DB,DBpy) C A(DB,DB'). Let us suppose pla) € A(DB,DBay). Then,
either p(@) € DB and p(a@) ¢ DBy or p(@) ¢ DB and p(@) € DByp. In

contain it) and if M does not satisfy p(a,ta) then M*(DB, DB') does not
satisfy it either (this is, either both programs, (II*(DB,IC))M (PB.DB") ang
(IT*(DB,IC))™, contain the clause p(a, f**) + or both do not contain it). By
Definition 11, for an arbitrary atom p(a) in a model M*(DB, DB'), we just have
to analyze four cases:

1. Let us suppose just p(a, t**), p(a,t*) and p(a, ta) belong to M*(DB, DB').
Then p(@) € DB and p(@) € DB'. Since p(@) ¢ A(DB,DB'), we have
two possibilities. The first one saying p(a) ¢ A(DB, DB ). Then, p(a, t*),
p(@a, ta) and p(a, t**) also belong to M and M*(DB, DB') is clearly a model
of the clauses in (II*(DB,IC))™ concerning p(@). The second one saying
p(@) € A(DB,DBu). Again, p(a,t*), p(a,ta) and p(a,t**) belong to M
and M*(DB,DB') is clearly a model of the clauses in (IT*(DB, IC))™ con-
cerning p(a).

Let us suppose now, just p(a,£*) and p(a, £**) belong to M*(DB, DB').
Again we have two possibilities. The first one says that p(a) ¢ A(DB, DB ).
Then, p(a, f*) and p(a, £**) also belong to M. The program (II*(DB, IC))M
contains (among others) the clause p(a,f*) <, that is satisfied by the pro-
gram M*(DB,DB'). The rest of the clauses concerning p(a) are satisfied
because are also present in (IT*(DB, IC))M’ (PB-DB') The second one says
that p(@) € A(DB, DB ). Again, p(, £*) and p(a, £**) belong to M. The
program (IT*(DB,IC))M contains (among others) the clause p(a,f*) «,
that is satisfied by M*(DB, DB'). The rest of the clauses concerning p(a)
are satisfied because they are also present in (IT*(DB, IC)yM" (PB.DB’)

3. Let us suppose just p(a,t*), p(a,ta), p(@ fa), p(@,f*) and p(a, **) belong
to the model M*(DB, DB'). Then p(a) € DB and p(a) ¢ DB'. Hence,
p(@) € A(DB,DB'), and due to our assumption p(@) € A(DB,DBp).
Therefore, p(a,t*), p(a,ta), p(@,fa), p(@ £*) and p(a, £**) belong to M.
Moreover, M*(DB, DB') is clearly a model of the clauses in (IT*(DB, IC'))M
concerning p(a).

Finally, we will suppose just p(@,f*), p(@,ta), p(a,t*) and p(a,t**) belong
to the model M*(DB, DB'). Then, p(@) ¢ DB and p(@) € DB'. Hence,
p(@) € A(DB,DB'), and due to our assumption p(@) € A(DB,DB).
Therefore, p(a,f*), p(a,t*), p(@,ta) and p(a,t**) belong to M. The pro-
gram (IT*(DB, IC))M contains (among others) the clause p(a, f*) «, that
is satisfied by M*(DB, DB'). The rest of the clauses concerning p(a) are
satisfied because are also present in (IT*(DB, IC))M" (PB.DB')

~

L

We will now show M*(DB, DB') G M. We have assumed there is an element
of A(DB, DB ) that is not an element of A(DB, DB'). Thus, for some ele-
ment p(a), either p(@) € DB, p(a) € DB' and p(a) ¢ DB, or p(a@) ¢ DB,
p(a) ¢ DB and p(a) € DB . For the first one we have M*(DB, DB') satis-
fies p(a, ta) and p(@,t*), and M satisfies p(a, ta) and p(a,t*), but also satisfies
p(a,£a) and p(a, ). In the second one, M*(DB, DB') satisfies p(@, f*) and M
satisfies p(a, £*), but also p(@, ta) and p(a,t*). Then, M is not a minimal model;
a contradiction. a
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Proof of of Theorem 1: From Propositions 5 and 6. o

Proofs for Section 7

The following is an extension of Lemma 4, considering the introduction of null
values.

Lemma 8. If M is a coherent stable model of I*(DB,IC), i.e. a coherent
minimal model of (I1*(DB, IC))M, then exactly one of the following cases holds:

— p(a,ta), p(a,t*) and p(a,t**) belong to M, and no other p(a,v), for v an
annotation value, belongs to M.

- p(a,ta), p(a,t*), p(a,f.), p(a,f*) and p(a,f**) belong to M, and no other
p(@,v), for v an annotation value, belongs to M.

— p(a,ta), p(@,f*), p(a,t*) and p(a,t**) belong to M, and no other p(a,v),
for v an annotation value, belongs to M.

— p(@£*) and p(@, £**) belongs to M, and no other p(a, ), for v an annotation
value, belongs to M.

— p(@,null,ta) and p(a, null,t**) belongs to M, and no other p(a@,null,v) for
v an annotation value, belongs to M.

— p(@,null, ta), p(@,null, t*) belongs to M, and no other p(a, null,v), for v
an annotation value, belongs to M.

— Avp(a,null,v) for v an annotation value.

Proof: The first four cases where already proven in Lemma 4. The two new
cases are deduced directly considering the new rules involving the referential ICs
and the inclusion of null values. u]

Definition 11 is extended to consider the atoms with null values as follows:

Definition 12. For two database instances DB, and DB, over the same schema
and domain, M*(D B, DBy) is the Herbrand structure (D, Ip, ), where D is
the damam of the database” and Ip, I are the interpretations for the database

ded with ion arguments) and the built-ins, respectively.
In is defined as follows:

— Ifp(a) € DB, and p(a) € DB,, then p(a,ta), p(a,t*) and p(a,t**) € Ip.

— Ifp(a) € DB, and p(a) ¢ DBy, then p(a, ta), p(@t*), p(a,fa), p(@,f*) and
pa, f**) € Ip.

— Ifp(a) € DBy and p(a) ¢ DBa, then p(a,f*) and p(a,f**) € Ip.

— Ifp(a) ¢ DB, andp(a) € DB, thenp(a, f*), p(a, ta), p(a, t*) and p(a, t**) €
Ip.

— If p(@,null) € DB, and p(a,null) € DB, then p(a,null,ta) and p(a,null,
t**) € Ip.

— If p(@,null) ¢ DB and p(a, null) € DBy, then p(a,null,t) and p(a,null,
t**) € Ip.

7 Strictly speaking, the domain D now also contains the annotations values.

Proofs for Section 8

Proof of of Theorem 3: (<) If the set of ground(IC) does not have a pair of
bilateral literals in the same IC, we want to prove that the program II*(DB, IC)
is HCF for any DB.

‘We will suppose that the program IT*(DB,IC) is not HCF. Then the pro-
gram ground(II(DB,IC)) has a directed cycle that goes through two liter-
als that belong to the head of the same rule from ground(II(DB,IC)). The
only rules with more than one literal in the head are the rules capturing the
ICs, i.e. those of the form Vi, pi(di, fa) V VL, 4j(8j,ta)  AiL; pildi, t*) A
Niz1 4505, £) A @

For the program no to be HCF there has to be a cycle involving:

— Pi(a,fa) and P(a, n) or

~ Q1(b1,ta) and Q3 (bs, ta) or

~ Pi(a1,fa) and Q1(b1, ta)
If we analyze the first case, we can consider that only Pj(a;,fa) might be bi-
lateral. Figure 2 shows that no directed cycle involving P (@1, fa) and Ps(dz, fa)
is possible. The dependency graph of the other two cases is analogous, and it
is not possible to have cycles involving to literals of the head of a rule. So the
program can not be HCF.

Pl(a,,lgHP](a]‘(') Pyt )<—Py(at)

N
Py(ayf J—————>Pi(aul") PZ(aZvr)%;(azia)

— ach — — possiblearch

Fig. 2. Dependency Graph of Py and P

(=) I the program IT*(DB, IC) is HCF for any DBthen the set of instantiated
ICs do not have a pair of bilateral literals in the same IC.

Let us suppose there is a pair of bilateral literals, Py (a1) and Qi (b1), in the
same IC. As Py (@) and Q: (B1) are in the same IC, there are three different cases
to study. Note that P and ) can be the same predicate.

1. Pi(@) and Q1(b:) are in the head of the IC. In this case, Pi(@1,fa) and

Q1(b1,fa) are in the head of a rule of IT*(DB, IC), and as it can be seen in

Figure 3 there is a cycle that includes them, so the program is not HCF.

The interpretation I is defined as expected: if q is a built-in, then g(a) € I :ﬁ‘
q(a) is true in classical logic, and q(a) & I iff q(a) is false.

Notice that, as before, the database associated to M*(DBi, DBg) corresponds
exactly to DBz, ie. DB (pB,,pB,) = DB2. The next lemma states that
Lemma 6 still holds when considering universal and referential ICs.

Lemma 9. If M is a coherent stable model of the program IT*(DB,IC) and
DB is finite, then DB =5 IC.

Proof: As in Lemma 6 it was already proven that universal constraints are
satisfied. As M satisfies: {auz(z') « q(Z',y,ta) A not q(&',y,fa); auz(z') «
a(',y,ta); p(%,fa) Va(#', null,ta) « p(Z,t*) A not auz(z'), not q(&', null,ta)}
we have that it can be proved, as in Lemma 6 that the RICs of the form
p(Z) — Jy(q(Z',y)) are satisfied by M. o

The next lemma is a variation of Lemma 5 that considers universal and referential
ICs and the fact that a database that is inconsistent wrt a RIC of the form
p(£) = Jy(q(z',y)) can be repaired only deleting a tuple or inserting a tuple
with the null value.

Lemma 10. If DB' is a repair of DB, then there is a model M of IT*(DB, ICYM
such that DBy = DB'.

Proof: This lemma is proved like Lemma 5, but instead of considering that
M = M*(DB,DB'), it considers M = M*(DB,DB') U {auz;(@) | IC; €
IC and IC; is of the form p(£) — Jyq(z',y) and Jy ((¢(a’,y,ta) € M*(DB,
DB') and q(a',y,f.) ¢ M*(DB, DB')) or q(@',y,t.) € M*(DB, DB"))}. o

The next proposition shows that Proposition 5 holds also for IT*(DB, IC) ex-
tended for RICs.

Proposition 7. If DB’ is a repair of DB with respect to IC, then there is a
coherent stable model M of IT*(DB, IC) such that DB s = DB'.

Proof: By Lemma 10 we have that M = M*(DB, DB') U {auz;(a’) | IC; €
IC and IC; is of the form p(z) — Jyq(z',y) and y ((¢(a’,y,ta) € M*(DB,
DB') and q(@',y,f.) ¢ M*(DB,DB'))orq(@',y,t.) € M*(DB,DB'))} is a co-
herent model of the program IT*(DB, IC)M. Tts minimality can be proved as
done for M*(DB, DB') in Lemma 5. o
Proposition 8. If M is a coherent and stable model of II*(DB,IC), and DB
is finite, then DB aq is a repair of DB with respect to IC'.
Proof: From Lemma 9, we have DBy |=5 IC. We only need to prove that it
is <pp-minimal. This is proven in a similar way as it was done in Proposition
[m]

6, but considering <pp instead of minimality under set inclusion.

Proof of of Theorem 2: From Propositions 7 and 8. o

) Qulbyt) S —Qubut)

Z g T
Py(ayfJ————>Py(a,l) Qi(by,F)<—————Qu(bsf)
arch — — possblearch

Fig. 3. Dependency Graph of P; and Q1 with both of them in the head of an IC

2. Py(@) and Q:(b1) are in the body of the IC. Analogous to first case.
3. Pi(a,) is in the head and Q;(b;) is in the body of the IC. Analogous to the
first, case.

So, if there is a pair of bilateral literals in the same IC, the program can not be

HCF, i.e. if the program is HCF, then it can not have a pair of bilateral literals
in the same IC. o
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Abstract

For several reasons a database may not satisfy
certain integrity constraints (ICs), for example,
when it is the result of integrating several in-
dependent data sources. However, most likely
most of the information in it is still consis-
tent with the ICs; and could be retrieved when
queries are answered. Consistent ar with
respect to a set of ICs have been character-
ized as answers that can be obtained from every
possible minimal repair of the database. In this
paper we show and analyze how specify those
repairs using disjunctive logic program with a
stable model semantics in the presence of ref-
erential ICs. In this case, repairs are obtained
by introduction of null values that do not prop-
agate through other constraints, which makes
the problem of consistent query answering de-
cidable. We also present results about cases
where the implementation of consistent query
answering can be made more e cient due to
the fact that the program can be simpli ed into
a non-disjunctive program. Finally, we discuss
several research issues around the implementa-
tion of system for retrieving consistent answers
to queries from a DBMS.

1 Introduction

In databases, integrity constraints (ICs) cap-
ture the semantics of the application domain
and help maintain the correspondence between

Copyright © 2004 Loreto Bravo and Leopoldo
Bertossi. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

SELECT Name, Salary
FROM Employee
‘WHERE Position = 'manager’

AND NOT EXISTS (
SELECT *
FROM  Employee E
WHERE E.Name = Name AND
E.Salary <> Salary);

which retrieves those employees, with their
salaries, for which there is not other employee
with the same name, but di erent salary. The
usual answers to this query from the origi-
nal database will be the consistent answers to
query (x). No repair is needed to answer this
query. Unfortunately, such rst-order query
rewriting based methodology provably works
only for restricted classes of queries and con-
straints [6].

Since mechanisms that compute the consis-
tent answers at query time without calculating
the repairs [2, 14, 16] are restricted to some
very limited classes of queries and constraints,
more general methodologies, like the one we
present in this paper, require more expressive
languages to formulate the rewritings of the
original queries [6]. Sometimes it is neces-
sary to use Datalog extended with non strat-
i ed negation and disjunctive heads [1, 20]. In
those cases, although the above mentioned re-
pairs are intended to be an auxiliary concept to
de ne the right semantics for consistent query
answers, they become also an auxiliary inter-
mediate computational step that, for complex-
ity reasons, has to be reduced to a minimum.

In [5, 6] an algorithm is presented that deals
with more general class of queries and con-
straints, e.g., all universal ICs and rst-order
queries. It is based on specifying the repairs
of the database by using dlsJunctwe logic pro-
grams with stable model semantics [20]. The
complexity of this approach is higher than the
complexity of the restricted ones, but the rea-
son is that it matches the intrinsic complex-
ity of the problem of computing consistent an-
swers, which is provably a hard computational
problem [15, 13].

In this paper we extend the methodology
presented in [5, 6] in order to handle refer-
ential integrity constraints via introduction of
null values that do not propagate through other
ICs. The extended methodology is investigated
and optimized, which allows to obtain lower
complexity for some classes of ICs.

this domain and its model provided by the
database when updates on the database are
performed. However, commercial database
management systems (DBMSs) provide lim-
ited autonomic support to database mainte-
nance, that is, to the process of keeping the
database contents consistent with respect to
certain ICs. Except for very restricted classes
of integrity constraints that can be internally
handled if the user has declared them together
with the database schema; in general integrity
constraints are maintained by means of user-
de ned triggers or mechanisms speci ed at the
application level.

There are several reasons for a database to be
or become inconsistent with respect to a given
set of integrity constraints [9]. This could hap-
pen in several situations:

The most common case is a DBMS that
does not have a mechanism to maintain
the satisfaction of certain ICs. The avail-
able DBMSs are able to maintain by them-
selves important classes of ICs, but not,
e.g., the full class of rst-order ICs.

When data of di erent sources are being
integrated, either virtually or under a ma-
terialized approach. In this case, even if
the independent data sources are consis-
tent with respect to certain ICs, the global
integrated system might be inconsistent
with respect to other global ICs [11, 12].

If new constraints are to be imposed on a
pre existing database, i.c., legacy data.

Soft or user constraints that might be con-
sidered only when queries are answered,
but without being enforced by the system.

2 Repairs and Consistent
Answers

‘We will consider a  xed relational schema ¥ =
(U, R U B) where U is the possibly in nite
database domain, R is a xed set of database
predicates, and Bis a xed set of built-in pred-
icates.

A database instance can be seen as a -
n D of ground atoms of the form
., ¢y), where P is a predicate in R and
¢, are constants in Y. Built-in predi-
cates have a xed and same extension in every
database instance, not subject to changes.

In the following we will express integrity con-
straints and queries in the rst-order language
of relational calculus, and the latter sometimes
as Datalog rules [1]. Database relations will be
represented as sets of ground atoms, and not
as tables as above.

A universal integrity constraint is a any st-
order sentence that is logically equivalent to a
sentence of the form

m

Y\ =Pz v\ Qi) ve), (1)

i=1 i=1

where V is a pre x of universal quanti ers,
P;,Qj € R, and ¢ is a formula containing built-
in atoms from B only. Notice that (1) is logi-
cally equivalent to

YA B@) - VQu)ve. @

i=1 j=1

Example 1 For a database schema
{Emp(id,dept), People(id)} some universal
ICs can be de ned, for example, the functional
dependency (FD) Emp: id — dept can be ex-
pressed by Vid depty depty (Emp(id, depty) A
Emp(id,depty) — depty = depty); and
the full inclusion dependency  (IND)
Emplid) C People[id], by ¥V id dept (Emp(
id,dept) — People(id)). We can see that
the common universal ICs found in database
praxis do not need the disjunction in the RHS
of (2). [u]

A referential integrity constraint (RIC) is a sen-
tence of the form

Va (P(x) — 3y Q(',v)), )

where 2/ C z and P,Q € R.

In several cases it can be di cult, impossible
or undesirable to repair the database in order
to restore consistency [9]. The process may be
too expensive; useful data may be lost; or it
is not clear how to restore the consistency, for
example, if extra information is needed. Fur-
thermore, a user who wants to impose new
constraints may have no permission to make
changes on the data. In the case of data in-
tegration, the access to the sources might be
restricted.

In those situations, possibly most of the data
is still consistent and can be retrieved when
queries are posed to the database. In [2] con-
sistent data is characterized as the data that
is invariant under all minimal restorations of
consistency; i.e., as data that is present in all
minimally repaired versions of the original in-
stance (the repairs). In particular, an answer
to a query is de ned as consistent when it can
be obtained as a standard answer to the query
from every possible repair.

‘We envision the next DBMSs providing much
more exible and user friendly mechanisms for
dealing with semantic constraints. In this di-
rection, the system should allow the user to
provide a set of ICs as another input to the
query answering process, in such a way that
those ICs are taken into account as ans
the query are computed. Those IC
entered as a another clause in a query expressed
in an enhanced version of SQL, something like

SELECT Name, Salary (%)
FROM Employee
WHERE Position = ‘manager’

CONSIST/W  FD: Name -> Salary;

where, for some reasons, the speci ed func-
tional dependency (FD), which requests
that attribute Name functionally determines
attribute Salary, is not been maintained by
the DBMS. The returned answers from the
database should be only those that are consis-
tent with FD. For example, if the underlying
database is

Employee | Name | Salary | Position
John | 55,000 | manager
Peter | 50,000 | manager
John | 60,000 | manager
Ken | 40,000 | secretary

the only (consistent) answer returned by the
system would be the tuple (Peter, 50,000).

p —>q

P\ \\L

S—=R R
® ®

Figure 1: Directed graphs for Example 3

Example 2 For a database schema
{Empl(id.dept), People(id,name)}, in or-
der to represent the IND Emplid] C Peoplelid]
that states that employees are people, we
use the RIC: Vid dept (Emp(id,dept) —
Iname People(id, name)). Here
@ = (id, dept), ' = (id), and y = (name). O

These classes of ICs include those most com-
mon in the database praxis. We

have a xed set IC of ICs that is logic
sistent in the sense that is it is poss
a database that satis es them.

A set of RICs is said to be acyclic if there are

no cycles in the directed graph whose vertices
correspond to the relations in R, and an edge
from P to R corresponds to a RIC of the form
().
Example 3 The RICs Va(P(z) — JyR(z,y))
and Va(S(z) — 3yR(z.y)) are acyclic since
there are no cycles in the directed graph as
shown in Figure 1(a). On the other hand,
the set of RICs: {Vzz(P(z,z) — JyQ(x.y)),
Vey(Qley) — 3eR(x), Vay(Rla,y) —
3zP(x,2))} is cyclic, as shown in Figure 1(b).
o

A database instance D is inconsistent if it does
not satisfy a given set IC' of ICs. In the absence
of null values it is clear when this happens, but
if they are present or allowed in D, they should
be treated as a special constant. Their presence
in a tuple means that there are unknown values
for the corresponding attributes; i.e., we have
incomplete information. Since we do not have
precise information about them, we will con-
sider that no inconsistencies arise due to their
presence. This leads to the following de nition
of consistency in the presence of the null value
null:

De nition 1 [6] For a database instance D,
whose domain U may contain the constant

This is because the only minimal repairs of the
database are the instances

Employeel | Name | Salary | Position

John | 55,000 | manager

Peter | 50,000 | manager
Ken | 40,000 | secretary

and

Employee2 | Name | Salary | Position
Peter | 50,000 | manager
John | 60,000 | manager
Ken | 40,000 | secretary

which are obtained by deleting each time only
one of the con icting tuples; and the only tu-
ple that is an (usual) answer to the query (%)
above (but without the consistency clause in
the last line) in both repaired instances is (Pe-
ter, 50,000).

With the same original database, if now the
query is

SELECT Name
From
WHERE s ‘manager’
CONSIST/W  FD: Name -> Salary

the (consistent) answers are (John), (Peter),
because these two names are returned as usual
answers in both repairs.

We can see in this example that computing
consistent query answers is di erent from data
cleaning. We do not get rid of the tuples in the
original database that participate in a violation
of integrity constraints. In particular, in this
case we do not lose the information about the
existence of an employee named John. We can
see that in consistent query answering (CQA),
we could see (some of) the ICs as constraints
on the query answers rather than on states of
the database.

In [2, 14, 25, 3, 5], some mechanisms have
been developed for CQA, that is, for retriev-
ing consistent answer when queries are posed
to an inconsistent database. All those mecha-
nisms, in di erent degrees, work only with the
Urlglﬂdl inconsistent database, without rebtor—
ing its consi Ideally, i i are
solved at query time and the query is posed to
the original database. For example, the (con-
sistent) answers to the query () can be ob-
tained posing as a standard SQL query the fol-
lowing rewriting of (%)

null, and a set of integrity constraints IC =

ICy U ICR, where ICy is a set of universal

integrity constraints and IC'g is a set of refer-

ential integrity constraints, we say that D sat-

is es IC'1 :

1. For each sentence in ICy of the form Vi,

where V is a pre x of universal quanti-

ers and ¢ is a a quanti er-free formula,

pla] € D for every ground tuple a of ele-
ments in (U — {null}), and

o

. For each sentence in ICg of the form (3),
if P(a) € D, with a a ground tuple of ele-
ments in (U — {null}), there exists a tuple
b of constants in U for which Q(a’,b) € D.

o
Intuitively, this means that a universal IC holds
if it i ed by non-null values, and a RIC

atis ed considering only non-null values for
universally quanti ed variables and any value
for existentially quanti ed variables.

Example 4 Given  a  universal  IC
Vry(P(z,y) —  R(x,y)) and a RIC
Va(T(z) — JyP(z,y)), the database in-
stance Dy = {P(a,d), R(a.d), T(a), T(b),
P(b,null)} is consistent. The universal con-
straint is satis ed even in the presence of
P(b,null) since the incomplete information
does not generate inconsistencies. o

If a database D is inconsistent with respect
to a set of constraints IC, a repair of D is
a new database with the same schema as D,
that satis es IC, and minimally di ers from
the original database under set inclusion of tu-
ples. These repairs can be obtained from the
original repair by adding or deleting tuples [2].

Example 5 Given a database with two ta-
bles and one tuple each: {P(a,b), R(c,e)},
and the universal IC Yay(P(z,y) — R(z,y));
there are two ways of minimally repairing
the database: add the tuple (a,b) to table
R or delete (a,b) from table P, ie., the re-
pairs are Dy = {P(a,b), R(c,e)R(a,b)} and
Dy = {R(c,e)}. The database instance
D3 = {P(a,b), R(c,e). R(a,b), P(e,d)} satis es
the ICs, but is not a repair because it unneces-
sarily adds the tuple P(e,d). o

Example 5 shows how the repairs for universal
ICs can be obtained. For RICs the process is
di- erent because of the presence of existential
variables.
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Example 6 Given a database {T'(a)} and the
ICs Va(T(x) — 3yP(x,y)). One way of repair-
ing the database is by deleting the tuple T'(a),
corresponding to repair Dy = {}. Another way
would be to add a tuple P(a,d) where d is
any value in the database universe. In latter
case, we would have as many repairs as ele-

P
ments in the domain. Instead of this second
alternative, we will consider only one possible
insertion based repair: Dy = {T'(a), P(a, null}.
The null value in the second repair represents
the fact that we know that there is a tuple in
P with rst argument a, but the second value
is unknown. o

In order to formalize the concept of mini
pair, the distance between databases is
as follows:

De nition 2 [2] Let D,D’ be database in-
stances over the same schema and domain. The
distance, A(D, D'), between D and D' is the
symmetric di erence A(D,D') = (D\ D')U
(D'\ D). u]

Example 7 Consider the databases Dy, Dy
and Dj in example 5. The distances between
each of them and the original database are
A(D.Dy) = {R(@.b)}. AD,D2) = {P(a,b)}
and A(D,D3) = {R(a,b), P(e,d)}. The ele-
ments in each A correspond to the elements
added into or deleted from D to obtain D;. O

In order to determine which databases
closer to the original one when repairing it, we
de ne a partial order:

are

De nition 3 [6] Let D,D’,D” be database
instances over the same schema and domain U.
It holds that D' <p D" i :

1. For every atom P(a) € A(D,D’), with
a € (U~ {null})," it bolds that P(a) €
A(D,D"), and

. For every atom Q(a/,null) € A(D,D'),
it holds that Q(a’,null) € A(D, D") or
Q(a.b) € A(D,D"), for some b € (U —
{null}). o

o

Example 8 (example 7 continued) From the
distances we con rm that the instances that
minimally di er from D are D; and D,. In-
stance Dy is not minimal, because Dy <p Ds,
with Dy # Dj. 5}

"That @ € (U — {null}) means that each of the ele-
ments in tuple @ belongs to (U — {null}),

-

dom(a) for each constant a € (U — {null})>.
Fact P(a,tq) for every P(a) € D.
. For every predicate P € R, the clauses

P(x,t*) — P(x,ta), dom(z).*

P(x,t*) « P(x,ta), dom(x).

P(x,f*) « P(x,fa), dom(x).

P(z,£*) « dom(x), not P(x,ta).”
4. For every global universal IC of form (1)
the clause:
Vi P BV Q)0 ta) — AL, Pilrat),

Ay Qiys, £), dom(z
where z is the tuple of all variables appearing
in database atoms in the rule, and ¢ is a
conjunction of built-ins equivalent to the
negation of ¢.
5. For every referential IC of form (3) the
clauses:
P(x,£a) V Q(a', null, ta) — P(a,t"), not auz(z'),
not Q(a/, null, ta), dom(z).
auz (@) — Q' y, ta), not Q' y,£a), dom(z’,y).
auz(2') — Q' y,ta), dom(z’,y).
6. For every predicate P € R, the interpreta-
tion clauses:
P(z,t**) — P(z,ta).
P(x,t**) — P(x,ta), not P(x,fa).

7. For every predicate P € R, the program
denial constraint: «— P(a,fa), P(a,ta). [}

w o

A logic program like this, that contains non
strati ed negation [1], has a stable model se-
mantics [24]. The stable models of the pro-
gram are the intended models of the program,
and they sanction what is true with respect to
the program. In general, a program like this
will have several stable models.

Rules in 4. and 5. are the most important
ones; they specify how the database is to be
repaired when a violation of the IC is detected
(in the body, i.e., the RHS, of the rule). The
disjunction in the head (LHS) of a rule speci es
the alternative ways to repair. An atom anno-
tated with tq indicates that there is an advice
(what the a stands for) to make it true, i.e.,
to insert it into the database; whereas an atom
annotated with f, indicates an advice to make
it false, i.e., to delete it from the database. The
annotation constant t* is used in the bodies to

#Since we want that atoms with null values do not
generate inconsistencies we would need to add the lit-
eral @ # null to every rule with the predicate dom(x)
To avoid this dom(null) is not included in the program.

Az = (21,..., ), we abbreviate dom(z1) A~ A
dom(xy) with dom()

5 Actually, as illustrated by Example 11, we can al-
ways get rid of annotation £*

o

Using this partial order, we are now in position
of formally de ne the repairs of an inconsistent
database:

De nition 4 Given a database instance D
and a set of universal and referential ICs, IC.
a repair of D with respect to IC is a database
instance D' over the same schema and domain
(plus possibly null if it was not in the domain
of D), such that D’ sati
minimal in the class of database instane
satisfy /C. We denote by Rep(D) the set of
repairs of D. o

In the absence of null-value based repairs, def-
initions 3 and 4 coincide with those given in
[2], where RICs were not considered. The re-
pairs of violations of universal ICs are obtained
by either deleting or adding an atom with-
out null. The repairs of violations of refer-
ential ICs are obtained by either deleting the
atom that is generating the inconsistency or
by adding an atom with a null value. In
particular, if the instance is {P(a)} and IC
contains only Va(P(z) — 3JyQ(z,y)), then
{P(a),Q(a,null)} will be a repair, but not
{P(a),Q(a,b)} for any b € U,b # null. In
[3, 5, 13] repairs with values other than null
have been considered.

Example 9 Consider the universal IC
Vay(P(z,y) — R(x,y)), together with the
RIC Vz(T(z) — 3yP(z,y)), and an incon-
sistent database D = {P(a,b),T(c)} with
domain U = {a,b, ¢c,u}. The repairs of D are:

A(D, Dy)

D;
TP(@,0), R(a,5), (), | {R(a.b), P(c, null)}
Pe, null)}
2 | {P(a,b), R(a,b)}
3 {Tw(r:).P(r.null)}
4

T
(70, 7o, )}

{P(a,b), P(c, null)}
{P(a,).T(c)}

We can see that in the rst repair the atom
P(c,null) does not propagate through the uni-
versal constraint to R(c,null). The instance
D5 = {P(a,b), R(a,b), T(c),P(c,a)}, where
P(c,a) has been introduced in order to sat-
isfy the referential IC, does satisfy IC, but is
not a repair because A(D, D1) <p A(D, Ds) =
{R(a,b), P(c,a)}. [u}

If a database D is consistent with respect to a
set of ICs, then it is its only repair.

give feedback to the repair rules in case there
are interacting ICs. At the end, we are only in-
terested in the atoms annotated with t** in the
stable models of the repair program, since they
correspond to the data elements in the repairs.

De nition 7 Let M be a stable model of pro-
gram 11(D, IC).

(a) The database associated to M is
Du = {P(a) | P(a,t™) € M}.

(b) SM(D) is the set of databases associated
to (the stable models of) TI(D, IC). o

Example 11 (example 9 continued) The re-
pair program II(D, IC) is the following:
dom(a). dom(b). dom(c). dom(u).
2. Pla,bta). T(cta).
y.t*) — P(z,y, ta), dom(z), dom(y).
%) — P(z,y,ta), dom(z), dom(y).
(similarly for R and T)
P2y, £2) VR(z, 5. ta) — P(z,y,t*), R(z.y,£a),
dom(z), dom(y).
P(a,y,fa) V R(z,y,ta) — P(a,y,t"), not
R(z,y,ta), dom(z), dom(y).
T, £a)V P(w, null, ta) — T(x,t*), not aua(x),
not Pz, null, ta), dom(z).
ysta), not P(z,y,fa),
2 Y)-
auz(z) — P(x,y,ta), dom(z,y).
Pz, y,t**) — P(z,y,ta).
P(x,y,t**) — P(x,y,ta), not P(x,y,fa).
(similarly for R and T')
7. «— P(x,y,ta), P(z,y,fa). (also for R,T)

Only rules 4. and 5. depend on the ICs. Rules
4. corresponds to the universal ICs. They are
obtained by unfolding the annotation f* used
in 4. in De nition 6 into its de nition given
in 3. in the same program. The rules in 5.
correspond to the referential IC. These rules
say how to repair the inconsistencies. Rules
2. contain the database atoms. Rules 7. are
denial program constraints to discard models
that contain an atom annotated with both t,
and f,. The program has four stable models:

My = {dom(a), dom(b), dom(c),dom(u), P(a, b,
ta), P(a, b, t*), T(c, ta), T(c, t*), aua(a), T(c, fa),
P(a,b,t™), R(a, b, ta), R(a, b, t*), R(a,b,t**)}

M; ={dom(a), dom(b), dom(c),dom(u), P(a, b,
ta), Pla, b, '), T(c, ta), T(c, t), aun(a),
T(e,t**), P(c, null, ta), P(c,null,t**), P(a,b,t™),
R(a, b, ta), R(a, b, t*), R(a,0,67)}
Ms = {dom(a), dom(b), dom(c),dom(u), P(a,
b, ta), Pla, b, t*), T(c, ta), T(c, t), auz(a),
T(e,t*), P(e, null, ta), P(c,null,t*), P(a. b, fa)}

[

o

auz(z) — P
do

=

De nition 5 [2] Given a database instance D,
a set of universal and referential ICs IC, and
a  rst-order query Q(x), we say that a ground
tuple ¢ is a consistent answer to Q with respect
to IC'i for every D' € Rep(D), D' satis es Q
with variables z replaced by ¢ (denoted D’ }=
QM- o

Example 10 Given the IC Va(T(z) —
JyP(z,y)), the inconsistent database D =
{P(a,d), R(a,d), T(a), T(b), R(b,e)}, and the
queries Qy : P(z,y) and Qs : Vry (P(z,y) —
:R(x,2) . Rep(D) = { {P(a,d), R(a,d),
T(a), R(b,e)}, {P(a,d), R(a,d), T(a), T(b),
R(b,e), P(b,null)}}. The consistent answer for
Q1 is P(a, d) since that is the only element of P
in both repairs. For Qs the consistent answer
is Yes since the formula is satis ed in both re-
pairs. o

3 Repair Logic Programs

The repairs of a relational database can be
speci ed as stable models of disjunctive logic
programs [24]. Once the speci cation has been
given, in order to obtain consistent answers to
a, say, rst-order query @, the latter is trans-
formed into a query written as a logic program,
which is a standard process [29, 1]. Next, this
query program is “run” together with the pro-
gram that speci es the repairs. This evaluation
can be implemented on top of, e.g., DLV, alogic
programming system that computes according
to the stable models semantics [21, 28].

The repair programs introduced in [5, 6] use
annotation constants with the intended seman-
tics shown in the table below.

Annot. | Atom | Tuple P(a) is...
ta P(a,ta) | a database fact
fa P(a,fq) | not a database fact
ta P(a,ta) | advised to be true
fa P(a,fa) | advised to be false
t* P(a,t*) | true or becomes true
f* P(a,f*) | false or becomes false
© | P(a,t*) | truc in the repair

The intuitive idea behind these annotations
is simple. We can think of each ground atom,
say P(c), in the database as annotated with
the constant tq in an extra argument. In con-
sequence, we have the atom P(c,tq) as a fact
of the program. On the other side, if an atom
P(c) does not belong to the database, we have

My = {dom(a), dom(b), dom(c),dom(u), P(a, b,
ta), P(a, b, t*), T(c, ta), T(c, t*), auzx(a), T(c, fa),
Pla, b, fa)}

The databases associated to the program
are obtained from the models by selecting
the atoms annotated with t** (the under-
lined atoms): Dy = {P(a,b), R(a,b)}, D2 =
{T(c), P(c,null), P(a,b), R(a,b)} and D3 =
{T(c), P(c,null)}, Dy = . These repairs coin-
cide with those obtained in example 9. [m}

‘When we have the general class of universal
and referential ICs, it holds that for every re-
pair of a database with respect to a set of ICs,
there exists a model M of TI(D, IC) such that
its database associated is the repair, that is, all
the repairs can be obtained from the repair pro-
gram. In example 11 every stable model of the
repair program corresponds to a repair. How-
ever, there are cases, c.f. example 12, where the
database instance corresponding to a model is
not a repair of the original database.

Example 12 The database instance
{Emp(bill, ann), Emp(paul, john), Emp(john,
john)} stores the name of an employee
with the one of his/her boss. The cyclic
RIC:  Vay(Emp(z,y) —  32Emp(y, )
states that each is boss is also an em-
ployee. The repairs are: Dy = {Emp(paul,
john), Emp(john, john)} — and Dy =
{Emp(bill, ann), Emp(ann, null), Emp(paul,
john), Emp(john, john)}.

The repair program II(D, IC) is:
dom(bill). dom(ann). dom(paul). dom(john).
Emp(bill, ann, ta).  Emp(paul, john, ta).
Emp(john, john, ta).
Emp(z,y,t*) — Emp(@,y.ta), dom(x), dom(y).
Emp(z,y,t*) — Emp(z,y, ta), dom(x), dom(y).
Emp(z,y, £a) V Emp(y, null, ta) — Emp(z,y,t"),

not Emp(y, null, ta), not auz(y),
dom(z), dom(y).
auz(y) — Emp(y, 2, ta), not Emp(y, z,fa),
dom(y), dom(z).

auz(y) — Emp(y, z,ta), dom(y),dom(z).
Emp(z,y, t**) — Emp(z, y, ta), not Emp(z,y, fa).
Emp(z,y, t**) — Emp(z, y, ta).
— Emp(x,y,ta), Emp(z, y, fa)

The stable models of the program are:
M = {dom(bill), dom(ann), dom(paul),
dom(john), Emp(bill, ann, ta), Emp(bill, ann,
%), Emp(paul, john, ta), Emp(paul, john,
%), Emp(john, john, ta), Emp(john, john,
%), Emp(bill,ann,t*), Emp(paul, john, ),

the fact P(c,fq) in the program®. Now, when
a violation of an IC happens, which can be
expressed as the condition in the body of a
program rule, then the disjunctive head of the
same rule tells us how to .
by deleting or inserting tuples. These recom-
mendations are captured by means of the con-
stants ta, fa, for making an atom true or fal
(or inserting or deleting it), resp. For exam-
ple, if the IC is the full inclusion dependency
Va(P(z) — Q(z)), then we could have the pro-
gram rule

P(x.fa) VQ(x,ta) — P(x,ta). Q(x.fa), (4)

which in its body detects a violation of the IC
(the tuple P(z) is in the database, but not the
tuple Q(z)). Its head advises then to cither
delete P(x) or insert Q(z) in order to restore
consistency.

The problem is that there might be another
IC, whose satisfaction is being restored by in-
serting, say P(e), which is obtained by deriving
the atom P(e, ta). If we repair in this way, but
the tuple Q(e) is not in the database, then there
will be a new violation. The rule (4), with its
body written in terms of the tuples in (outside)
the original database, cannot be used to keep
repairing. That is why we need to pass to in-
termediate notations t*, £*, that can be used to
detect violations due to the original database
values or to those obtained by the local repair
steps. Then, instead of the program rule (4)
we use the program rule

P(z,fa) VQ(2,ta) — P(z,t%),Q(z,£7). (5)

The tuples with annotations t* are those ob-
tained collecting those annotated with tq or
ta, which can be expressed by means of a new
program rule. Similarly for annotation f*. Fi-
nally, the atoms that can be found in a repair
are those that became annotated with t, or
annotated with tq, but did not
become annotated with fo. Again, this can be
expressed by program rules.

were original

De nition 6 [6] The  repair  program,
(D, IC), of D with respect to IC con-
tains the following clauses:

2Actually, these atoms can be defined by rules of
the form P(, £a) « dom(z), not P(z,ta), where a do-
main predicate stores the admissible values for the tu-
ples involved. This materialization of the closed world
assumption [31] can be avoided, getting rid of annota-
tion fq. Actually, the program in Definition 6 does not
use it.

Emp(john, john, t**),  Emp(ann, null, ta),
auz(john),  Emp(ann,null, t**),  auz(bill),
aua(paul)}.

Mo = {dom(bill), dom(ann), dom(paul),
dom(john), Emp(bill, ann, ta), Emp(bill, ann,
t*), Emp(paul, john, ta), Emp(paul, john,
t*), Emp(john, john, ta), Emp(john, john,
t*), Emp(bill, ann, fa), Emp(paul,john,t**),
Emp(john, john, t**), auz(john), auz(paul)}.
Mz = {dom(bill), dom(ann), dom(paul),
dom(john), Emp(bill, ann, ta), Emp(bill, ann,
t*), Emp(paul, john, ta), Emp(paul, john,
t*), Emp(john, john, ta), Emp(john, john,
t*), Emp(bill,ann,t™), Emp(paul, john, fa),
Emp(john, john, fa), Emp(ann, null, ta),
Emp(ann, null, **), auz(bill)}.

Mi = {dom(bill), dom(ann), dom(paul),
dom(john), Emp(bill, ann, ta), Emp(bill, ann,
%), Emp(paul, john, ta), Emp(paul, john,
t*), Emp(john, john, ta), Emp(john, john,
t*), Emp(bill, ann, fa), Emp(paul, john, fa),
Emp(john, john, fa)}.

The databases associated to the rst
two models correspond to the repairs,
but mnot the last two, which are consis-
tent with the IC, but have unnecessarily
deleted Emp(john, john). ~ This happens
because this deletion, corresponding to the
presence of the atom Emp(john,john, fa)
in the models, stably satis es the rules
Emp(john, john, fa) V Emp(john, null, ta) —

Emp(john, john, t*) not aux(john),

not Emp(john, null, ta), dom(john).
auz(john) — Emp(john, john, ta),

not Emp(john, john, £a), dom(john).
auz(john) — Emp(john, john, ta), dom(john)

This happens because there is a cycle that
involves Emp(john, john), without this tuple
participating in the violation of an IC. These
rules are satis ed if Emp(john, john,fa) be-
long to the model or not.

In general, SM(D) 2 Rep(D). If (and only
if) the RICs are cyclic, the inclusion may be
proper. However, all the elements of SM (D)
satisfy the ICs.

The repair program computes exactly the re-
pairs for universal and acyclic referential I1Cs;
i.e., we have a one-to-one correspondence be-
tween the repairs and the databases associ-
ated to the models of the repair program, i.c.,
SM(D) = Rep(D).
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Example 13 Consider a database in-
stance  {P(a,b,b),Q(b,c),Q(a,a)}, and
the cyclic set of RICs: {Vayz(P(x,y,z) —
FuQ(y.v)). Vay(Q(z.y) — SuwP(u,w.x))}.
We would expect two ways to restore the
consistency of the database, by deleting
Q(b,c) or adding the tuple P(null,null,a),
but the databases associated to the stable
models of the repair program II(D,IC)

are Dy, = {P(a,b,b), Qa,a), Q(b,c),
P(null,null,a)}, Dy, = {P(a,b,b), Q(b,c)},
Daym, = {Q(a,a), P(null,null,a)} and

D, = 0. Only the rst two are repairs. O
In summary, we have the following:
e D satis es the ICs for every D € SM(D).
® Rep(D) C SM(D).

o For universal and acyclic referential 1Cs,

Rep(D) = SM(D).

4 Consistent Query An-
swering

The repair program TI(D, IC) computes ex-
actly the repairs of the database for universal
and acyclic RICs, and a superset when univer-
sal and cyclic RICs are considered. We want
to use this speci cation in order to compute
the consistent answers from a database with
respect to a set of ICs.

We will st concentrate in the case of uni-
versal and acyclic RICs. In this case, in or-
der to compute the consistent answers to a
query Q, we need to collect the answers that
we receive simultaneously from all the stable
models of the program II(D, IC). This can be
done by st replacing every atom P(z) of the
query by P(z,t**). This will force to apply the
query over the atoms that belong to every re-
pair. This new query can be transformed into
a query program II(Q) by a standard transfor-
mation [29, 1]. If this query program is run
in combination with TI(D, IC'), the consistent,
answers to the query will be obtained.

Example 14 (example 10 continued) Queries
@1 and Qs transformed into query programs
are:
T(Q1): Ans(z,y) — P(z,y,t™).
T(Qs): Ans — not auzs.
auzy — P(z,y,t), not auz (z).
auzy (z) — R(z, 2, £*).

the program in order to match this lower com-
plexity (as the class identi ed in section 5,
for which the complexity of both consistent
query answering and the evaluation of the non-
disjunctive program can be brought down to
the class NP). In a similar spirit, determining
classes of ICs and queries for which the lower

lexity well-founded ics of logic pro-
grams [33] can be used is also inter

The interaction of a logic programming sys-
tem and a DBMS is another and important
source of complexity. Evaluation of stable mod-
els should be avoided whenever possible, trying
to obtain as much direct information from the
original database as possible. A rst step in
this direction would be to detect, when a query
is to be consistently answered, if the inconsis-
tencies in the data (if any) are relevant to the
query at hand. A consistency check could de-
termine if the query can be answered directly
from the database or the repair program has to
be used.

Building a component which decides if the
database is consistent or not is simple: The
queries

C(x) — Pi(T1),..., Pu(Tm), not Q1(7y),

oy not Qu(Tn) @
for each universal integrity constraint of the
form (1), and

C'(T) «— Pi(T) A not aux(T)

auz(T) — Q(T,y),
for each referential integrity constraint of the
form (3), will detect the tuples participating in
violations of the ICs. Predicates C' and C’ can
be de ned, stored and updated as SQL views
in the the database, which would reduce the
overhead of recomputing them.

If violations that are relevant to the query
are detected (actually detecting the relevant
another interesting issue), a generator
of the repair program, or the programs them-
selves, should be called. Notice that the repair
programs depend on the ICs and not on the
query, so, they can be reutilized. Next, a sta-
ble model generator, such as DLV, has to be
used. Finally, the query can be evaluated by
running it with the repair program in the logic
programming environment.

ones i

Since the logic programming environment
has to interact with the DBMS, which stores
the facts of the program, it is important to
avold unnecessary data extraction. In this
it becomes relevant to determine those

sens
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If we run II(D,IC) U I(Q:) we get
(only the relevant part is shown): M; =
{...,P(a,d.t*),  R(a,d,t**),  T(a,t*),
R(b,e,t*), Ans(a,d)}, and My = {...,
Pla,d,t*), R(a,d,t*), T(a,t*), T(bt),
R(b,e,t*),  P(b,null,t*),  Ans(a.d),
Ans(b,null)}.  The only Ans tuple in
both repairs is (a. and therefore it is the
only consistent answer to the query.

If we do the same for query Qa, we get the
following: My = {...., P(a,d,t**), R(a,d,t"*),
T(a,t**), R(b,e,t**), auzy(a), auxi(b), Ans},
and My = {...,P(a,dt™), R(a,dt"),
T(a, 6%, T(b, 6*), R(b, e,t**), P(b, null, t**),
auz (), auzy (b), Ans}. Since Ans is in both
repairs the answer to the boolean query is Yes.
a

Summarizing, in order to compute consistent
answers under universal and acyclic RICs, the
repair program has to be run with a query pro-
gram, which will allow us to extract the answers
that are true in all the stable models. We have
successfully experimented with CQA based on
speci cation of database repairs using the DLV
system [21].

For cyclic constraints things are more com-
plex. If repairs of RICs are obtained by adding
arbitrary elements of the domain, the problem
of consistent query answering becomes unde-
cidable [13]. It is possible to prove that under
our null values based repairs, the same prob-
lem is decidable. We still have the problem
of obtaining undesirable models for the pro-
grams, those that do not correspond to repairs.
We are currently extending the logic program
based speci cation of repairs with local tests
for minimality [30]. Using logic programs with
priorities [10, 19] is an alternative, due to the
fact that, even though all stable models are
minimal, the minimality of those that do not
correspond to repairs is related to the auxil-
iary predicates and not to the database pred-
icates (c.f. example 12). In consequence, giv-
ing higher priorities to the latter seems to be
the right approach. In [15] repairs of RICs by
only tuple deletions are investigated. In this
case, the problem becomes decidable, but as
complex as the evaluation of disjunctive logic
programs under the skeptical stable model se-
mantics 20, 18].

tables and portions of them which are involved
in violation of ICs and relevant to the query.
Some interesting ideas in this direction can be
found in [22].

Tt is important to emphasize that we are not
interested in the repairs per se. In principle,
they are used as auxiliary means to charac-
terize the consistent answers. In [2], for re-
stricted classes of queries and ICs, it was pos-
sible to compute consistent answers by query
the original database alone. However appealing
to, complete or partial, computation of repairs,
becomes necessary in other cases. In these cir-
cumstances, we must minimize their computa-
tions or the amount of data involved in the pro-
cess. The emphasis should be on query answer-
ing and not on the computation of the repairs.

It is a problem that the state of art research
and implementations of stable model seman-
tics of logic programs are strong at computing
(some) stable models, but not at query answer-
ing. Full instantiation of the program should
be avoided as much as possible; and the sys-
tem should allow to pose open queries. In this
direction, recent rese ts tech-
niques for disjunctive logic programs under stz
ble model semantics is encouraging [17, 26].
They would allow to reduce the amount of data
participating in query processing.

Another direction worth being explored con-
sists in caching previous results of consistent
query answering, trying to reuse them when
new queries for consistent answers are received;
this would avoid running more than desired a
stable model generator /evaluator.

7 Conclusions

In this paper we have presented research results
that go in the direction of providing mecha-
nisms, to be implemented as as part of the core
of a DBMS, that would allow a user to specify,
together with a query, a set of integrity con-
straints -that are not necessarilly maintained
by the DBMS- in such a way that the answers
to the queries obtained from the system are
consistent with the given se ic constraints.

Our approach uses some techniques from the
area knowledge representation. At the current
state of this line of research, the methodology
provably works for any class of rst-order ICs
that contains universal constraints and acyclic
referential constraints.

5 Optimizations

Sometimes, the repair programs may be trans-
formed into equivalent non-disjunctive pro-
grams, i.e., having the same stable models,
and then, also specifying the same repairs.
This is the case when the disjunctive pro-
grams are head-cycle-free [7] (see below). Non-
disjunctive logic programs have lower computa-
tional complexity than general disjunctive pro-
grams [18, 27].

The dependency graph of a ground (or fully
instantiated) disjunctive program IT is de ned
as a directed graph where each literal L in the
program (i.e., atom or negation of atom) is a
node; and there is an arch from L to L' i there
is a rule in which L appears positive in the
body and L' appears in the head. II is head-
cycle-free (HCF) i its dependency graph does
not contain directed cycles that go through two
literals that belong to the head of the same rule.

A disjunctive program II is HCF if its ground
version is HCF. If this is the case, II can
be transformed into a non-disjunctive normal
program sh(IT) with the same stable models
[7].  The non-disjunctive version is obtained
by replacing every disjunctive rule of the form:
VI i) = APy Qi(y;) by the n rules
i) = Ay Qo) A Ay mot Paley), i =
1

e Tl

Transformations of this kind can be justi ed
or discarded on the basis of a careful analysis
of the intrinsic complexity of consistent query
answering [15]. If the original program can be
transformed into a non-disjunctive normal pro-
gram, then also other ¢ cient implementations
could be used for query evaluation, e.g., XSB
[32], that has been applied in interaction with
an IBM DB2 DBMS in the context of consistent,
query answering via rst-order query transfor-
mation, but only for non-existentially quanti-

ed conjunctive queries and limited classes of
universal ICs [14].

In [6] it was proved that for the class of
universal ICs, the repair programs are HCF,
but there no results were reported on refer-
ential ICs. Now, we have been able to iden-
tify, on the basis of a general test to be ap-
plied to a set of ICs containing acyclic RICs,
some useful classes of ICs for which the spec-
ion program becomes HCF. For example
s is the case when IC only contains denial
formulas of the form (1) with-

The current approach considers null-value
based repairs under referential integrity con-
straints. Null values have a special treatment
with respect to satisfaction of ICs, and as a con-
sequence, they do not propagate in the repair
process. In [3, 5, 13], repairs of RICs using nor-
mal domain values are considered. This, under
s of RICs, may lead to undecidability
stent query answering. It would be in-
teresting to study some sort of mixed approach,
and also the ility of limited pre i
of null values. This is a direction that requires
further investigation.

The general complexity of our approach does
not exceed the intrinsic complexity of the prob-
lem of obtaining con: t query answers;
however, as previously discussed, still much ex-
citing research has to be done in terms of op-
timizing many aspects of the mechanisms, and
implementing them in real DBMSs.

Some of the concepts and techniques de-
veloped for consistently querying single rela-
tional databases, like those presented here,
have found applications in the context of vir-
tual data integration. There, global integrity
constraints are not maintained, and answers to
global queries that are consistent with those
constrains are expected to be returned by the
mediator [11, 12].

Connections between consistent query an-
swering, virtual data integration and query an-
swering in peer-to-peer data exchange systems
are established in [8]. Query answering from
a peer has to consider the data exchange con-
straints and trust relationships with the other
peers in the system.

Consistent query answering seem to have
natural connections with the area of data ex-
change, where the main problem is to transfer
data from a source database to a target schema
that may be di erent from the schema of the
source. In consequence, mappings have to be
speci ed in order to establish the relationship
between the data at the source and the data at
the target [23], and the process of data transfer
has to respect the formulas that express those
mappings. However, there are some di erences
with CQA that deserve further investigation.
For example, it is usually the case that for
a given source instance, and in contrast with
CQA, there are in nite instances at the target
that are “solutions” to the problem. The typ-
ical syntactic form of the exchange constraints
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out positive literals (e.g., FDs and range con-
straints fall in this class); plus acyclic referen-
tial integrity constraints. Tn consequence, for
acyclic foreign key constraints the repair pro-
gram becomes HCF.

Example 15 (example 11 continued) The
program is HCF and therefore it can be
transformed into a normal program by shifting
one by one the literals in the disjunctive head
to the body in negated form. In this case,
the program sh(IL(D,IC)) is obtained from
II(D, IC) by replacing rules in 4. and 5. by:
L Pla,y,fa) — P(z,y,t"), R(z,y,fa), dom(z),
not R(z,y,ta), dom(y).
R(x,y,ta) — P(z,y,t"), R(z,y, fa) dom(z),
not P(x,y, fa), dom(y).
R(z,y,ta) — P(x,y,t"), not R(z,y,ta),
not P(x,y,fa) dom(z), dom(y).
P(z,y.fa) — P(z,y,t"), not R(z,y,ta),
not R(x,y, ta) dom(z), dom(y).
P(a, null, ta) — T(z,t*), not auz(z), dom(x),
not T(x, fa), not P(x, null, ta).
T(@,fa) — T(x,t"), not aua(z), dom(x),
not P(z, null, ta), not P(x, null, ta).
aua(z) — P(x,y,ta), not P(z,y,fa)
aua(z) — P(x,y,ta).

IS

&

The stable models of this program coincide
with those of the original program (D, IC).
o

6 Implementation Issues

‘We are currently working on the implementa-
tion of a system for computing consistent query
answers on the basis of the repair programs.
The details will be presented somewhere else;
however we can discuss here a few general is-

sar that any implementation must op-
several processes that participate in con-
sistent query answering. This is because, query
answering from disjunctive logic programs has
a rather high complexity [18, 20]. However,
by using logic programs we are not exceeding
the intrinsic complexity of the problem of con-
sistent query answering. In other words, in
the general case, the program evaluation and
consistent query answering have the same com-
plexity (actually, they are IT{'-complete in data
complexity) [15, 13]. What is important is
to be able to both identify those cases where
the complexity of CQA is lower, and optimize

used to express the mappings causes that any
superset of a solution is also a solution, whereas
database repairs are always minimal.

On the other side, in data exchange some
techniques have have been developed to show
that some queries over the target schema are
not rewritable as a queries that, over a ma-
terialized target instance, give a result that is
semantically equivalent with the source [4]. Tt
is possible that some of those techniques could
be used to show that the consistent answers
to some queries cannot be expre t-
order views over the underlying instance.
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Abstract

‘We consider here scalar aggregation queries in databases that may violate a given set
of functional d ies. We define i answers to such queries to be greatest
lowest /least upper bounds on the value of the scalar function across all (minimal) repairs
of the database. We show how to compute such answers. We provide a complete
characterization of the computational complexity of this problem. We also show how
tractability can be improved in several special cases (one involves a novel application
of Boyce-Codd Normal Form) and present a practical hybrid query evaluation method.

1 Introduction

In this paper, we address the issue of obtaining consistent information from inconsistent
databases — databases that violate given integrity constraints. Our basic assumption departs
from everyday practice of database management systems. Typically, a database manage-
ment system checks the satisfaction of integrity constraints and backs out those updates
that violate them. Therefore, databases seemingly never become inconsistent. However, we
list below several practical scenarios in which inconsistent databases do occur.

Integration of autonomous data sources. The sources may separately satisfy the con-
straints but, when the sources are integrated together, the constraints may stop to hold. For
instance, consider different, conflicting addresses for the same person in the taxpayer and
the voter registration databases. Each of those databases separately satisfies the functional
dependency that associates a single address with each person, yet together they violate this
dependency. Morever, since the sources are autonomous they can not be simply fixed to
satisfy the dependency by removing all but one of the conflicting tuples.

* An earlier version of this paper appeared in [5].
fCorresponding author. Address: Department of Computer Science and Engineering, 201 Bell Hall,
University at Buffalo, Buffalo, NY 14260-2000, USA. Phone: (716)645-3180, ext. 103. Fax: (716) 643-3464.

two candidates, Brown and Green are running, are kept in two relations: BrownVotes and
GreenVotes.

BrownVotes GreenVotes

County Date  Tally County Date  Tally
A 11/07 541 A 11/07 653
A 11/11 560 A 11/11 730
B 11/07 302 B 11/07 101

Vote tallies in every county should be unique. Consequently, the functional d d
County — Tally should hold in both relations. On the other hand, we may want to keep
ltiple tallies corresponding to diffe counts (and recounts). Clearly, both relations will
have two repairs each, depending on whether the first or the second count for county A is
picked. Altogether, the original database has thus four repairs.
The total tally for Brown is 843 in one repair and 862 in the other. For Green, the
corresponding figures are 754 and 831. It is clear that there is no single consistent answer

to the aggregation query:

SELECT SUM(Tally)
FROM BrownVotes

and the same holds for the similar query involving the relation GreenVotes. Therefore, the
notion of consistent query answer from [3] needs to be adapted in the contezt of aggregation
queries. For such queries, we propose to return ranges of values: [843,862] for Brown and
[754,831] for Green. Note that in this case we can safely say that Broun won the election,
since the minimum vote for Brown is greater than the mazimum vote for Green. o

The plan of the paper is as follows. In Section 2, we provide a general definition of
consistent answer to an aggregation query with a scalar function. We also define a graph-
theoretical representation of database repairs, which is specifically geared towards FDs.
In Section 3, we study data complexity of the problem of computing consistent answers
to aggregation queries in inconsistent databases. In Section 4, we show how to reduce in
practice the computational cost of computing such answers by decomposing the computation
into two parts: one that involves standard relational query evaluation and one that computes
the consistent answers in a smaller instance. In Section 5, we show that the complexity of
computing consistent answers can be reduced by exploiting special properties of the given
set of FDs or the given instances. In Section 6 we discuss related and further work.

2 Basic Notions

In this paper we assume that we have a fixed database schema containing only one relation
schema R with the set of attributes U. We will denote elements of U by A, B, ..., subsets
of U by X,Y,..., and the union of X and Y by XY. We also have two fixed, disjoint
infinite database domains: D (uninterpreted constants) and N (rational numbers). We
assume that elements of the domains with different names are different. The database
instances can be seen as finite first-order structures that share the domains D and N.
Every attribute in U is typed, thus all the instances of R can contain only elements either
of D or of N in a single attribute. Since each instance is finite, it has a finite active domain
which is a subset of D U N. As usual, we allow built-in predicates (=, #, <,>, <,>) over

Unenforced integrity constraints. Even though integrity constraints capture an impor-
tant part of the semantics of a given application, they may still fail to be enforced for a
variety of reasons. A data source may be a legacy system that does not support the notion
of integrity checking altogether. Integrity checking may be too costly (this is often the rea-
son for dropping some integrity constraints from the database schema). Finally, the DBMS
itself may support only a limited class of constraints. For example, SQL2 DBMS typically
support only key functional dependencies, not arbitrary ones. Therefore, if the relations
in a data warehouse are denormalized for efficiency reasons, some functional dependencies
may become unenforceable.

Temporary inconsistencies. It may often be the case that the database consistency
is only temporarily violated and further updates or transactions are expected to restore
it. This phenomenon is becoming more and more common, as databases are increasingly
involved in a variety of long-running activities or workflows.

Conflict resolution. Removing tuples from a database to restore consistency leads to
information loss, which may be undesirable. For example, one may want to keep multiple
addresses for a person if it is not clear which is the correct one. In general, the process
of conflict resolution may be complex, costly, and non-deterministic. In real-time decision-
making applications, there may not be enough time to resolve all conflicts relevant to a
query.

To formalize the notion of consistent information obtained from a (possibly inconsistent)
database in response to a user query, we proposed in [3] the notion of a consistent query
answer. A consistent answer is, intuitively, true regardless of the way the database is fixed
to remove constraint violations. Thus answer consistency serves as an indication of its
reliability. The different ways of fixing an inconsistent database are formalized using the
notion of repair: another database that is consi: and minimally differs from the original
database.

For instance, in the case of multiple addresses of a single person, one can still consistently
determine the addresses of those people who have only a single address in the integrated
database. Or, more interestingly, if all tuples for the same person have the same birthdate,
then the birthdate can be returned as a consistent answer, although there may be multiple
conflicting addresses. Also, the different addresses may have a common part, e.g., the
state name, that can be consistently returned and will suffice for some queries, e.g., those
concerned with taxation. These examples show that simply discarding conflicting data will
lead to information loss.

In [3], in addition to a formal definition of a consistent query answer, a computational
mechanism for obtaining such answers was presented. However, the queries considered were
just first-order queries. Here we address in the same context the issue of aggregation queries.
Aggregation queries are important in OLAP and data warehousing — precisely the context
in which inconsistent databases may occur (see above). We limit, however, ourselves to
single relations that possibly violate a given set of functional dependencies (FDs).

In defining consistent answers to aggregation queries we distinguish between queries with
scalar and aggregation functions. The former return a single value for the entire relation.
The latter perform grouping on an attribute (or a set of attributes) and return a single
value for each group. Both kinds of queries use the same standard set of SQL-2 aggregate
operators: MIN, MAX, COUNT, SUM, and AVG. In this paper, we address only aggregation queries
with scalar functions.

Example 1 Consider the following ezample. Suppose the results of an election in which

N that have infinite, fixed extensions. There is also a set of integrity constraints ' over
R that captures the semantics of the database. E.g., it may express the property that an
employee has only a single salary. The instances of the database do not have to satisfy F.
A database that satisfies a given set of integrity constraints F', denoted by r |= F, is called

otherwise i i In this paper we consider only integrity contraints that
are functional dependencies (FDs).

2.1 Repairs
The following definitions are adapted from [3].

Definition 1 For the instances r,r',r" , ' <, " ifr —r' Cr—r". o

Definition 2 Given a set of integrity constraints F and database instances r and r', we
say that ' is a repair of r w.r.t. F ifr' E F and 1’ is <,-minimal in the class of database
instances that satisfy F. [u]

‘We denote by Repairsp(r) the set of repairs of r w.r.t. F. Examples 1 (earlier) and 2
(below) illustrate the notion of repair.

Because we consider only functional dependencies here and for such constraints all the
repairs of an instance are obtained by deleting tuples from it, the notion of repair from
[3] can be simplified here. A repair is simply a maximal consistent subset of an instance.
Clearly, there are only finitely many repairs, since the relations are finite. Also, in this case
the union of all repairs of any instance r is equal to r. These properties are not necessarily
shared by other classes of integrity constraints.

Definition 3 The core of T is defined as
Corep(r) = ﬂ .
'€ Repairs ¢ (r)
a

The core is a new database instance. If r consists of a single relation, then the core is
the intersection of all the repairs of 7. The core of r itself is not necessarily a repair of r.

Example 2 In Ezample 1, the relation BrownVotes has two repairs

™ )
County Date  Tally ‘ County Date  Tally
A 11/07 541 A 11/11 560
B 11/07 302 ‘ B 11/07 302

The core of the relation BrownVotes consists of the single tuple

County Date  Tally

B 11/07 302

and is not a repair. It satisfies the functional dependency County — Tally but is not a
mazimal consistent subset of the original instance. o
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2.2 Consistent Query Answers
2.2.1 First Order Queries
Query answers for first order queries are defined in the standard way.

Definition 4 A ground tuple t is an answer to a query Q(Z) in a database instance r if
rE Q(f), i.e., the query Q(Z) is true of T in the instance r. o

Consistent query answers were first defined in [3]. We present here a slightly modified
but equivalent definition.

Definition 5 A ground tuple f is a consistent answer to a query Q(Z) with respect to a set
of integrity traints F in a database inst r if for every r' € Repairsp(r), r' £ Q(£).
We denote the set of consistent answers to Q w.r.t. F inr by Cqag(r). o

Example 3 The query
SELECT * FROM BrownVotes

has the following consistent answer in the instance of Ezample 1:

Brown B 11/07 302

In the same instance the query
SELECT County FROM BrownVotes WHERE Tally > 400

has A as the only consistent answer. Notice that this answer cannot be obtained by evaluating
the query in the original instance from which the conflicting tuples have been removed. O

2.2.2 Aggregation Queries

The aggregation queries we consider are queries of the form
SELECT f FROM R

where f is one of: MIN(A), MAX(A), COUNT(A), SUM(A), AVG(A), or COUNT(*), where A is an
attribute of the schema R. These queries return single numerical values by applying the
corresponding scalar function, i.e., for MIN(A) the minimum A-value in the given instance,
etc. In general, f will also denote an aggregation query (or a scalar function itself). Thus,
f(r) will denote the result of applying f to the given instance r of R.

In contrast with first-order queries, there is no single intuitive notion of consistent query
answer for aggregation queries. It is likely (see Example 5 below) that aggregation queries
return different answers in different repairs, and thus there will be no single consistent
answer in the sense of Definition 5. In order to obtain more informative answers even in
such a case, we explore therefore several alternative definitions of consistent query answers.

Definition 6 Given a set of integrity constraints F, an aggregation query f and a database
instance r, the set of possible answers Poss{,—(r) is defined as

{f(r") | ' € Repairsp(r)}.

‘We use this example to illustrate two points. First, the instance r, has 2" different
repairs. Therefore, the approach to computing consistent query answers to any aggregation
query (or any other query for that matter) by evaluating the query in every repair separately
and then collecting the results is infeasible. Second, note that the aggregation query SUM(B)
admits a different result in every repair. Actually, every integer in the answer range [0, 2" —1]
is the result of the query SUM(B) in some repair. In spite of that, glb- and lub-answers have
polynomial size (since the bounds can be represented in binary). This is not be the case
if we represent all the possible values as a set, a distribution, or some form of disjunctive
information e.g., an OR-object [22] or a C-table [21]. (An OR-object is a special domain
value specified as a set of atomic values and interpreted as one of those values. A C-table
is a table with null values that have to satisfy conditions associated with individual rows or
the entire table. For a discussion of the relationship between tables with OR-objects and
sets of all repairs, see Section 6). o

It is easy to see that glb- and lub-answers in our framework are always polynomially-
sized and thus exponentially more succinct than set-, distribution-, or disjunction-based
repr i However, repr ing a set of values as a range may lead to information
loss. For instance, while we guarantee that the value of the scalar function in every re-
pair falls within the returned range, clearly not every value in this range will necessarily
correspond to the value of the function obtained in some repair.

Further aggregating the values of an aggregation query over all repairs, e.g., taking the
average, leads to further information loss. In fact, presented with such an answer the user
can no longer say anything about the values the query has in the individual repairs.

‘We should note that regardless of whether a range- or a set-based representation is used,
the obtained result is semantically not a standard relation, so it cannot directly serve as
input to other SQL queries. In the first case, the obtained range [a,b] can be represented
as a pair but in fact should be interpreted as a condition a < v < b on the repair-dependent
value v of the scalar function. In the second case, the result is a set and thus requires going
beyond First Normal Form. Moreover, the set needs to be interpreted as a condition too,
in this case disjunctive. (The condition is z = v; V +++ V & = v where {v1,... ,vx} is the
set of possible values of the scalar function.)

‘We will also consider other auxiliary notions of query answer in inconsistent databases.
Core answers are used for hybrid evaluation in Section 4 and union answers are defined for
symmetry with core answers.

Definition 7 A number v is a core answer to f w.r.t. F inr if
v=F(Corer(r) =1 [ 1)
/€ Repairs - (r)
A number v is a union answer to f w.r.t. F inr if
v=f( U ).
r'€ Repairs 1 (r)

a

However, union answers are trivial for FDs, as the union of all the repairs of r is r itself,
s0 the union answer reduces to f(r).

The greatest-lower-bound (glb) answer glb';-(r) to f w.rt. F inr is defined as
glb';-(r) = glb Poss';-(r).
The least-upper-bound (lub) answer lub{,—(r) to f w.r.t. F inr is defined as

lub';-(r) = lub Poss{,(r).

Example 4 In the instance of Ezample 1 and the query
SELECT SUM(Tally) FROM BrownVotes

the set of possible answers is {843,862}, the glb-answer is 843 and the lub-answer is 862.
]

Based on Definition 6, one can envision several possible notions of consistent query
answer for aggregation queries:

-

. the set of possible answers Poss{.(r),

N

. the range of possible answers [glb{,(r}, lub{,(r]],

1

. some aggregate, for example average, of all possible answers, or

IS

. some representation of the distribution of all possible answers.

‘We conjecture that each of those notions makes sense in the context of some applica-
tion. In this paper, we study the second notion, that of the range of all possible answers
[glbjp.(r), lub',f,-(r)], for the reasons outlined below.

Example 5 Consider the functional dependency A — B and the following family of relation
instances rp, n > 0:

10

11

2 0

2 2

i 0
9i-1

n 0

n ol
6

2.3 Graph Representation

Given a set of FDs F and an instance r, all the repairs of 7 w.r.t. F can be succinctly
represented as a graph.

Definition 8 The conflict graph G, is an undirected graph whose set of vertices is the
set of tuples in v and whose set of edges consists of all the edges (t1,1) such that t; € T,
ty € 7, and there is a dependency X — Y € F for which t:[X] = t5[X] and t1[Y] # t2[Y].
o

Example 6 Consider a schema R(AB), the set F of two functional dependencies A — B
and B — A, and an instance = {(a1,b1), (a1,b2), (a2, b2), (a2, b1)} over this schema. The

conflict graph G, looks as follows:

(a1, b1)—(a1, ba)

(a2, b1)—(az, b2)
a
Definition 9 An independent set S in an (undirected) graph G = (V, E) is a subset of the

set of vertices V of this graph, such that there is no edge in the set of edges E connecting
two vertices in S. A maximal ind. dent set is an ind dent set which is not a proper

subset of any other independent set. A maximum independent set is an independent set of
mazimum cardinality. o
Proposition 1 Each repair in Repairsp(r) corresponds to a imal ind dent set in
GF,r and vice versa. o

Conflict graphs are geared specifically towards FDs. The repairs of other classes of
constraints do not necessarily have similar representations.

We also note that, for a given set of FDs F over R, one can write an SQL2 query that
for any instance r of R computes the edges of the conflict graph G,

2.4 Computational Complexity

2.4.1 Data Complexity

The data complexity notion [8, 31] makes it possible to study the complexity of query
processing as a function of the number of tuples in the database instance. We define sepa-
rately the data complexity of checking repairs, the data complexity of computing consistent
query answers to first-order queries, and that of computing consistent query answers to
aggregation queries.

Definition 10 Given a class of databases D and a class of integrity constraints, the data
complexity of checking repairs is defined to be the complezity of determining the membership
of the sets

Dp ={(r,r') | r € DAT' € Repairsp(r)}

for a fized finite set F of integrity constraints. This problem is C-data-hard for a complezity
class C if there is a finite set of integrity constraints Fy such that Dp, is C-hard. a
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Lemma 1 For a given set F of FDs, the data complezity of checking whether an instance
r' is a repair of v is in PTIME.

Proof: Checking whether 7' satisfies F is in PTIME. The repair 7' has also to be <,-
minimal among those instances that satisfy F. For FDs, it means that 7' has to be a
maximal subset of r that satisfies F'. Checking this property can be done as follows: try all
the tuples £ in 7 — ', one by one. If r' U {f} satisfies F, then r’ is not maximal. Otherwise,
if for no such tuple , r' U {f} satisfies F, no superset of r’ can satisfy F (violations of FDs
cannot be removed by adding tuples) and 7' is maximal. [u]

Definition 11 Given a class of databases D, a class of first-order queries L and a class of
integrity constraints, the data complexity of computing consistent query answers is defined
to be the complezity of determining the membership of the sets

Drg ={(r1) |7 € DATE Oga(r)}

for a fized ¢ € L and a fized finite set F of integrity constraints. This problem is C-
data-hard for a complezity class C if there is a query ¢g € L and a finite set of integrity
constraints Fy such that D, g, is C-hard. o

;From Lemma 1, we can immediately obtain:

Corollary 1 For any set of FDs F and first-order query Q, the data complezity of checlcmg
whether a tuple T is a consistent answer to Q is in co-NP.

In section 3, we will see that the above problem is in fact co-NP-hard (Corollary 2).
Definition 12 Given a class of databases D, a class of aggregation queries F and a class

of integrity constraints, the data complexity of computing the glb (resp. lub )
is defined to be the complezity of determining the membership of the sets

Diy={(r,k) |1 € DA glbf.(r) < k}
and

Dr,j = {(r,k) | 7 € DA lubl(r) > k},

ly, for a fized aggregation query f € F and a fized finite set F of integrity con-
stmmts This problem is C-data-hard for a complezity class C if Dr, 5, is C-hard for some
aggregation query fo € F and a finite set of integrity constraints Fy. [u]

In our case, each class of aggregation queries F contains only queries that use scalar
functions of the same kind, e.g., MIN(A) for some attribute A of R.

Proposition 2 For every class of aggregation queries F' that contains only queries with
scalar functions of the same kind, computing the glb- and the lub-answer is in NP.

Proof: Consider computing the glb-answer (the other case is symmetric). We have that
glb{,—(r) < k if and only if there is a repair 7' € Repairs p(r) such that f(r) < k. The latter
condition can be clearly checked in NP, in the view of Lemma 1. a

Our PTIME results will yield algorithms that compute the glb-answer glb{,(r) (or
tubl(r)), which is clearly sufficient to determine the truth of the condition glb%(r) < k
(resp. lub',f.(r) > k).

However, it is not obvious how to compute the glb-answer, namely the minimum of the set
of maximums obtained by posing the query MAX(A) in every repair. Computing MAX(A) in
Corer(r) gives us only a lower-bound-answer which does not have to be the glb-answer.

Theorem 2 The data complezity of computing glb{,(r) in 1 for a set of FDs F consisting
of a single FD X —'Y and f € {MAX(A), SUM(A), COUNT(x)} is in PTIME.

Proof: The approach for all of the above scalar functions is essentially identical and consists
of constructing a repair that minimizes the value of the scalar function. Call an (X,Y)-
cluster a maximal set of tuples of r that have the same attribute values in X and Y. Clearly,
in a single repair we can have only one (X, Y )-cluster for every given value of X. For every
value of the attribute X we pick that (X,Y)-cluster that minimizes the scalar function and
apply the scalar function to this cluster. Finally, we aggregate the obtained values across
all values of X (and combine the (X,Y)-clusters if we want to obtain a repair minimizing
f)- This approach gives the minimum of the scalar function over all repairs. For MAX(A) it
can be defined in SQL2 as the following sequence of views:

CREATE VIEW S(X,Y,C) AS
SELECT X,Y,MAX(A) FROM R
GROUP BY X,Y;

CREATE VIEW T(X,C) AS
SELECT X, MIN(C) FROM S
GROUP BY X;

SELECT MAX(C) FROM T;

For SUM(A), we only have to replace MAX in the above by SUM. For COUNT(*), we replace
MAX(A) by COUNT (*) and MAX(C) by SUM(C). Evaluating all those SQL2 queries can be done
in PTIME. o

It is clear that there is a symmetric result to Theorem 2 for lub-answers to MIN(A). Note
that

Wb ™ (r) = —glp"™®) ()

wherer contains identical tuples to r except that their A-values are inverted (every A-value
v is changed to —v).

‘We show now that Theorem 2 exhausts the tractable cases for the scalar functions in
question.
3.2.2 Two functional dependencies and MAX(A)
Theorem 3 There is a set of 2 FDs Fy for which deciding whether

oty @) <k

in r is NP-data-hard.

Proof: Reduction from 3SAT. Consider a propositional formula ¢ = C; A--- A Cy in CNF.
Let p1, - .. pmm be the propositional variables in . Construct a relation r with the attributes
A, B,C, D, and containing exactly the following tuples:
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3 Complexity of Scalar Aggregation

‘We have seen (Example 5) that there may be exponentially many repairs even in the case of
one functional dependency. Therefore, it is computationally infeasible to evaluate a scalar
aggregation query in every repair. In [3] and this paper, we have identified two ways of com-
puting consistent answers by querying the given, possibly inconsistent database instance,
without having to compute all the repairs. Query transformation modifies the original
query, @, into a new query, T(Q), that returns only consistent answers. We have applied
this approach in [3] to restricted first order queries and universal integrity constraints. Ex-
cept in some simple cases, this approach does not seem applicable to aggregation queries.
For example, even when MAX(A) and MIN(A) queries can be written as first order queries,
their resulting syntax does not allow the application of the methodology developed in [3] to
them. Moreover, as argued earlier in the paper, aggregation queries seem to require a dif-
ferent notion of consistent query answer than first-order queries. Therefore, we use instead
the fact that for FDs, the set of all repairs of an instance can be compactly represented as
the conflict graph. We develop techniques and algorithms geared specifically towards this
representation.

‘We start by considering core answers — an easy case. Then we consider several aggregate
operators — MIN, MAX, SUM and COUNT (*) — together. They share common properties: for
each of them computing glb- and lub-answers is tractable only in the case of a single
functional dependency and the proof of tractability uses the same technique of building
an appropriate single repair. Subsequently, we consider the AVG operator which requires
a much more involved tractability proof. Finally, we study COUNT(A), for which even the
single-dependency case is not tractable.

In the following r denotes an instance of the schema R. The input of the problem
of computing consistent query answers will consist of r and a numerical parameter & (as
required by Definition 12).

3.1 Core Answers

For some aggregate operators, e.g., COUNT and SUM of nonnegative values, a core answer
is a lower-bound-answer, but not necessarily the glb-answer. As we will see in Section
4, computing core answers to aggregation queries can be useful for computing consistent
answers.

Theorem 1 The data complezity of computing core answers for any scalar function is in
PTIME.

Proof: The core consists of all the isolated vertices in the conflict graph. o
‘We note that, for a given set of FDs F' over R, one can write an SQL2 query that
computes for any instance r of R the set of isolated vertices in the conflict graph Gr,.
In general, computing glb-answers and lub-answers is considerably more involved than
computing core answers.

3.2 Aggregation using MIN, MAX, SUM, and COUNT (*)
3.2.1 One functional dependency

Consider MAX(A) (MIN(A) is symmetric). In this case computing the lub-answer in r w.r.t.
an arbitrary set of FDs F' consists of evaluating MAX(A) in r, thus it is clearly in PTIME.
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1. (pi;1,Cj, 1) if making p; true makes C; true,
2. (pi,0,Cj,1) if making p; false makes C; true,

3. (w,2,C},2), 1 < j <n, where w is a new symbol.
The set of FDs Fy consists of A — B (each propositional variable cannot have more than

one truth value) and C — D. Also, k = 1. We show that glt'i" (r) = 1 iff ¢ is satisfiable.

Assume glb’mn (r) = 1. Then there is a repair rq of r in which the attribute D
assumes only the value 1. If for some j the repair ro does not contain any tuple of the
form (_, ,Cj,1), then ro has to contain the tuple (w,2,Cj,2) and MAX(D) returns 2 in this
repair, a contradiction. ;From rq we can build a satisfying assignment for ¢ by reading off
the values of the attributes A and B for each conjunct Cj. Notice that 7o has to satisfy the
FD A — B and thus each propositional variable receives in this way only a single value.

Assume now that ¢ is satisfiable. Then, given a satisfying assignment, we build a
database instance r; in the following way: For every propositional variable p; made true by
the assignment and every conjunct C; in which this variable occurs positively, we include
the tuple (p;,1,Cj,1) in 71. The variables made false by the assignment are treated sym-
metrically. Clearly, r; satisfies A — B. Since the assignment satisfies ¢, for every conjunct
Cj there is a tuple in r1 which has Cj as the value of the attribute C. Therefore, r1 cannot
contain any tuples of the third kind, and has to satisfy C — D as well. It is also maximal,
and thus a repair. Since in every repair of 7, MAX(D) returns a value greater or equal to 1,
and MAX (D) returns 1 in 71, then glb ) (r) = 1. o

The above reduction yields also a lower bound for checking consistent query answers for
first-order queries.

Corollary 2 There is a set of 2 FDs Fy and a first-order query Q for which the problem
of checking whether t is a consistent answer to Q is co-NP-data-hard.

Proof: We use the same reduction and the same set of FDs Fjy as in Theorem 3. We note
that the formula ¢ is isfiable iff 2 is a i answer to the query

3z,y,z. R(z,y,2,w).

m}
Corollary 2 should be contrasted vmh the results of [3], which imply that in the presence
of FDs the data lexity of D C query anwers for first-order queries

consisting only of quantifier-free conjunctions of positive and negative literals is in PTIME.
Thus Corollary 2 identifies the existential quantifier as a source of intractability.

3.2.3 Two functional dependencies and COUNT (*)

‘We consider now COUNT (*).

Lemma 2 There is a set of 2 FDs Fy for which the problem of determining the ezistence
of a repair of r of size > k is NP-data-hard.

Proof: Reduction from 3-COLORABILITY. Given a graph G = (N,E), with N =
{1,2,... ,n}, such that (i,i) ¢ E for each i € [1,n], and given colors w (white), b (blue)
and r (red), we define the relation p with attributes A, B,C, D and the following tuples:

1. for every 1 <i <n, (i,w,i,w) €p, (i,b,i,b) € p and (i,7,4,7) € p.
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2. for every (i,j) € E, (i,w,j,b) € p, (i,w,5,7) € p, (4,b,5,w) € p, (i,b,5,7) € p,
(i,r,j,w) € p and (i,7,5,b) € p

We consider the set of functional dependencies F; = {A — B, C = D}. We will show that

G is 3-colorable iff there is a repair p’ of p with exactly n+ 2 - |E| tuples (the maximum

possible number of tuples in a repair). That property follows from Lemmas 3, 4 and 5. O

Lemma 3 Assuming p is defined as in the proof of Lemma 2, every repair p' of p has at
most n+2 - |E| tuples.

Proof: by induction on n. If n is equal to 1, then p is equal to

4
1w 1 w
1 b6 1 b
1 r 1 r
and, therefore, it has three repairs:
pul P2 p3
|1wlw| ‘lblb‘ ‘lrlr‘

Thus, |p1| = [pa| = Ips| = 1 <n+2-|E|.

Suppose that the theorem is satisfied in every graph with n nodes. Let (N, E) be a graph
containing n+ 1 nodes, p be a table constructed from (N, E) as we showed above and p’ be a
repair of p. Define N* = N—{n+1}, E* = ENN*XN*, p* = pNN*x{w, b,r} x N* x{w, b, r}
and (p*)' =p' N N* x {w,b,7} X N* x {w,b,7}.

(p*) satisfies the set of functional dependencies and it only contains tuples from table
p*. Then, there exists a repair (p*)" of p* such that (p*)’ C (p*)”. Thus, by induction
hypothesis we conclude that |(p*)"| < n+ 2-|E*|, and, therefore, |(p*)'| <n+2-|E*|.

In order to know how many tuples p’ could have, we need to know how many tuples
p' — (p*)' could contain, which can be established by considering the following:

(I) This set could contains at most one of the following tuples: (n + 1,w,n + 1,w),
(n+1,bbn+1,b), (n+1,r,n+1,r).

(IT) For each (i,n + 1) € E, this set could contains at most two tuples of the form
(iycolory,n + 1,colory), (n + 1,colors, i, colory).

y (I) and (II) we conclude that
=) <1+2-|E—E
and, therefore,
Pl<n+2-|E*+1+2-|E—E*|<n+1+2-|E|.
m]

Lemma 4 Assuming p is defined as in the proof of Lemma 2, if it is possible to color the
graph (N, E) where N = {1,2,... ,n}, with colors w, b and r, then there ezists a repair of
p with n+2- |E| tuples.
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Theorem 5 There is a set of two FDs F, for which determining whether
COUNT
g (r) < k
in r is NP-data-hard. a

Analogous results to Theorems 4 and 5 can be obtained for SUM(A) and the proofs are
easy modifications of the above proofs (COUNT (x) can be mimicked by SUM over an additional
attribute that has the value 1 in each tuple).

3.3 Aggregation using AVG
3.3.1 One functional dependency

‘We reduce the problem of computing glb- and lub-answers to AVG(A) queries w.r.t. a single
FD X — Y to the following problem of MAXIMUM AVERAGE WEIGHT (MAW):

There are m bins, each containing weighted, colored objects. No two bins have
objects of the same color, although any particular bin may contain more than
one object of the same color. Choose exactly one color for each bin in such a
way that the sum of the weights of all objects of the chosen colors divided by
the total number of such objects (i.e., the average weight AVG of objects of the
chosen color) is maximized.

In the reduction of the problem of computing lub-answers to MAW, bins correspond
to different X-values, and objects of the same color have the same Y-values. Each object
corresponds to a tuple in which the attribute A represents the weight of the object. Different
objects of the same color can have different weight, since A does not have to be a member
of Y or be functionally dependent on Y. For glb-answers, we use an inverted database, as
in the remarks after the proof of Theorem 2.

To solve MAW, consider the well-known “2-OPT" strategy of starting with an arbitrary
selection (c1, ¢, ..., cm) Of one color each from each of the m bins. The 2-OPT strategy is
simply to replace a color from one bin with a different color from the same bin if so doing
increases the value of the average weight of objects of the colors in the selection.

More precisely, let ¢ = (c1,¢2,...,cm) be a selection of colors such that ¢; is the color
chosen from the ™" bin. Let AVG (c) be the average weight of objects with colors from c.
Let OPT be the maximum value over all choices of ¢ of AVG(c). Then 2-OPT is the end
result of the following strategy:

Let ¢ be any arbitrary selection of m colors, one from each bin.

while there is a color ¢} in bin i : AVG({c1,¢2, .-, Ci=1, €}, Cit1, - Cm)) > AV G(c) do
€= (C1,€2, 000y Cim15 € Cig 1y wony Cm)

endwhile

2-OPT := AVG(c)

‘We establish the proof of the main theorem through two intermediate lemmas.

Lemma 7 2-OPT = OPT
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Proof: Suppose that C; is the color assigned to the node i in the graph. Define p' as
follows:

1. For every 1 <i <, (i,C;,i,C;) € p'.
2. For every (i,7) € E, (i,C;,5,C;) € p' and (5,C;,4,C;) €p'.

Clearly, p' satisfies the integrity constraints A — B and C — D. But |p'| =n+2-|E| and
therefore, by the previous lemma we conclude that p' is a repair of p.

Lemma 5 Assuming p is defined as in the proof of Lemma 2, if there is a repair p' of p
with n+2-|E| tuples, then is possible to color the graph (N, E) by using colors w, b and .

Proof: Let ¢ = {(i,z,i,z) | 1 <4 < n and z is equal to w, b or r}. For every (¢,j) € E,
there are 12 tuples in p mentioning i and j:

(i,w,5,b) (i, 5,w) (4,b,i,w)
(i,w,5,7) (i, 45,6)  (4,b,,7)
(i,b,5,w)  (§,w,i,b) (4,ri,w)
(4,6,5,7)  (yw,iyr)  (jy7y4,b)

A repair of p must have at most two tuples from this set and, therefore, [p' —¢| < 2-|E|.
Thus, |p' Ng| must be equal to n, since [p'| = n+2-|E|. Hence, for every node i there exists
a color Cj such that (i,C;, i, C;) € p'. We will prove that if we choose color C; for painting
node 4, then we have a coloring for the graph.

Let (i,7) € E. There are at most two tuples in p’ that mention i and j together. If we
have zero or one of these kind of tuples, [p' — g| < 2- |E| and, therefore, |p'| <n+2-|E|,
a contradiction. Thus, we have exactly two tuples in p’ mentioning i and j together. But
these tuples together with (i, Cj, 4, C;) and (4, Cj, 4, C;) cannot violate the set of functional
dependencies, because p' is a repair. Then (i,C;, j,C;) € p and (4,C;,i,C;) € p. By the
definition of p, we conclude that C; # Cj. o

Lemma 6 There is a set of 2 FDs F, for which the problem of determining the ezistence
of a repair of r of size < k is NP-data-hard.

Proof: Modification of the lower bound proof of Theorem 3. We build the instance by
using the same tuples of the first and second kinds, as well as “sufficiently many tuples”
of the third kind, each with a different new symbol w. It is enough to have 3n + 1 tuples
of the third kind for each clause (where 7 is the number of clauses), thus the instance will
have the total of 3n+n(3n+ 1) tuples. Every repair that contains a tuple of the third kind,
has to contain at least 3n + 1 such tuples (by maximality). The formula ¢ is satisfiable iff
there is a repair of size < 3n. o
Lemmas 2 and 6 imply the following theorems, resp.

Theorem 4 There is a set of two FDs Fy for which determining whether
b () > k

in r is NP-data-hard. a
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Proof: Let n; denote the number of objects of color ¢; and let w; denote the total weight of
objects of color ¢;. For any color ¢ in bin 4, it can be verified (after a little bit of arithmetic)
that AVG((c1, €2, ¢ 1,€},Cit1,-Cm)) > AV G(c) if and only if one of the following holds
(where n is the number of objects of color c}):

(1) n; =n} and w} > w;
(@) s < nf and (= wi) (o — ) > AVG(S)
(3) ni > nf and (w} — w;)/(n} —n;) < AVG(c).

Intuitively, the conditions above may be interpreted in the following way. Let the density
of a set of objects be the sum of the weight of the objects divided by the number of objects.
A swap is beneficial if and only if the net changes made correspond to adding objects with
density greater than the current average density of the solution, or deleting objects with
density smaller than the current average density of the solution.

Now if 2-OPT < OPT, then there is some c for which none of the above 3 conditions
holds for any choice of ¢ in any bin i and yet OPT is larger than AVG(c). Specifically, let
the coloring for OPT be d = (d1, dy, ...,dm) where the total weight of objects of color d; is
u; and the total number of such objects is m;. We will show that for some ¢, the choice
¢} = d; will satisfy one of the above 3 conditions, yielding a contradiction.

First observe that, for any ¢ such that n; = m;, having w; < u; would immediately give
a contradiction. Also, if u; < w;, then OPT can be improved by replacing d; with ¢;, again
a contradiction. Therefore, if n; = mn; it must be that u; = w; and we may as well assume
that d; = ¢; for all such i.

Next consider the colors which are different in d and c. We will use the elementary fact
that i +A+B +A_p p+B _p

P P

m>— then either q+C>E or 7+ D > =
In particular, let ¢ = 3>, and p = 35, wi. Let B =37, ui—wiand F =37, . mi—
n;. Observe that 2% =OPT > 2-OPT = 2. If the sum in E runs over only one index i
then ¢} = d; satisfies (2) or (3) above, a contradiction. Otherwise, E may be partitioned
into two sums A and B and F into corresponding sums C' and D such that the above fact
guarantees that either % > 2-OPT or ﬂ—g > 2-OPT. If the former is true, we replace £
and F with A and C; otherwise we replace F and F with B and D. Repeated application
of the above fact in this manner will eventually result in finding some 7 such that ¢} = d;
satisfies (2) or (3), a contradiction. o

‘We have just shown that the simple 2-OPT strategy will converge to the value OPT.
However, it does not necessarily follow that the number of iterations of the 2-OPT strategy
is polynomial. For this, we need another idea.

Let ¢ be any selection of colors with one color from each bin. We say that color ¢; is
stable if there exists no ¢} in the i™" bin for which the condition (1), (2), or (3) holds. Note
that if color ¢; can be replaced by any color in bin i to produce an increase in the value of
AVG, then there exists a stable color with which it can be replaced, this simply being the
color which results in the largest value of AVG obtained by maintaining the colors in all
bins other than i fixed while trying different colors from the i** bin. Clearly such a stable
color can be found by simply cycling through the choices for the it bin. This leads to the
following “Stable-2-OPT" strategy.
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Let ¢ be any arbitrary selection of m colors, one from each bin.

while there is a color ¢ in bin i : AVG({c1,¢2, ..., Ci=1, €}, Cit1, -y Cm)) > AV G(c) do
Find a stable color d; for bin 4.
€= (€1, €2y 10y Cin 15 iy Cig 15 ey Cm)

endwhile

Stable-2-OPT := AVG(c)

;From Lemma 7, it follows that Stable-2-OPT = OPT also. In addition, we claim the
following.

Lemma 8 Any color ¢; is chosen in the Stable-2-OPT strategy at most once as a stable
color for the it bin.

Proof: Consider the situation when a color ¢; is chosen as a stable color for the first time.
At this point in time, none of the conditions (1), (2), or (3) holds with respect to other
colors ¢/ in bin i. This means that none of the colors ¢ with n; < n! can ever take the
ith position as a stable color since AVG increases monotonically in the run of the strategy
and color ¢; will always be preferred over such a color ¢}. Similarly, none of the colors ¢}
with n} = n; can ever take the ith position as a stable color. Finally, if a color ¢ replaces
¢; as a stable color, it must be because AVG has increased to such an extent that condition
(3) now holds; subsequently the monotonicity of AVG ensures that color ¢ will always be
preferred to color ¢; as a stable color for the i*" bin and hence color ¢; will never ever be
chosen again. [u]

Each iteration of the while loop chooses a new stable color and by Lemma 8, a color is
chosen at most once. It follows that the number of iterations of the while loop is at most
the number of colors available. Therefore Stable-2-OPT finishes in polynomial time.

Now the main theorem follows from Lemmas 7 and 8.

Theorem 6 If the set of FDs F consists of a single dependency X — Y, with X NY =,
then the data complegity of computing both glb:,ycm (r) and lub:ya(l) (r) in an instance r is
in PTIME. o

3.3.2 Two functional dependencies

Theorem 7 There is a set of two FDs F3 for which determining whether
g™ (r) <k

in r is NP-data-hard.

Proof: We can use the same reduction from 3SAT as in theorem 3. Given a set of clauses,
there is a satisfying assignment if and only if there is a repair of the corresponding database
 for which AVG(D) = 1 (since otherwise the glb-answer is greater than 1). This is the case

if and only if glbp ) (r) < L. o

Theorem 8 There is a set of two FDs Fy for which determining whether
b (r) > k

in r is NP-data-hard.
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4 Hybrid Computation

As we have seen, determining glb-answers and lub-answers is often computationally hard.
However, it seems that hard instances of those problems are unlikely to occur in practice. We
expect that in a typical instance a large majority of tuples are not involved in any conflicts.
If this is the case, it is advantageous to break up the computation of the lub-answer (or the
glb-answer) to f in 7 into three parts:

-

. the computation of f in the core of 7,

)

. the computation of the lub-answer to f in the complement of the core of r (which
should be small), and

w

. the combination of the results of the first two steps using an operator g (which depends

on f).

The first step can be done using a DBMS because the core of 7 can be computed using a
first-order query (Theorem 1).

Definition 13 The scalar function f admits a g-decomposition of its lub-answers (resp.
glb-answers) w.r.t. a set of FDs F if for every instance r of R, the lub-answer (resp.
glb-answer) v to f satisfies the condition

v = g(f(Corer(r)),")
where v' = lub{,-(r — Corep(r)) (resp. v' = _qlb';;(r — Corep(r)))- ]
Theorem 11 The following pairs describe g-decompositions admitted by scalar functions
é 1. f = MIN(A), g = min;
2. f =MAX(A), g = max;
3. f = COUNT(*), g = +;
4. f=SUM(R), g = +.

Proof: First, notice that every repair r’ of r w.r.t. a set of FDs F is a union of Corep(r)
and a repair of 7 — Corep(r). Now to see that the first decomposition holds for f = MIN(A)
consider:

lub Poss{-(r) = min(f(Corer(r)), lub Poss';(r — Corep(r)))

and similarly for glb-answers and other decompositions. a

5 Special Cases

‘We consider here several cases when the conflict graph has a special form that could be used
to reduce the complexity of computing answers to aggregation queries. We only consider
lub-answers to COUNT (*) queries. It is an open question whether our approach will generalize
to other classes of scalar aggregation queries.
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Proof: We reduce 3SAT to our problem. Change the tuples of the instance in the proof of
theorem 3 as follows:

3. (w,2,Cj,d), 1 < j < n, where w is a new symbol and d < 1.
Given a set of clauses, there is a satisfying assignment if and only if there is a repair
of the corresponding database r for which AVG(D) = 1. This is the case if and only if
lubg“m (r)>1. o

3.4 Aggregation using COUNT (4)
‘We assume here that distinct values of A are counted (COUNT (DISTINCT A)).
Theorem 9 There is a single FD dy = B — A for which determining whether
COUNT(A
b () <k
in r is NP-data-hard.

Proof: To see that the lower bound holds, we will encode an instance of the HITTING SET
problem in r (whose schema is R(A, B)). The HITTING SET problem [14] is formulated
as follows: Given a collection C' = {Si,...,S,} of sets, is there a set H (called a hitting
set) with k or fewer elements that intersects all the members of C'? For every set S; in C'
and every element z € S; we put the tuple (z,7) in r. There is in C a hitting set of size less
than or equal to k if and only if there is a repair of 7 with at most k different values of the
first attribute A. [u]

Theorem 10 There is a single FD dy = A — B for which determining whether
w0 @) > k
in r is NP-data-hard.

Proof: We reduce SAT to this problem. Let ¢ = C; A... A Cy. Consider the functional
dependency A — B and the database instance r over the schema ABC with the following
tuples:

1. (pi,1,C;) if making p; true makes Cj true.

2. (p;,0,Cj) if making p; false makes C; true.
Then, ¢ is satisfiable iff lubﬁ?vm(c) (r) >n. [u]

3.5 Summary of Complexity Results

The following is a tabular summary of the results presented in this section. The membership
in NP is from Proposition 2.

glb-answer lub-answer
[Fl=1 F>2 =1 72
MIN(A) PTIME PTIME PTIME NP-complete
MAX(A) PTIME NP-complete PTIME PTIME
COUNT (*) PTIME NP-complete PTIME NP-complete

COUNT(A) | NP-complete | NP-complete | NP-complete | NP-complete

SUM(A) PTIME NP-complete PTIME NP-complete ‘
AVG(A) PTIME NP-complete PTIME NP-complete ‘
18
5.1 BCNF

‘We show here that if the set of FDs F' has two dependencies and the schema R is in Boyce-
Codd Normal Form (BCNF), computing lub-answers to COUNT(*) queries can be done in
PTIME. This should be contrasted with Theorem 4 which showed that two dependencies
without the BCNF assumption are sufficient for NP-hardness.

Given a set of FDs F in a schema R, we say that the schema R is in BCNF if all the
dependencies in F are of the form X — Y where X contains a key of R (w.r.t. F). This
definition can be found in every database textbook. BCNF is often satisfied in practice,
since schemas in BCNF are considered good, by the virtue of being free of redundancies
and insertion/deletion/update anomalies. For example, the relation instance in the proof
of Theorem 3 is not in BCNF, since neither A nor C'is a key of this relation.

‘We pursue here two different approaches to BCNF schemas. The first [5] is based on
the observation that for 2 FDs in BCNF the conflict graph is claw-free. For such graphs
computing a maximum independent set (an independent set of maximum cardinality) can be
done in PTIME. The second approach is direct and yields a subquadratic time complexity
bound.

Definition 14 A FD X — Y is a partition dependency over R if X UY =U (where U is
the set of all the attributes of R) and X NY = 0. o

Lemma 9 For any instance r of R and any partition dependency d =X —Y over R, the
conflict graph G, is a union of disjoint cliques.

Proof: Assume (t;,3) and (f3,t3) are two edges in Gg, such that t; # 3. Then #,[X] =
ta[X], t1[Y] # to[Y], t2[X] = t3[X], and #[Y] # t3]Y]. Therefore ¢;[X] = t3[X]. Also,
t1{Y] # t3[Y] because otherwise #; and ¢3 would be the same tuple. So (t1,t3) is an edge in
Gy o

Lemma 10 If R is in BCNF and F is equivalent to a set of FDs with k dependencies, then
F is equivalent to a set of FDs with at most k partition dependencies.

Proof: We build a set of partition dependencies equivalent to F' by replacing every non-
trivial dependency d = X — Y, d € F, by the partition dependency X — U — X. o

Therefore, in the case |F| = 2 we can assume that F' = {d;,d,} where d; and dy are
different partition dependencies. (The case of |F| = 1 has already been shown to be in
PTIME, even without the BCNF assumption.) Note that Lemma 10 does not have to hold
for arbitrary FDs.

‘We consider now the first class of graphs for which maximum independent set can be
computed in PTIME: claw-free graphs. Since repairs correspond to maximal independent
sets in the conflict graph, the size of a maximum independent set provides the lub-answer
to a COUNT (*) aggregation query.

Definition 15 A graph is claw-free if it does not contain an induced subgraph (Vo, Eo)
where Vo = {t1,t2,t3,t4} and Eo = {(t2,t1), (t3,t1), (ta,t1)}- a

Lemma 11 If R is in BCNF over F = {d1,d>}, then for every instance v of R, the conflict
graph G4, 4,),r is claw-free.
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Proof: Assume that the conflict graph contains a claw (Vg, Eg) where Vo = {t1,15,t3,4}
and Eg = {(t2,%1), (t3,%1), (ts,t1)}. Then two of the edges in Ey, say (t2,%1) and (t3,t1)
come from one of Gy, » or G4, ,. By Lemma 9, the edge (t3,t2) also belongs to that graph,
and consequently to G (4, 4}~ Thus the subgraph induced by Vj is not a claw. a

‘We note that it can also be shown that the conflict graph is perfect in this case [5]. (A
graph is perfect if its chromatic number is equal to the size of its maximum clique.)

Theorem 12 If the relational schema R is in BCNF and the given set of FDs F' is equiv-
alent to one with at most two dependencies, computing lub?,wm(‘) (r) in any instance v of R
can be done in PTIME.

Proof: The theorem follows from Lemma 11 and the fact that a maximum independent
set in a claw-free graph can be found in polynomial time [28, 26]. o
‘We show now the second approach that directly yields an O(n') complexity bound.

Theorem 13 If the relational schema R is in BCNF and the given set of FDs F is equiv-
alent to one with at most two dependencies, computing lubs,uum(‘) (r) in any instance v of R

can be done in O(n'®) time where n is the number of tuples in r.

Proof: Suppose that Ga,, = (V, E1) and Gy, r = (V, Ep). Then Gq, 4,3,» = (V, E1 U Ep).
By Lemma 9, both Gg, , = (V, E1) and Gg,, = (V, E2) are unions of disjoint cliques. Let
U1,Us, ... , Uy, be the cliques in Gy, ;. Let W1, Wy, ..., Wy, be the cliques in Gg, ;.

In order to find a maximum independent set in G 4,4}, = (V,£1 U Ez), we con-
struct a bipartite graph H = (U U W, Eg) as follows: U = {uj,ug,... ,ug,} and W =
{w1,wy,... ,wk,}. For each vertex v € V, v is in exactly one clique U; and in exactly one
clique W;. We add an edge (u;,w;) into Ey. H contains only these edges.

A matching of H is a subset M C Eg such that no two edges in M share a common end
vertex. The crucial observation is that the independent sets in G g, ,},» = (V, E1UEz) one-
to-one correspond to the matchings in H. To see this, first note that the vertices of G4, 4,} -
one-to-one correspond to the edges of H. Consider two vertices 2,y in G4, 4,},- Suppose
that e = (z,y) is an edge in G{d‘ Jda},r- Without loss of generality, we may assume e € E;.
Then both z and y are in the same clique U;. Hence, the two edges in H corresponding to =
and y share a common vertex u; in H. Conversely, suppose that z and y are not adjacent in
Gldy,d5},r- Then z and y are in different cliques in G{q4,3,, say they are in Uj and Uy, where
i # i', respectively. Similarly, z and y are in different cliques in G{g,},, say they are in W;
and Wy, where j # j', respectively. Thus the edge (u;,v;) in H corresponding to z and
the edge (uy,v;) in H corresponding to y share no common end vertex in H. Therefore,
a subset S of vertices in G{g, 4,},» i an independent set if and only its corresponding
edge set is a matching in H. Hence, finding a maximum independent set in G4, 4,},r IS
equivalent to finding a maximum matching in the bipartite graph H. This can be done in
O((|U| + |[W|)!/?|Ex|) time by using the algorithm in [20]. Since [U| < n,|W| < n and
|Eg| = n, the total time needed is O(n'"®). o

‘We show now that more than two FDs, even in BCNF, push the problem of computing
lub-answers beyond tractability.

Theorem 14 If the relational schema R is in BCNF and the given set of FDs F' is equiv-
alent to one with three dq dencies, the data lezity of computi Iub(,:;u““(')(rj in an
instance v of R is NP-hard.
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6 Related and Further Work

‘We have provided a complete classification of the tractable/intractable cases of the prob-
lem of computing glb- and lub-answers to aggregation queries with scalar functions in the
presence of functional dependencies. We have also shown how tractability can be obtained
in several special cases and presented a practical hybrid computation method.

‘We only briefly survey the related work here. A more comprehensive discussion can
be found in [3]. The need to accommodate violations of functional dependencies is one of
the main motivations for considering disj ive datab [22, 30] and has led to various
proposals in the context of data integration [2, 6, 13, 25]. A purely proof-theoretic notion of
consistent query answer comes from Bry [7]. This notion, described only in the propositional
case, corresponds to our notion of core answer. None of the above approaches considers
aggregation queries.

There seems to be an intriguing connection between relation repairs w.r.t. FDs and
databases with disjunctive information [30]. For example, the set of repairs of the relation
BrownVotes from Example 1 can be represented as a disjunctive database D consisting of
the formulas

BrownVotes(A,11/07,541) V BrownV otes(A, 11/11, 560)
and
BrownVotes(B,11/07,302).

Each repair corresponds to a minimal model of D and vice versa. We conjecture that the
set of all repairs of an instance w.r.t. a set of FDs can be represented as a disjunctive table
(with rows that are disjunctions of atoms with the same relation symbol). This is not as
obvious as it seems, as the repairs require an ezclusive representation of disjunctions, which
is forced through the minimal model semantics of disjunctive formulas. The relationship in
the other direction does not hold. E.g., the set of minimal models of the formula

(p(a1,b1) V p(az,b2)) A p(as, bs)

cannot be represented as a set of repairs of any set of FDs. However, we are not aware of
any work on aggregation in general disjunctive databases (but see below).

The relationship between sets of repairs and databases with OR-objects [22, 9] is more
complicated.

Example 7 The set of repairs of the relation BrownVotes in Ezample 1 cannot be repre-
sented as a table with OR-objects. However, the set of repairs of the projection of Brown-
Votes on the first and third atiributes:

County Tally
A

can be represented as

County Tally
A OR(51,560)
B 302
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Proof: Let dy,dy,d3 be three partition dependencies. As before, the graph Gy, , = (V, E;)
(1 < i< 3) is a union of disjoint cliques. We also have G(a, dydq),r = (V: E1 U Ey U E).
Our problem is equivalent to finding a maximum independent set in G (4, 4, ,d},r-

To show the problem is NP-hard, we reduce the 3-Dimensional Matching (3DM) problem
[14] to it. The 3DM problem is defined as follows:

An instance of 3DM is a tuple (X,Y, Z, M), where X,Y, Z are three disjoint sets of the
same cardinality, and M C X XY X Z. A matching of the instance is a subset M’ C M such
that no two elements in M’ agree in any coordinate. The goal is to determine the existence
of a (maximum) matching of size | X|.

Given an instance (X,Y, Z, M) of 3DM, we construct a graph D = (Vp, Ep) as follows:
Vp = M. Suppose X = {z1,z9,...,7}. Partition M into M,...,M; such that M; =
{(z:,y,2) € M} (for 1 <i < t). For each i (1 <1i < t), we add a clique into Ep whose
vertices are exactly the triples in M;. Denote the set of the edges added this way by Ex.
Note that the graph (Vp, Ex) is a union of disjoint cliques. Similarly, we perform the same
action for Y and Z, and let Ey and E; be the sets of the edges added, respectively. We
set Ep = Ex UEy UEy.

Note that the maximum matchings of the instance (X,Y, Z, M) one-to-one corresponds
to the maximum independent sets of the graph D. Also note that D = G4 g, a5}, for
the instance r = M and partition dependencies dj = A — BC, d2 = B — AC, and
d3 = C — AB, where ABC is the schema of r. Thus, there is a maximum matching of size
|X] iff glb?ﬂ?ﬁ(ﬁz) (r) = | X|. This completes the reduction. o

5.2 Other tractable cases

There are other, simpler cases where the conflict graph has a structure that makes it possible
to determine the cardinality of a maximum independent set in PTIME.

Theorem 15 If an instance 7 is the disjoint union of two instances that separately satisfy
F, the data complezity of computing lubi-wm(') (r) is in PTIME.
Proof: In this case, the only conflicts are between the parts of r that come from different
instances. Thus the conflict graph is a bipartite graph. For bipartite graphs determining the
cardinality m of a maximum independent set can be done in PTIME. This follows from the
fact that mn = n—k where n is the number of vertices in the graph and & is the cardinality of
the minimum vertex cover. The latter is equal to the cardinality of the maximum matching
in the graph (Konig-Egervary Theorem [23]). [u]
Note that the assumption in Theorem 15 is satisfied when the instance r is obtained by
merging her two i datab in the context of database integration.

Theorem 16 If every tuple in an instance r is in conflict with at most two tuples in the
same inst the data lezity of computing lubi-w“r(') (r) is in PTIME.

Proof: In this case, each vertex in the conflict graph has degree at most 2, thus the conflict
graph is a union of disjoint components each of which is an isolated vertex, a non-cyclic
path, or a single cycle. Finding the cardinality of a maximum independent set in such a
graph can clearly be done in PTIME. o
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In the example above, the the schema of the relation BrownVotes was not in BCNF. But
even under BCNF, there is still a mismatch.

Example 8 Consider the following set of FDs F = {A — B, A — C}, which is in BCNF.
The set of all repairs of the instance {(a1,b1,c1),(a1,bz,c2)} cannot be represented as a
table with OR-objects. o

The relationship in the other direction, from tables with OR-objects to sets of repairs, also
does not hold.

Example 9 Consider the following table with OR-objects:

OR(ab) ¢
a OR(c,d)
It does not represent the set of all repairs of any instance under any set of FDs. o

A correspondence between sets of repairs and tables with OR-objects occurs only in the
very restricted case when a relation is binary, say R(A,B), and there is one FD B — A.

Several people [12, 9] studied aggregation in databases with OR-objects. As in our
case, the query results in this case are indefinite. The dissertation [12] suggests, like we
do, to return ranges of values of the aggregate functions. On the other hand, the paper [9]
proposes to return sets of all possible values of such functions. The second approach runs
into the problem that the set of possible values may have exponential size, c.f., Example 5.
The paper [9] discusses not only scalar aggregation but also aggregation functions (GROUP
BY in SQL). Possibly, some of the techniques of that paper can be adapted if we extend
the present results in that direction. Due to the above-mentioned lack of correspondence
between sets of repairs and tables with OR-objects the results from our paper cannot be
directly transferred to the context of [9], except in a very restricted case, and vice versa.

Incidentally, the paper [9] incorrectly claims that the greatest lower bound on the
value of the aggregate function COUNT(A) can be computed in PTIME in tables with OR-
objects. This is contradicted by our Theorem 9, which shows in an equivalent setting
that checking whether the glb bound is less than or equal to k is an NP-complete prob-
lem. The paper [9] provides a greedy PTIME algorithm (Algorithm 3.1) for computing the
glb of COUNT(A) but the algorithm is incorrect. To see this consider the set of OR-objects
S ={OR(a,b),OR(a,c),OR(a,d),b,c,d}. The algorithm will compute 4 as the lower bound
on the number of different values that cover all the OR-objects in S. However, this bound
is actually 3 = |{b, ¢, d}|.

There are several proposals for language constructs specifying nondeterministic queries
that are related to our approach (witness [1], choice [15, 16, 18]). Essentially, the idea is
to construct a maximal subset of a given relation that satisfies a given set of functional
dependencies. Since there is usually more than one such subset, the approach yields non-
deterministic queries in a natural way. Clearly, maximal consistent subsets (choice models
[15]) correspond to repairs. Datalog with choice [15] is, in a sense, more general than our
approach, since it combines enforcing functional dependencies with inference using Datalog
rules. Answering queries in all choice models (YG-queries [18]) corresponds to our notion of
computation of consistent query answers for first-order queries (Definition 5). However, in
[18] the former problem is shown to be co-NP-complete and no tractable cases are identified.
One of the sources of complexity in this case is the presence of Datalog rules, absent from
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our approach. Moreover, the procedure proposed in [18] runs in exponential time if there
are exponentially many repairs, as in Example 5. Also, only conjunctions of literals are
considered as queries in [18]. Arbitrary first-order or aggregation queries are not studied.

As mentioned earlier, the paper [3] contains a general method for transforming first-order
queries in such a way that the transformed query computes the consistent answers to the
orginal query. In that paper, d complet and termination of the transformation
are studied, and some classes of constraints and queries for which consistent query answers
can be computed in PTIME are identified. Representing repairs as stable models of logic
programs with disjunction and classical negation has been proposed in [4, 17]. Those papers
consider computing consistent answers to first-order queries (but not to aggregation queries).
No tractable cases beyond those of [3] are identified in [4, 17], which is not surprising in
view of Corollary 2.

Many further questions suggest themselves. First, is it possible to identify more tractable
cases and to reduce the degree of the polynomial in those already identified? Second, is it
possible to use approximation in the intractable cases? The INDEPENDENT SET problem
is notoriously hard to approximate [19], but perhaps the special structure of the conflict
graph may be helpful. Finally, it would be very interesting to see if our approach can be
generalized to broader classes of queries and integrity constraints. In most implementations
of SQL2, only functional dependencies in BCNF are supported (using PRIMARY KEY and
UNIQUE constraints). Therefore, the approaches described in Section 5 may be applicable
there. It is not obvious, however, how to generalize our approach to broader classes of
queries. Is it possible to combine the approach of this paper with that of [3]?

There is some recent work done on rewriting aggregation queries in terms of aggregation
views [29, 10, 11]. It would be interesting to explore how to take advantage of those results
when computing consistent answers to aggregation queries. Another possible avenue is to
consider aggregation constraints [24, 27).

Finally, alternative definitions of repairs and consistent query answers that include, for
example, preferences are left for future work. Also, one can apply further aggregation to the
results of aggregation queries in different repairs, e.g., the average of all MAX(A) answers.
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Abstract. When data sources are virtually integrated there is no com-
mon and lized hanism for intaining global i . In

it is likely that i istencies with respect to certain global
integrity constraints (ICs) will occur. In this chapter we consider the
problem of de ning and computing those answers that are consistent wrt
the global ICs when global queries are posed to virtual data integration
systems whose sources are speci ed following the local-as-view approach.
The solution is based on a speci cation using logic programs with stable
model semantics of the minimal legal instances of the integration system.
Apart from being useful for computing consistent answers, the speci
tion can be used to compute the certain answers to monotone queries,
and minimal answers to non monotone queries.

a-

1 Introduction

There is an increasing number of available information sources, many of them on-
line, like organizational databases, library catalogues, scienti ¢ data repositories,
ete., and in di erent formats and ranging from highly structured, like relational
databases, to semi-structured, like data on the web. Many applications need to
and combine information from several databa in consequence, a user
(or application) is confronted to many di erent data sources.

One possibility for attacking this problem consists in bringing a possibly
huge amount of data -that might be required by the application- into one single,
physical, material site; and then making the application interact with this only
data repository. This process is costly in term of storage, design, and refreshment,
which would be necessary when the original sources are updated. That is, we
have complexities that are similar to those involved in the processes associated
to data warehouses, but with the di erence that updating the repository could
be more crucial that in data warehouses, where, most likely, decision support
could be achieved without having completely up-to-date data.

An alternative solution consists in keeping the data in their sources. In this
way, if the application needs answers to a query, it has to interact with the
collection of available sources, rst determining and selecting those that contain
the relevant information. Next, queries have to be posed to those sources, on an

acc

the data contained in the data source

particular, two alternative ways to speci
in such a way that the mediator can make use of it. In Section 3 the semantics
of virtual data integration systems with open i
approach is given in detail. In Section 5 we brie y review the notion of consistent
answer to a query posed to a single relational database, and some methodologies
for computing them. The notion of consistent answer to a query, but now for an
integration system, is de ned in Section 6. With the goal of computing consistent
answers in integration systems, in Section 7 logic programs with stable model
semantics are used to specify the class of minimal instances of open integration
systems under LAV. The results presented there are interesting in themselves,
independently from consistent query answering, because they can be used to
compute (ordinary) answers to both monotonic and non monotonic queries in
integration s; ms, which extend previous results in the area. Section 8 shows
how to compute consistent answers to queries posed to integration systems. The
speci cation of minimal instances presented in Section 7 is extended in Section
9 to the case where in addition to open sources also closed and both closed and
open sources are available. That speci cation is presented here for the rst time.
In Section 10, some open research issues are indicated. In Section 11 we nalize
with a discussion of related work.

2 Virtual Data Integration Systems

2.1 Mediators for data integration

The main features of a mediator based system are: (a) The interaction with
the system via queries posed to the mediator; (b) Updates via the mediator are
not allowed; (c) Data sources are mutually independent and may participate in
di erent mediated systems at the same time; (d) Sources are allowed to get in
and out; (e) Data is kept in the local, individual sources, and extracted at the
mediator’s request.

Since the mediator o ers a database like interface to the user or application,
it has a global or mediated schema, consisting of a set of names for relations
(virtual tables) and their attributes. This schema is application dependent and
determines a (family of) query language(s), like in a usual relational databases
from the user point of view. However, the “database” corresponding to the global
schema is virtual.

A user poses queries to the mediator in terms of the relations in the global
schema. However, in order to answer those global queries, the mediator needs
to knows the correspondence between the global schema and the local schemas.
This is achieved by means of a set of source descriptions, i.e. descriptions of
what data can be found in the di erent sources. Having this information, when
the mediator receives a query , it develops a query plan that determines: (a) the
portions of data that are relevant to the query at hand, (b) their locations in the
relevant data sources, (c) how to extract that data from the sources via queries,
and (d) how to combine the answers received into a nal answer for the user.

and the di erent results have to be combined. This can be a
long, tedious, complex and error prone process if performed on an ad hoc basis. It
is better to have a general, robust and uniform implementation that supports this
process on a permanent and regular basis. Ideally, the application will interact
with the data sources via a unique -database like - common interface.

A solution in this line consists in the virtual integration of the data sources
via a mediator [75], that is, a software system that o ers a common interface to a
set of autonomous, independent and possibly heterogeneous data sources. Under
this paradigm for data integration, the integration is virtual in the sense that the
data stays in the sources, but the user -who interacts with the mediator- feels like
interacting with a single database. The sources most likely do not cooperate with
cach other, and the mediator, except for the possibility of asking queries, has
no control on the individual sources. There is no central control or maintenance
mechanism either. It is also desirable that the set of participating sources is

exible and open.

It is clear that combining data from di erent and independent sources o ers
many and di cult challenges. If the integrated system is expected to keep some
correspondence with the reality it is modelling, then it should keep some gen-
eral, global semantic constraints satis ed. This is di cult to achieve, because
most likely there will be semantic con icts between pieces of data coming from
di erent sources. Since there is no central, global integrity enforcement mecha-
nism, and there is no possibility of doing any kind of global data cleaning, as in
the datawarehouse approach to data integration, semantic problems have to be
solved when the application interacts with the integration system.

More speci cally, in this chapter we describe novel techniques to solve incon-
sistencies when queries posed to the integration system are answered. That is,
only those answers to a global query that are consistent with the given global
integrity constraints are returned. Apart from the problem of de ning the notion
of consistent answers in thi; mario, there is the problem of designing query
plans to consistently answering queries.

The mediator, in order to design query plans, needs to know the correspon-
dence between the global relations o ered by the mediator’s interface, which de-
termine an external query language, and the relations in the internal databases.
These descriptions of the contents of the internal data sources can be expressed
in di erent ways. In this chapter we will mostly concentrate to the local as view
approach to data integration, according to which the sources are described as
views of the global relations.

Global integrity constraints (ICs) will be expressed as rst order formulas,
and database instances are seen as st order structures with nite relations. We
say that a database instance D is consistent wrt to a set IC of ICs if D satis es
IC (what is denoted by D [= IC, as usual). Of course, the set of global integrity
constraints IC' will be assumed to be logically consistent, in the sense that at
least one database instance satis es it.

This chapter is structured as follows. In Section 2 we consider virtual data
integration systems, describing in general terms the main clements and issues; in

General Architecture of an Integration System ”

User Interface < 1

[ Global Schema ] [Sancebes:nplvurs ]

(Fmcmoar )

[ Execution Engine F-t-
1 L]

Fig. 1. Architecture of an Integration System

Figure 1 shows the main elements in the architecture of a mediator for virtual
integration of data sources.

The mediator is responsible of solving problems of redundancy, complemen-
tarity, incompl . and consistency of data in the integration system. In this
chapter we will consider this last problem, a very relevant one in this context.
For example, what should the mediator do if it is asked about a person’s ID card
number and it gets two di erent numbers, each coming from a di erent source?
The two sources, taken independently and separately, may be consistent, but
taken together, possibly not. Such consistency problems are likely and natural
in virtual data integration. Notice that consistency problems in virtual integra-
tion, unlike the “materialized” approaches to data integration, which o er data
reconciliation solutions, cannot be solved a priori, at the physical data level.

Another element shown in Figure 1 is the wrapper. Thi a module that is
responsible for wrapping a data source in such a way that the latter can interact
with the rest of integration system. It provides the mediator with data from a
source as r 1 by the ion engine. In it presents a data
source as a convenient database, with the right schema and data, the one that
is understood and used by the mediator. Notice that this presentation schema
may be di erent from the real one, the internal to the data source. Actually, it
may be the case that the source is not at all internally structured as a database,
but this should be transparent to the mediator. All this may require preliminary
transformations, cleaning, etc., before the data can be exported to the integration
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system. There is a wrapper (or more) for cach data source. In the following, we
will assume that each data source has already a wrapper that presents it as a
relational database.

Ezample 1. Consider a global schema for a database “containing” information
about music albums:  CD(Album, Artist, Year), Contract(Artist, Year, Label),
Songs(Album, Song). Now, a user wants to know the name of the label with
which Norah Jones had a contract during 2002. This is asked issuing the following
query to the global system Q: Ans(L)  Contract(NorahJones, 2002, L).

Here, predicate Ans will contain the answers, that are to be computed using
the expression on the RHS of this rule. In this case, this is the simple selection
SELECTx—NorahJones,y=2002 Contract(X,Y,L).

It is a problem that the material data is not in the virtual global relation
Contract, but in the data sources DBy (Album, Artist, Year), DBo(Album, Artist,
Year, Label), DB3(Album, Song). In consequence, a query plan is needed in order
to extract and combine the relevant data from the material sources. However,
in order to design such a plan, the mediator needs to know the correspondence
between the virtual global relations and the data sources. ]

A key element in the mediator architecture is the set of source descriptions,
i.e. the descriptions of the available sources and their contents (as presented
by the wrapper), which is achieved by establishing the relationships (mappings)
between the global schema and the local schemata. These descriptions are given
by means of a set of logical formulas; similar to the way in which views are
de ned in terms of base tables in a relational database, i.e. using queries written
in a query language. Usually those query languages use logical formulas or their
SQL versions.

With respect to how mappings are de ned, there are two main approaches
(and combinations of them): (a) Global as View (GAV), under which the relations
in the global schema are described as views of the collection of local relations
[73]; and (b) Local as View (LAV), under which each relation in a local source is
described as a view of the global schema [61]. GLAV denotes a combination of
GAV and LAV [37] where the rules can have more than one atom in the head.
Another approach, called Both as View (BAV), consists on a speci cation of the
transformation of the local schema into the given global schema, in such a way
that each schema can be seen as de ned as in terms of the other schema [65]. In
Section 2.2 we describe and compare the GAV and LAV appros

The plan generator gets a user query in terms of global relations and uses
the source descriptions to design a query plan. This is achieved by rewriting the
original query as a set of subqueries that are expressed in terms of the local
relations. The query plan includes prescriptions on how the answers from the
local sources have to be combined. The query rewriting process executed by the
plan generator strongly depends on whether the LAV or the GAV approach is
followed. Still much theoretical and technical research is going on in relation
to query plan generation. The plan is executed by the ezecution engine. Notice
that it should be the plan generator who takes care of anticipating and solving
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Once the global relations have been de ned as views, we may start posing global
que e. queries expressed in terms of the global relations. The problem is to
answer them considering that the global relations do not contain material data.
Under the GAV approach this is simple, all we need to do is rule unfolding.

Example 3. (example 2 continued) Consider the following global query about
the music albums released in the year 2003, with their artists

and songs

Ans(Album, Artist, Song) — CD(Album, Artist, 2003), Songs(Album, Song).

Since it is expressed in terms of the global schema, the data has to be obtained
from the sources, that is, the query has to be rewritten in terms of the source
relations. We do this by unfolding each global relation, replacing it by its de ni-
tion in terms of the local relations. We have underlined di erently the goals in
the body in order to keep track of the rewriting for each of them.

Ans'(Album, Artist, Song) DBy (Album, Artist, 2003),
DB, (Album, Artist, Year), DBy(Album, Song).

Ans'(Album, Artist, Song)  DBa(Album, Artist, 2003, Label),
DB, (Album, Artist, Year), DBy(Album, Song).

These new queries do get answers directly from the sources; and the nal answer
is the union of two answer sets, one for each of the rules. 0

If, in addition to the view de nitions, there are ICs that have to be and are
satis ed by the system, unfolding is not enough for query answering [17, 19] (see
Section 11 for more details).

Local as View

Under the LAV approach, each table in each local data source is described as
a view (i.e. as a query expression) in terms of the global relations. This may
seem somehow unnatural or unusual from the conceptual point of view, and
from perspective of databases practice, because here the views contain the data,
but not the “base tables”. However, as we will see, this approach has some
advantages.

More precisely, in the general situation we have a collection of material data
sources (think of a collection of material relational tables) Sy,...,S,, and a
global schema G for the system that integrates data from i, ..., S,. Tables
in Si,..., S, are seen as views over G, and in consequence, they can be de ned
by query expressions over the global schema.

Exzample 4. Consider the sources Sy, S> that are de ned by the view expressions

Si: Vi(Album, Artist, Year) — CD(Album, Artist, Year),
Contract(Artist, Year, emi), Year 1990
S Va(Album, Song) Songs(Album, Song).

potential inconsistencies. It should solve them in advance, when the plan is being
generated. Later in this chapter, we will explore this issue in detail.

2.2 Description of data sources

The global /local schema mappings or, equivalently, the descriptions of the source
contents are expressed through logical formulas that relate the global and local
relations.

Global as View

In this case, the relations in the global schema are described as views over the
table: conceptually very natural,
because views are usually virtual relations de ned in terms of material relations
(the tables); and here we have global relations that are virtual and local sources
that are materialized.

in the union of the local schemata. Thi;

Ezample 2. (example 1 continued) Assume the relation CD is de ned as the
view

CD(Album, Artist, Year) DBy (Album, Artist, Year)
CD(Album, Artist,Year) — DBs(Album, Artist, Year, Label).

Relation CD is de ned as the union of the projections of DBy and DB, on
attributes Album, Artist, Year, i.e. in relational terms, de ned by

CD = Ateum, artit, Yeor (DB1) U atvum, artist Year (DBe)-
The global relation Songs and Label are de ned as follows:

Songs(Album, Song) DBy (Album, Artist, Year), DBs(Album, Song).
Contract(Artist, Year,Label) ~ DBo(Album, Artist, Year, Label).

The rst view is de ned as, rst, the join of DBy and DBj via attribute Album,
and then, a projection on Album, Song. The second view is de ned as the pro-
jection of DB over Artist, Year, Label.

These views have been de ned by means of rules. Each rule speci es that in
order to compute the tuples in the relation in the LHS (the head of the rule), one
has to go to the RHS (the body of the rule) and compute whatever is speci ed
there. The attributes appearing in the head indicate that they are the attributes
of interest, thus the others (in the body) can be projected out at the end. If
there are more that one rule to compute a same relation, we use all of them and
we take the union of the results, as for the relation CD.

Instead of using a rule as above, we could have used relational algebra (or
relational calculus, or SQL2), in the case of the relation Songs,

Songs = atum,Song(DB1 X Atum DB3).

The language of rules is more expressive than relational algebra, e.g. recursive
views can be de ned using rules, but not with relational algebra [72]. o

Source S; contains a table whose entries are albums produced after 1990 by the
label EMI with their artists and years. Source Sy contains one table with songs
and their albums.

Those relations that are not de ned as views belong to the global schema G,
in this case, we have the relations: CD(Album, Artist, Year), Songs(Album, Song),
Contract(Artist, Year, Label). [m]

Notice that from the perspective of Sy, there could be other sources containing
information about albums produced by EMI after 1990, and that complementary
information could be exported to the global system. In this sense, the informa-
tion in S; could be considered as “incomplete” wrt what G contains (or might
contain). In other words, S; contains only a part of the data of the same kind
in the global system. We will elaborate on this later on. Finally, also notice that
in the example, and this is a general situation under LAV, the de nition of each
source does not depend on other sources.
Now we want to answer global queries under LAV.

Ezample 5. (example 4 continued) The following query posed to G asks for the
songs with its album and the year they were released:

Ans(Album, Song, Year) — CD(Album, Artist, Year), Songs(Album, Song).

This query is expressed as usual, in terms of global relations only, however, it
is not possible to obtain the answers by a simple and direct computation of
the RHS of the query. Now, there is no direct rule unfolding mechanism for the
relations in the body, because we do not have explicit de nitions for them. And
the data resides in the sources, which are now de ned as views.

We can see that plan generation to extract information from the sources
becomes more complex under LAV than under GAV. Since a query plan is a
rewriting of the query as a set of queries to the sources and a prescription on
how to combine their answers (what is needed in this example), the following
could be a query plan to answer the original query:

Ans'(Album, Song, Year) — Vi(Album, Artist, Year), Vo(Album, Song).

The query has been rewritten in terms of the views; and in order to obtain the
nal answer, we  rst extract values for Album, Year from Vi; then we extract the
tuples from Va; nally, at the mediator level, we compute the join via Album.
Notice that due to the limited contents of the sources, we only obtain albums
produced by EMI after 1990.

In LAV we pose a query in terms of certain relations (the global ones), but we
have to answer using the contents of certain views only (the local relations). In
consequence, query plan generation becomes an instance of a more general and
traditional problem in databases, the one of query rewriting using views.

To see this connection more clearly, assume we have a collection of views
Vi,..., Vs, whose contents have already been computed, and cached or materi-
alized. When a new query @ arrives, instead of computing its answers directly,
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we try to use the answers (contents) to (of) Vi,....V,. A problem to consider
s in determining how much from the real answer do we get by using the
pre-computed views only; and also determining what is the maximum we can
get in terms of the kind of views we have available. The research carried out
in query answering using views [60, 2, 49, 51, 50, 35] and query containment
[2, 56, 67, 23] has become quite relevant to the arca of data integration.

consi:

2.3 Comparison of paradigms

‘We have seen that under GAV, rule unfolding makes plan generation simple and
direct. On the other hand, GAV is not exible to accept new sources or eliminate
sources into/from the system. Actually, adding or deleting sources might imply
modifying the de nitions of the global relations.

LAV o ers more exibility to add new sources or delete old ones into/from
the integration system, because a new source is just a new view de nition. Other
sources do not need to be considered at this point, because there are no other
sources interfering in the process. Only the plan generator has to be aware of
these changes. On the other side, plan generation is provably more di cult [2,
58, 18, 73].

2.4 Data integration and consistency

Notice that, so far, we have not considered any integrity constraints at the global
schema level. Since the data sources are autonomous and possibly updated in-
dependently from the integration system in which they participate and from
other data sources, there is not much we can do wrt to data maintenance at
the global level. However, in virtual data integration, one usually assumes that
certain integrity constraints hold at the global level, and they are used in the
plan generation process [48, 30, 45]. Even more, in some cases the generation of
a query plan is possible because certain integrity constraints (are supposed to)
hold [30].

In general, we cannot be sure that such global integrity constraints hold,
because they are not maintained at the global level. A more natural scenario
is the one where integrity constraints are considered when queries are posed to
the system. In this case, we have the problem -to be addressed in Section 6-
of retrieving information from the global system that is consistent wrt certain
global constraints, but the problem has to be solved at query time, as opposed
to the usual approach in single databases, where all the data in the database is
kept and maintained consistent, independently from potential queries.! This is
an interesting point of view wrt integrity constraints: they constitute constraints
on the answers to queries rather than on the database states.

1 Work reported in [11] departs from this practice and considers a more exible ap-
proach to query answering in d where may be i i but
only answers to queries are expected to be consistent.

Erample 6. Consider the system Gy with global relation R(X,Y) and the fol-
lowing open sources

Vi(X.Y) R(X.Y): v ={(ab) (cd}
Va(X,Y) R(X,Y); vy = {(a,c),(d,e)}.

The global instance D for which the relation R has the extension R = {(a,b),
(e,d), (asc), (d,e)}® is legal, because: (a) v1  @1(D) = {(a,b), (e d), (a,c),
( and (b) v3  @2(D) = {(a.b), (c.d), (a,c). (d,e)}. All supersets of D are
also legal global insta g {(a.), (¢ ), (a.¢). (de). (c.e)} € Legal(G), but
no subset of D is legal, e.g. {(a,b). (c,d). (a,c)} ¢ Legal(G). ]

Ezample 7. Let D = {a,b,c,... } be the underlying domain. Consider the inte-
gration system Gy de ned by

Vi(X.Z)  P(X.Y).R(Y.Z); v ={(ab)}
Va(X,Y) P(X,Y); vz = {(a,0)}.

Each global instance D of the form {P(a,c), P(a, z), R(z,b)}, with z € D is a
legal instance, because v1  ¢1(D) = {(a,b)} and vy ¢2(D) = {(a,¢), (a.2)}.
Any superset of D is also legal, but none of its subsets is. u]

Now we can de ne the intended answers to a global query Q. They are the
certain answers, those that can be obtained from every legal global instance [2]:

Certaing(Q) := {t | t is an answer to Q in D for all D € Legal(G)}.

Ezample 8. (example 6 continued) Consider the following global query Q posed
tosystem Gi: Ans(X,Y)  R(X,Y).Tn this case, Certaing, (Q) = {(a,b), (c,d),
(a,0).(d, )} =l

The algorithms for constructing query plans should be sound and complete wrt
this semantics, more precisely they should be able to produce plans whose execu-
tion will allow us to get all and only the certain answers from a data integration
system; of course, without explicitly computing all the legal instances and query-
ing them.

4 Query plans

There are several algorithms for generating query plans. See [62, 51] for survey
of di erent techniques. In [45] a deductive methodology is presented. Here we
will brie y describe the inverse rules algorithm (IRA) [29, 30]. This algorithm is

In the rest of this chapter we will use a simpler description for an instance of this
kind. We simple write D = {(a,b), (c.d), (a,c), (d,e)}, because there is only one
global relation. If there were another relation, we write D = {R(a,b), R(c,d),
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Notice that the exibility to add/remove sources, in particular under LAV,
is likely to introduce extra sources of inconsistencies we have to take care of.

The global ICs we will consider are rst order sentences written in the lan-
guage of the global schema. In particular, they will be universal integrity con-
straints, i.e. sentences of the form Yoy (x), where () is a quanti er-free formula;
and also referential integrity constraints of the form Va(P(z) — 3y(Q(z',y)),
where 2/ x.

3 Semantics of Virtual Data Integration Systems

In the rest of this paper, unless otherwise stated, we will concentrate on the LAV
approach (see Section 11 for references on the GAV approach). The semantics of
virtual data integration systems is given in terms of the intended global instances.
This does not mean that such instances are to be computed, but they will allow
us to give a model theoretic semantics to global integrity constraint satisfaction,
to query answers, etc.

A data integration system G under the LAV approach is speci ed by a set of
view de nitions, plus a set of material tables v; corresponding to the views V;
de ned:

G X)) w(X7)iom (1)

Va(Xn)  en(X)); vn

Here, X; X/, and each v; is an extension (a material relation) for view Vi,
which in its turn is de ned as a conjunctive view.

Until further notice we will assume that the system has all its sources open
(also called sound). This means that the information stored in the sources might
be incomplete. The description in (1) plus the openness assumption will deter-
mine a a set of legal global instances. Now we describe how.?

Let D be a global instance, i.e. its domain contains
appearing in the source extensions and the view de nitions; and has relations
(and contents) for the global schema. We denote with ;(D) the set of tuples
obtained by applying to D the de nition of view V;. This gives an extension for
V; in (wrt) global instance D, which can be compared with v;. We call a global
instance D legal if the computed extension on D of each view V; contains the
originally given extension v;:

as

at least the constants

Legal(G) := { global D | v; € ¢i(D); i =1,...,n},

which captures the incompleteness of the sources, because if a view is applied to
a legal instance, the result will be a superset of the elements in the source. Only
legal instances will determine the semantics of G.

2A

milar semantics can be given in the case of the GAV approach [58].
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conceptually simple, shows the main issues,
ter in our solution to the problem of co
systems.

Our framework is as follows. We are given a global query @ posed in terms
of the global schema, but we need to go to the sources for the data required to
evaluate Q. The problem is how to do this, or more precisely, how to rewrite Q
in terms of the views available, i.e. in terms of the relations in the sources.

We will assume that we have a set of rules describing the source relations as
conjunctive (Select-Project-Join) views of the global schema [1]. We also assume
that the sources are open.

The input to our problem is a global query expressed, e.g. in Datalog (may be
recursive, but without negation). The expected output is a new Datalog program
expressed in terms of the source relations.

and will be used later in this chap-
tent query answering in integration

Ezample 9. Consider the local relations Vi, V2 in sources Sy, Sz, resp., and the
global relations Ry, Rz, R3. The set of source descriptions contains

St Vi(X,Z)  Ri(X.Y),Re(Y,Z), (2)
Sy WB(X.Y) Rs(X.Y). (3)

The idea behind TRA consists in obtaining, from these descriptions, “inverse
rules” describing the global relations. Let us start from (3). Since V3 is open, it
is contained in the “extension” of the global relation Rs. That is, the only way
to get tuples for V5 is by going to pick up tuples from the RHS of (3). In other
terms, we can say that Vo “C” Rs, or, equivalently, V5 “=" Rs. More precisely,
we invert the rule in the description of Vs, obtaining

Ry(X,Y) W(XY),

now, a rule describing Rs, which we wanted. If there are (not in this case though)
other rules of this kind describing R3 (from other source description rules con-
taining R3 on the RHS), we just take the union.

Now, wrt inverting rule (2), a rst attempt could be

RiX.Y), Ra(Y,2)  VA(X.Z),

but this is a strange rule, with a strange head. There are several problems. If
the head is seen as a conjunction, then we may split it into two rules, namely
Ri(X.Y) VA(X,Z) and Ry(Y.Z) Vi(X,Z), but now the two occurrences
of variable Y are independent, and before it was a shared variable that allowed
us to combine tables Ry, Ry by means of a join. This connection is lost now.
Another problem has to do with the unrestricted occurrence of Y in the heads;
there are no conditions on Y in the bodies (this kind of rules are considered
unsafe in databases [72]). It should not be the case that any value for Y is
admissible.

A better approach is as follows: Vi(X,Z) Ri(X,Y).Rao(Y,Z) is equiva-
lent to Vi(X,Z) 3Y (Ri(X,Y)ARs(Y,Z)) (ajoin followed by a projection).
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Tnverting, we obtain 3Y (Ry (X, Y) ARy (Y, Z))  Vi(X, Z). This rule has an im-
plicit universal quanti cation on X, Z, then cach value for ¥ possibly depends
on the values for X, Z, i.e. Y is a function of X, Z. To capture this dependence,
we replace Y by a function symbol f(X,Z) (a so-called “Skolem function™),
obtaining

Ri(X, f(X, Z2) A Ro(f(X, 2),2) - VA(X, Z).

As before, we split the conjunction, obtaining the rules Ri(X, f(X,Z))
Vi(X,Z) and Ro(f(X,Z),Z)  Vi(X,Z).In this way, we obtain the following
set V! of inverse rules

(X, f(X,2)) WX, 2)
Ra(f(X,2),2)  Wi(X,Z)
Ry(X)Y)  WK(X,Y),

which can be used to compute answers to global queries.
Notice that we may need other symbolic functions, for dependencies between
variables in the same or other rules. More precisely, we introduce one function
symbol for cach variable in the body of a view de nition that is not in the head;
and that function appears evaluated in the variables in the head.
Now, assume the following global query @ is posed to the integration system

Ans(X.Z)  Ri(X,Y). Ro(Y, Z), Ra(X)
Ry(X)  Rs(X,Y)
Ry(X) Re(X)
Re(X)  Ri(X,Y), Re(X,Y).

‘We can see that the goal Rg cannot be computed, because there is no de nition
for it in V1. Then, Ry cannot be evaluated either; and the rule de ning it can
be deleted. For the same reason, the third rule in the query cannot be evaluated;
and can be deleted. In this way we obtain a pruned query Q~:

Ans(X,Z)  Ri(X,Y), Ra(Y, Z), Ra(X)
Ry(X)  Ra(X,Y).

In consequence, the nal query produced by the plan generator, using the IRA,
is Q= UV~L This is a sort of Datalog program, but with functions.

This is all and the best we have to answer the original query. With the new
query program we can compute some answers to Q, but actually, “the most” we
can. The plan can be evaluated, e.g. bottom-up, from concrete source contents
[72]. The nal answer may contain some tuples with the function symbol f in
them; but they are eventually deleted.

‘We will illustrate this process with a di erent query. Assume that the source
contents are vy = {(a,b). (a,a), (c.a),(b.a)} and vy = {(a.c),(a.a),(c.d),
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is also a rst order or Datalog query. However, for more complex queries
“rewriting” may need to be expressed in more expressive languages, e.g. dis-
junctive logic programs with stable model semantics, as in Section 7, in order to
capture a higher data complexity of query answering (see [22] for a discussion
about what should qualify as a query rewriting).

Now, if in addition to the source descriptions, we have a set IC of global
integrity constraints; it is quite likely that they are not going to be sati
by (all) the legal inst; In consequence, instead of retrieving the certain
answers to a global query, we might be interested in retrieving those answers
that are consistent wrt IC . This notion is still to be formalized (see Section
6), but having done that, we would expect that the query plans generated by
the mediator should incorporate new elements, responsible for enforcing the
satisfaction of the ICs at the query answer level.

In order to formally de ne what is a consistent answer to a query to the
integration system, we will appeal to some notions and techniques introduced,
in the context of single, stand alone relational databases, to characterize and
compute answers to queries that are consistent wrt to integrity constraints that
the database may fail to satisfy. We review some of those relevant notions and
techniques in Section 5.

ances

5 Consistent Query Answering for Single Databases

Assume we have a single relational database instance D and a set of integrity
constraints (ICs) that D may fail to satisfy. This inconsistent database can still
give us “correct” answers to queries, because not all the data in it participates
in the violation of the ICs. It becomes necessary to de ne in precise terms what
is the “correct” or “consistent” information in the database; and in particular,
which are the “correct answers” to a query. Having done this, it is necessary to
develop mechanisms for retrieving such consistent answers; but without changing
the database, restoring its consistency. See [11] for an extended discussion about
why this is a natural and important problem. Here we brie y review some notions
and techniques that have been given to attack these problems.

Given a relational database instance D, a query @, and a set IC' of ICs, we
say that a tuple ¢ is a consistent answer to Q in D wrt IC whenever ¢ is an
answer to Q in every repair of D, where a repair of instance D is a database
instance D', over the same schema and domain, that satis es IC, and di ers
from D by a minimal set of changes (insertions/deletions of whole tuples) wrt
to set inclusion [3].

Intuitively speaking, consistent answers are invariant under minimal ways of
restoring consistency. Repairs are just an auxiliary concept, used to characterize
the consistent answers, but we we are not interested in repairs per se. Actually we
may try to avoid to (explicitly and completely) compute them whenever possible,
because this is an expensive process. In consequence, the ideal situation is the
one in which we are able to compute the consistent answers to Q by posing a
-hopefully- simple new query Q' to the inconsistent instance D, in such a way

(b,b)}; and the query is now Q':

Ans(X)  Ri(X,Y), Ra(Y, Z), Ry(X)
Ans(X)  Ra(X,Y)
Ri(X)  Rs(X.Y)
Ri(X)  Ri(X.a).

‘We have the same set V= of inverse rules as above, they are the same for all
the queries. So, rst we prune the query rules that cannot be evaluated from the
inverse rules. We delete the last rule in the query, because it does not contribute
to Ry (a cannot be an f-value). We obtain the nal query consisting of the
rules in V! plus the rst three rules in Q' It can be evaluated bottom-up. The
mediator will use the inverse rules applied to the sources, which requires sending
one query to each source, and will obtain

Ry = {(a. f(a,1)), (a. f(a,a)), (¢, f(c;@)), (b, (b, @)}
Ry = {(f(a.b),b). (f(a,a),a), (f(c;a),a), (f(b,a),a)}
Rs = {(a,¢), (a,a), (c,d), (b,b)}.

Using the third rule of @', we obtain Ry = {a,c,b}. Now we can evaluate
the rst rule in @', whose body becomes  x(Ry x Ry) N Ry = {a,c,b} N
{a,c,b} = {a,c,b}. Then, a,c,b € Ans. From the second rule in Q" we obtain
[fla,b), f(a,a), f(c,a), f(b,a) € Ans, but these tuples are not considered, because
all the tuples containing function symbols are eliminated from the nal answer
set. So, mally Ans = {a,c,b}.

Given a Datalog query, the query plan obtained for it is a new Datalog program,
but may contain function symbols (strictly speaking, for this reason, it is not
a Datalog program). If the original query does not contain recursion, neither
does the nal query. The query plan: (a) does not contain negation, (b) can be
evaluated in a bottom-up manner and always has a unique x point, (c) can be
constructed in polynomial time in the size of the original query and the source
descriptions.

The plan obtained is the best we can get under the circumstances, i.e. given
the query, the sources and their descriptions. More precisely, for a Datalog query
Q and a set of sources de ned as conjunctive views, the query plan generated
with the IRA is mazimally contained (2] in the original query @ [30]. In other
words, there is no other query plan that retrieves a set of answers to @ that is
a proper superset of answers to @ produced by IRA.

It is possible to prove [2] that for conjunctive views and Datalog queries (and
open sources), a maximally contained query plan computes all the certain an-
swers. In consequence, the inverse rules algorithm returns all the certain answers
to Datalog queries [30].

We have seen in this section and also in Section 2.2 for the GAV approach,
that the query plan prescribes how to rewrite the original, global, conjunctive
in terms of the source relations. The new query

query as a new query expre:
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that the standard answers to Q' are precisely the consistent answers to Q. In
s possible to generate anew st order query @’ with that property,
however in other situations, the query Q' has to be written in some extension of
Datalog, possibly as disjunctive normal programs [41, 27].

Ezample 10. Consider the database instance D = {P(a), P(b), R(a), R(c)} and
the integrity constraint IC': Va(—~P(x) V ~R(z)), stating that tables P and R
do not intersect. The instance is inconsistent wrt to IC. The two repairs of
D are Dy = {P(a), P(b), R(c)}, D2 = {P(b),R(a),R(c)}. The query Q(z):
Ans(z)  P(z) has b as only consistent answer, because P becomes true only
of b in both repairs. The query Q" consisting of the rules Ans(z)  P(z) and
Ans(z)  R(z), has a,b,c as consistent answers, what shows that data is not
cleaned from inconsistencies: the problematic tuple a is still recovered. [m]

some c:

In [11], an alternative repair based semantic was used in the presence of ref-
erential integrity constraints. There, if a tuple is inconsistent (participates in
a violation), the possible ways to repair are deleting the inconsistent tuple or
adding a tuple with null values in the existentially quanti ed attributes of the
constraint.

In order to compute the consistent answers to queries, two main approaches
have been introduced. One of them is rst order (FO) query rewriting (if the
original query is rst order) [3, 25, 13]; and the other consists in speci cation of
database repairs using disjunctive logic programs with stable model semantics
[4, 47, 7]. The later approach is more general, but more expensive than FO query
rewriting. Despite their higher data complexity, disjunctive programs have to be
applied, also to some rst order queries, because in some cases, for complexity
reasons, there is no FO rewriting [26, 20, 38].

5.1 Query rewriting

Ezample 11. (example 10 continued) Consider again query Q. Notice that a
tuple ¢ is an answer to the query and at the same time consistent wrt to IC if it
is not in R. In consequence, instead of posing the original query to the original
database, we pose the new query (P(x) A =R(x)), which gives us the expected
answer, b, in D.

The extra condition —R(z) imposed on the original query is the so-called
residue of the literal P(z) wrt the IC. Notice that this residue can be obtained
by resolution between the query literal and the IC. We write T'(Q) = (P(x) A
=R(x)). In principle, the new literal appended may have residues of its own
wrt IC. We do not have any in this case, but if we had, we would append
its residues, obtaining T2(Q), etc. Here, the iteration stopped and we write
T%(Q) = (P(x) AR(x)). See [3, 25] for details.

The FO query rewriting based methodology introduced in [3] via the T operator
has some limitations [3, 25]. It cannot be applied to existential or disjunctive
queries, like query @' in Example 10, and only universal integrity constraints
can be involved.
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5.2 Logic programming

The second approach consists in representing in a compact form the collection
of all database repairs. This is like axiomatizing a class of models, namely as the
intended models of a disjunctive logic program under the stable model seman-
tics [41]. That is, the repairs correspond to certain distinguished models of the
program, namely, to its stable models.

Once the speci cation has been given, in order to obtain consistent answers
to a, say, FO query @Q, the latter is transformed into a query written as logic
program, which is a standard process [64, 1]; and then, this query program is
“run” together with the program that speci es the repairs. This evaluation can
be implemented on top of DLV, for example; a logic programming system that
computes according to the stable models semantics [31, 59]. We illustrate the
methodology presented in [6] by means of an example. In order to capture the
repair process, the program uses annotation constants, whose intended semantics
is shown in Table 1.

Annotation] Atom | The tuple P(a) is...
ta | P(a ta)| a fact of the database
fa__ | P(a,fa) | a fact not in the datab
ta | P(a ta) | advised to be made true
fa P(a, £a) | advised to be made false
) [ true or becomes true
£ | P(a,£*) | false or becomes false
t P(a,t™")| true in the repair
£ |P(a,£**)| false in the repair

Table 1. Semantic of Annotation Constants

Ezample 12. (example 10 continued) The repair program  (r, IC') consists of:
1. Facts: P(a,ta), P(b,ta), R(a,ta), R(c, ta).

Whatever was true (false) or becomes true (false), gets annotated with t* (£*):
2. P(X,t*) P(X,ta)

(X)) P(X,ta)

(X,f*)  not P(X.tq)

(X.f*)  P(X,fa) .. thesame for R ...

3. P(X.fa) V R(X,fa) P(X,t*), R(X,t*)

One rule per IC; that says how to repair the IC, in this case, if x belongs both
to P and R, either delete the tuple from P or from R. Passing to annotations
t* and f* allows to keep repairing the DB wrt to all the ICs until the whole
process stabilizes.

Repairs must be coherent: we use denial constrai
prune the models that do not satisfy them

at the program level, to
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) participate in the violation of FD, only (c,d), (d, ¢) should be con-
swers to the query.

Notice that the local functional dependencies Vi: X — Y, Va: X - Y
are satis ed by the sources. O

A virtual integration system does not have data at the global level. In spite of
this, we would like to be able to characterize such a system as consistent or
not, but we would like to do this on the basis of the data at hand, the one that
ency caused by data
that is only potentially contained in the integration system. In this direction we

is forced to be in the system, avoiding problems of con:

concentrate on the minimal instances. We will see that this shift of semantics
does not have an impact on query answering for relevant classes of queries in
comparison to the semantics based on the whole class of legal instances.

De nition 1. [10] (a) A minimal global instance of an integration system G is a
legal instance that does not properly contain any other legal instance. We denote
by Mininst(G) the set of minimal instances of G.

(b) We say G is consistent wrt a set of global ICs IC if for every D € Mininst(G)
it holds D = IC. u]

Example 14. (example 13 continued) System Gy has only D = {(a,b), (¢, d), (a, ),
(d,e)} as minimal instance. There FD does not hold; in consequence, Gy is in-
consistent. u]

The minimal instances will play a special role in our treatment of inconsistent
integration systems. Since we have a well de ned subelass of legal instances, it
is natural to consider those answers to queries that hold for all the instances in
the clas

De nition 2. [10] The minimal answers to a global query @ posed to an in-
tegration system G are those answers that can be obtained from every minimal
instance. We denote them by Minimalg(Q). O

Ezample 15. (example 14 continued) For the query Q: Ans(X,Y)  R(X,Y),
we have Minimalg, (Q) = {(a.b), (c.d). (a,c),(d.e)}, which can be obtained by
querying the only minimal instance. In this case the minimal answers coincide
with the certain answers.

Now consider the query Q": Ans(X,Y)  —R(X,Y). On the basis of the un-
derlying domain, we have (a,e) € Minimalg, (Q'), because the minimal instance
does not contain the tuple (a, e). However, (a,e) ¢ Certaing, (Q'), because there
are -non minimal- legal instances that contain the tuple (a,e).

‘What was shown in the previous example holds in general, namely Certaing(Q)
< Minimalg(Q); and for monotone queries [1] they coincide; but for queries with
negation, possibly not.

As in the case of a single database, consistent answers will be the answers
that are invariant under the repairs of the system. We make these intuitions
precise.
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1 P(X,ta), P(X,fa)
R(X, ta), R(X, fa)

Finally, annotations constants t** and f** are used to read o the literals that
are inside (outside) a repair, i.e. they are used to interpret the stable models of
the program as database repairs.

5. P(X,t%)  P(X,ta)
P(X,t™)  P(X,ta), not P(X,f.)
P(X,£%)  P(X,fa)
P(X,£7)  not P(X,ta), not P(X,ta). ... etc.

The program has two stable models (and two repairs):

{P(a,ta), P(a,t*), P(a, "), P(b, ta), P(b,t), P(b,t"), R(a, ta), R(a, £a),
R(a,£%), R(a,£**), R(c,ta), R(c,t"), R(c,t*)}  {P(a), P(b),Q(c)}-

{P(a,ta), P(a,£a), P(a, £*), P(a, £%), P(b, ta), P(b, t*), P(b,t**),
R(a,ta), R(a,t"), R(a,t**), R(c,ta), R(c,t*), R, t™)}  {P(b), Q(a), Q(c)}.

If we want the consistent answers to the query (P(z) A R(z)), for example,
we run the repair program  (r, IC) together with query program Ans(X

P(X,t**),Q(X,t**), obtaining the answer ~Ans = ), as expected. With the
query Ans(X) P(X,t**),Q(X, f**), we obtain the answer Ans = {b}. Fi-
nally, we can pose the disjunctive query Q' we had in Example 10 by means
of the two rules Ans(X)  P(X,t**) and Ans(X)  R(X,t**), obtaining
Ans = {a,b,c}. O

This approach can be used for Datalog”:~ queries and universal constraints. The
extension for referential constraints can be found in [11]. We have successfully
experimented with consistent query answering (CQA) based on speci cation of
database repairs using the DLV system [31].

6 Semantics of CQA in Integration Systems

In this section we will assume that we are working under the LAV approach.

Actually, this scenario is more challenging than GAV and inconsistency issues

are more relevant due to the exibility to insert/delete sources into/from the
om.

Let us st consider an example that will help us motivate our notions of
tem and consistent query answering.

ency of an integration

Ezample 13. (example 8 continued) We found for query Q:  R(X,Y), that
Certaing, (Q) = {(a,b), (c,d),(a,c), (d,e)}. Now assume that we have global
functional dependency FD: X — Y. It isnot satis ed by D = {(a.b), (c,d), (a.c),
(d,€)}. nor by i . o legal instanc s it. Since the tuples
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De nition 3. [10] Let G be an integration system and IC a set of global ICs.
(a) A repair of G wrt to IC is a global instance that satis es IC, and minimally
di ers from a minimal instance (wrt to inclusion of sets of tuples). We denote
by Repairs’®(G) the set of repairs of G wrt IC.

(b) A ground tuple t is a consistent answer to a global query Q wrt IC if for
every D € Repairs'®(G), it holds D |= Q[t], i.e. ¢ is an answer to Q in D. We
denote by ConsiséC(Q) set of consistent answers to Q. O

Ezample 16. (example 14 continued) Consider system G, with the global FD: X
— Y. Since D = {(a,b), (¢, d), (a,c), (d,e)} is the only minimal instance, and
it does not satisfy FD, the system has two repairs wrt FD, namely D' =
{(a.b),(c,d),(d,e)} and D? = {(c,d), (a,c), (d.e)}.

Now, for the query Q : Ans(X,Y) R(X.Y), we have Consisi”(Q) =
{(c.d), (d.e)}, as expected. For the existential query Q”(X): Ans(X) R(X.Y),
we have Consisi”(Q") = {a,c,d}. This shows that the value a is not lost
through the repair process and is still recovered as a consistent answer. [m]

This example shows that repairs may not be legal instances. The two repairs in
it are not. This exibility is necessary to make the system repairable. Remember
that the repairs are just an auxiliary notion that we use to de ne the consistent
answers to queries.

Here we are considering repairs that treat deletions and insertions of tuples
symmetrically. Other approaches may privilege certain kinds of changes, e.g. in
[20] insertions are preferred to deletions in the presence of referential ICs, with
the purpose of giving a better account of the openness (or incompleteness) of the
sources (see Section 11 for a more detailed discussion of alternative approaches).
However, adapting our speci cations and methodologies for query answering to
this kind of special repairs is rather straightforward.

Also notice that an alternative de nition of consistent answer in terms of
being true in all consistent legal instances does not always work, because, in
the presence of functional dependenc most likely there won’t be any consis-
tent legal instances (sce Example 13). Nevertheless, this alternative direction is
studied in [57].

Except for strange cases -that we will exclude- where the set of ICs is non
generic [11], i.e. it entails by itself (independently from the data) that a ground
literal belong (or does not belong) to the database, the consistent answers are real
answers. More precisely, for generic ICs, we have ConsisC (Q) S Minimalg(Q)
[10]. If G is consistent wrt IC, then Consis(C (Q) = Minimalg(Q). The problem
with non generic ICs is that they force speci ¢ data items, which may have not
been in the original instance, to belong (not to belong) to every (any) repair,
something that can be easily achieved without appealing to ICs. This situation
is illustrated in the following example.

Ezample 17. (example 16 continued) Assume that, in addition to the functional
dependency, IC also contains the non generic constraint VaVy(z = a Ay =
e — R(z,y)), saying that tuple (a,e) belongs to R. In this case, there is only
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one repair for Gi, namely D3 = {(a.e),(c.d), (d,e)}. Now, Consisl (Q) =
{(a,e). (¢,d), (d.e)} / Minimalg, (Q). u]

Having de ned what a consistent answer is, we need to nd mechanisms for
computing them.

7 Logic Programming Specification of Minimal Instances

In this section we will show how to specify the minimal instances of a virtual
integration system under LAV using logic programs with stable model semantics
[41, 42]. This speci cation is -as we will see- interesting and useful in itself, but
in Section 8 it will also be used as the basis for computing consistent answers to
queries.

7.1 The simple speci cation

‘We will start by giving a preliminary version of the speci cation program. This
version is simpler to explain than the general, de nitive one, and already contains
the key ideas.

Ezample 18. (example 7 continued) It is easy to verify that the class of minimal
instances for the system is Mininst(G) = {{P(a,c), P(a,2), R(z,0)} | z € D}.
Now, the set V=1 of inverse rules is

P(X. f(X,2)) Vi(X,Z)
R(f(X,2),2) Wi(X,2)
P(X,Y) Vh(X,Y).

Tnspired by these inverse rules, we give the following speci cation program
(G2):
— Facts: dom(a), dom(b), dom(c), ...,Vi(a,b), Va(a,c).
- P(X,Y) W(X.Z).F (X.ZY),
R(Y.Z) V(X 2).F(X.2.Y),
PX,Y) Va(X.Y).
— FY(X,ZY)  Vi(X,Z),dom(Y), choice((X, Z), (Y)).

Here, dom(z) is a domain predicate with elements in D, FY is a predicate
corresponding to view V; and the existential variable Y in its de nition; and
choice((X, Z), (Y)) is the choice operator introduced in [39], which non-determin-
istically chooses a unique value for Y for each combination of values in (X, Z).
In this way, the functional dependency X,Z — Y is enforced; and inclusion of
redundant tuples in the global instances is (partly) avoided.

A program with choice  can be always transformed into a normal program,
SV( ) [39] with stable model semantics [40]. The so-called choice models of the
original program  are in one-to-one correspondence with the stable models of
its stable version SV(

satis ed, i.e. no other values for Y are needed. Nevertheless, the choice operator,
as used above, may still choose, and it doe zeD.

As mentioned before, the simple version of the speci cation program for this
system -even not being sound as a speci cation of the class of minimal instances-
can be used to correctly compute minimal and certain answers to monotone
queries. For instance, consider the following monotonic queries containing com-
parisons,

ther valu

Ans  P(X,Y).Y #¢ (5)

Ans(Y)  P(a,Y),Y £ec. (6)

The boolean query (5) has answer false in the class {{P(a, ), P(a,2)} | z € D},
because it is not true of all the instances in it. Query (6) has empty answer in
the same class. In the minimal instance {P(a, )}, the queries have answer false,
and (), respectively. We can see that these queries are correctly answered. a

At this point we could compare what can be obtained using the simple spec-
i cation of minimal instances and what could we obtain by trying to use the
inverse rules algorithm. Notice that the latter algorithm does not consider com-
parisons other than equalities [30]. The inverse rules can be seen as de ning a
sort of generic, symbolic instance, which is obtained by propagating the source
contents through the inverses rules (from the bodies to the heads in them) and
the function symbols.

For example, the set V™! of inverse rules for the system in Example 19
consists of P(X, f(X))  Vi(X)and P(X,Y)  Va(X,Y). If we propagate
the values in the sources, we obtain a “generic instance” containing f-values,
namely

Dy = {P(a.¢). Pla. (@)}, )
that represents a family of legal instances, each of which can be obtained by
interpreting f on the underlying domain D. Basically, this class coincides with
the class we obtained using the program above (and then it represents a superset
of the minimal instances, but a subset of the legal instances). A di erence is that
with the speci cation program we obtain the instances explicitly.

If we attempt to use “instance” (7) to evaluate the queries (5) and (6) (this
is the idea behind the IRA for conjunctive, built-in free queries in [30]), we
obtain, assuming that f(a) is di erent from ¢ because they are syntactically
di erent, that the answer to (5) is Ans = true, whereas query (6) gets the
answer Ans = {f(a)}, which, after elimination of the f-value, becomes Ans

The problem with this methodology for query answering based on generic
instances with functional values we just attempted, is that it does not capture
the minimal instances, actually the only minimal instance {P(a, ¢)} is missed by
the assumption that f(a) # c. In order to make this approach work, we would
have to consider alternative values for function f. Our explicit approach based
on the choice operator achieves this, and can be naturally extended -as we will
do in Section 7.2- in such a way that not only monotonic queries, but also non
monotonic queries containing negation, can be handled correctly (the latter, wrt
the minimal answer semantics).
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In our example, the stable models of SV(  (G2)) are

M, = {dom(a),...,Vi(a,b), Va(a,c), P(a,c), R(a,b), P(a,a)};
My, = {dom(a),...,Vi(a,b), Va(a,c), P(a,c), R(b,b), P(a,b)};
M, = {dom(a), .., Vi(a,b), Va(a, ), P(a,c), R(c,b)}; ete.

Here we show only their relevant parts, skipping domain atoms, and atoms con-
taining the Fy predicate. Tn this example we nd a one-to-one correspondence
between the models of () and the minimal instances of Ga.

More generally, the preliminary version of the speci cation contains the following
elements:

—

Facts: dom(a) for every constant a € D, and Vi(a) whenever a € v; for a
source extension v; in G.

For every view (source) predicate V; with de nition V;(X) — Py(X1)....,
P,(Xy), the rule

N

P(X;) vix), A RN X))
X e(X;\X)

. For every predicate FX' (X, X;) introduced in 2., the rule
FN(X, X)) Vi(X), dom(Xy), choice((X), (X1)).
It can be proved [16] that
Mininst(G)  class of stable models of SV(  (0))  Legal(G).  (4)

Queries expressed as logic programs can be answered by running them together
with  (G) under the cautious stable model semantics (that sanctions as true
what is true of all stable models). As a consequence of (4) we obtain that for
monotone queries Q the answers obtained using  (G) coincide with Certaing(Q)
and Minimalg(Q).

The inclusions in (4) suggest that equality may not be achieved. The following
example shows that that is the case.

Ezample 19. Let D = {a,b,c,...} be the underlying domain. The system Gs is
de ned by

Wi(X)  PX)Y); v = {a}
W(X.Y) P(X,Y): v = {(a,0)}.

Here we have Mininst(Gs) = {{P(a,c)}}, however, the legal global instances
corresponding to stable models of ~ (Gs) are of the form  {{P(a,c), P(a,2)} |z €
D}, that is, we obtain from the program more legal instances (or stable models)
than the minimal instances. The reason is that V5, being open, forces P(a, ) to be
in all legal instances, what makes the same condition on V; being automatically
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Example 20. (example 19 continued) Assume Gy is extended with the source
de nition V3(X,Y)  R(X,Y); vs = {(a,¢)}. Then, the minimal instance is
{{P(a,¢), R(a,)}}, and the instances obtained from the program are {{P(a,c),
P(a,2), R(a,¢)} | 2 € D}. Now the query

Ans  P(X,Y), not R(X,Y) (8)

has answer false both in the minimal instance and in the class of the instances
obtained from the speci cation program. In the later case, in the sense that the
query is not true in all the models of the program. That is, also in this case the
simple speci cation is giving us the right minimal answers.

On the other side, the same query evaluated in the new IRA-induced, generic
instance Dy = {P(a,c), P(a, f(a)), R(a.c)} has answer true if the functional
term is assumed to be di erent from c. [m]

This example shows that even for some non monotonic queries, the simple spec-
i cation program returns the correct minimal answers. It is an interesting open
problem to characterize the class of system descriptions and non monotonic
queries for which the simple speci cation returns the correct minimal answers
(however, see [16] for some results in this direction). On the other side, a naive
application of the IRA to a query containing negation, as (8), does not give the
correct answer.

It is a natural question as to whether the program with Skolem functions
introduced by IRA (as in [30]) could be used, instead of the functional predicates,
for specifying the repairs, pruning at the end the ground functional terms when
queries are answered. In [16] it is shown -and this applies to both the simple and
re ned version of the speci cation program- that doing so does not necessarily
capture the repairs of the system. The intuitive reason behind is that using the
function symbols may prevent us from detecting violations to the ICs by the
minimal instances. Actually, as Examples 19 and 20 already show, keeping the
functional symbols may fail to properly capture the minimal instances, which is
a problem when queries with negations or comparisons are to be answered.

In this work, when we answer non monotone queries, we are interested in the

minimal answers. Actually, the consistent answers as de ned here are a subset of
the minimal answers (see Section 6). Wrt to the certain answers to non monotone
queries, we can see that negated sub-queries can always be made false by adding
extra data to the legal instances of an integration system with open sources. We
believe that the notion of minimal answer to a non monotone query posed to
an open system is the natural notion to use?, instead of the notion of certain
answer.

7.2 The re ned speci cation

If we want  (G) to specify only the minimal instances, then the program has to
be re ned. The new version  (G) detects in which cases it is necessary to use the

4 Assuming, as we have done in this chapter, that the sources are de ned as conjunctive
views or disjunctions thereof. In particular, they are de ned without negation.
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function predicates. This is achieved by means of a stronger condition, addy, (X),
in the choice rules, ie. F'(X,X;)  addy,(X).dom(X;). choice((X), (X)),
where addy,(X) is true only when the openness of V; is not satis ed through
other views; and this can be further speci ed by means of extra rules. The general
re ned version is described and analyzed in detail in [16]. For it, the class of
stable models of the program provably coincides with the minimal instances. In
consequence, the program can be used to compute minimal answers to arbitrary
queries and certain answers to monotone queries.

The re ned version of the program uses annotation constants to be placed
in an extra argument added to the global relations. Their intended semantics is
given in Table 2. Annotation tq is used to read o the atoms in the minimal

instances. The others are annotations that are used to compute intermediate
atoms. We illustrate the re ned version by means of an example.

atom | the tuple P(a) is ... ]
ta P(a, ta) | an atom of the minimal legal instances
o P(a,0) | an obligatory atom in all the minimal legal instances
i P(a,vi) | an optional atom introduced to satisfy the openness of
view Vi
nv; P(a,nv;)| an optional atom introduced to satisfy the openness of a
view other than V;

Table 2. Semantic of Annotation Constants for Minimal Models

Ezample 21. (example 19 continued) The re ned program  (Gs) is:

dom(a),dom(c), ..., Vi(a), Va(a,c). 9)

P(X,Y,v1) addy,(X), FY (X,Y). (10)
addy, (X)  Vi(X), not auwy, (X). (11)
aury, (X)  vary, z(X, Z). (12)
vary, (X, Z)  P(X,Znvy). (13)

FY(X,Y)  addy,(X),dom(Y), choice((X), (Y)). (14)
P(X.Y,0) Va(X.,Y). (15)
P(X,Y,nvy) P(X.Y,0). (16)
P(X.Y.ta) P(X.Y,v1). an
P(X,Y,ta) P(X,Y,o0). (18)

Rules (10) to (13) ensure that if there is an atom in source Vy, e.g. Vi (a), and if
an atom of the form P(a,Y’) was not added by view V5, then it is added by rule
(10) with a Y value given by the functional predicate Y (a,Y’). This function
predicate is calculated by rule (14). Rule (15) enforces the satisfaction of the
openness of V3 by adding obligatory atoms to predicate P, and rule (16) stores
this atoms with the annotation nvy implying that they were added by a view
di erent from V;. The last two rules gather with annotation tq the elements that
were generated by both views. Those are the atoms in the minimal instances.
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8.1 Query Rewriting for CQA

Tn this section we will describe a methodology, tst presented in [10], that pro-
vides a partial solution to the problem of CQA under the LAV approach. It builds
upon the query rewriting approach to CQA for single relational databases de-
scribed in Section 5.1. The limitations of that approach are inherited by the
solution for the case of integration of data sources. In consequence, this solution
applies to queries @ that are conjunctions of literals, but without projection (or
existential quanti cation); and global integrity constraints that are universal. In
consequence, referential ICs are excluded.

The high level description of the rewriting based algorithm for CQA in in-
tegration system is as follows: Given as input a set IC of global integrity con-
straints, and global query @ that is a conjunction of literals, we do the following

Meta Algorithm (19)

. Rewrite Q(X) into the rst-order query T*(Q(X)) using IC.5

Transform T%(Q(X)) into a recursion-free Datalog™ query program  (7%(
Q) (this is straightforward [64]).

Find a query plan, Plan( (T*(Q))) to answer the query (7“(Q)) posed
to the global system.

Evaluate the query plan on the view extensions of G to compute the answer
set.

N

ke

>

A problem with this algorithm is that the program (7%(Q)) may contain
negation, that is introduced at the rst step. We give some examples.

Ezample 22. Consider the integration system

Vi(X,Y) P(X)Y); v = {(a,d)}
Vo(X,Z) P(X,Y),R(Y,Z); wva={(a,b),(b,c)}.

The minimal instances are of the form Dy, = {P(a,u), R(u,b), P(b,v), R(v,c),
P(a,d)}, with u,v € D. Now consider the global IC IC : Ya¥y(~P(z,y) V
~R(z,y)). The system is inconsistent, because the minimal instances obtained
with u = ¢,v = a, i.c. Doo = {P(a,c), R(c,b), P(b,a), R(a,c), P(a,d)} is i
sistent. The same happens with Dyy. The other minimal instances are consistent.
Then, the repairs are all the D, , above, except for the last two combinations,
which in their turn contribute with the repairs D}, = {R(c,b), P(b,a), R(a.c),
P(a,d)}, D, = {P(a,c), R(c,b), P(b,a), P(a,d)}, D}, = {P(a,b), R(b,b), R(b,c),
Pla,d)} D2, = {P(a,b), P(b,b), R(b,c), P(a,d)}. Now, consider the query @ :
P(X,Y)?. The only answer to this query in common to all repairs is {P(a.d)},
then this is the only consistent answer.

® We are assuming here that 7(Q(X)) produces a nite formula. Conditions for this
to happen in terms of Q and IC are studied in [3, 25]. However, those conditions are
satis ed by the most common universal ICs found in database prac
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The only stable model of this program is {dom(a), dom(c), . ., Vi (a), Va(a, c),
Pla,c,ta), Pa,c,0), Pla,c, nvy), auxy, (a)}, which corresponds to the only
minimal legal instance {P(a, c)}.

‘We have obtained an answer set programming speci cation of the minimal in-
stances of an open integration system under LAV. From it, the minimal answers
to complex queries, e.g. non strati ed Datalog queries [1], can be computed us-
ing the cautions or skeptical answer set semantics that sanctions as true what
is true of all stable models. Notice that the re ned version (and also the simple
version) of the speci cation program  (G) is a non strati ed program, whose
data complexity [1] is likely to be higher than polynomial [27]. As with the sim-
ple program, the re ned program can be used to compute the certain answers
to monotone queries.

It is interesting to observe that the speci cation (G) we just gave can be
seen as a considerable extension of the original IRA algorithm since it can be
used to obtain the certain answers to monotone queries involving comparisons
(see Example 19), and the minimal answers to non-monotone queries.

There are several issues and possible extensions that are discussed in detail
n [16]. We brie y mention some of them here. First, we do not need to make
any assumption about the underlying domain for the logic programming based
speci cations of minimal instances to work properly. All we need is that it -
possibly properly- contains the active domains of the sources and the constants
that may appear in the view de nitions. However, if the program is to be run with
asystem like DLV, we need to have a nite number of elements in the domain. We
can always simulate the potential in niteness of the underlying domain by means
ofasu ciently large nite domain [16]. This can be achieved by introducing fresh
constants. This subject related to a nite vs. in nite underlying domain certainly

deserves further i igation. Any case, computing with in nite stable models
has started to receive attention from the answer set programming community
[14].

A possible extension, also discussed in [16], consists in having views de ned
by disjunctions of conjunctive queries. Inspiration for the speci cation programs
can be found in the extension of the IRA to the case of disjunctive sources [29].

We will use the speci cation of minimal instances as a basis for the com-

putation of consistent answers (see Section 8). In Section 9, the speci cation
is extended to the case where also closed sources participate in the integration
system.

8 Computing Consistent Answers in Integration Systems

‘We will see two methodologies for consistently answering queries posed to virtual
integration systems under LAV. The rst one, in Section 8.1, is based on  rst-
order query rewriting. The second one, to be presented in Section 8.2, is much
more general, and provides a solution based on the speci cation of the repairs
of the minimal instances of an open integration systems. Both methodologies
eventually rely on the speci cation of minimal instanced presented in Section 7.

26

On the rewriting side, if we want the consistent answers to the same query
relative to IC, we rewrite the query as follows T(Q) : (P(X,Y) A ~R(X,Y))
(sec Example 11), which produces the following query program that contains
negation: Ans(X,Y)  P(X,Y), not R(X,Y).

Ezample 23. (example 6 continued) FD can be written in the form
VaVyVz(-R(x,y) V -R(z,2) Vy = 2). (20)
If the query Q: R(X,Y)? is posed to the system, we have to nd the residues of
R(X,Y) wrt (20), and we obtain after the rst step the rewritten query
T(Q(X,Y)): R(X.Y) A -3Z(R(X,2) A Z#Y). (21)
Query (21) is translated into the following Datalog™ program  (T*(Q(X,Y))):

Ans(X,Y)  R(X,Y), not S(X,Y) (22)

S(X,Y)  R(X,Z),dom(Y),Y # Z (23)
dom(a), dom(b), dom(c), dom(d), dom(e (24)

The domain extends the active domain [1] that contains the constants in the
sources and those that may appear in the view de nitions. This is a form of
materialization of a domain closure assumption, however we are not necessar-
ily closing wrt the active domain, but wrt a superset of it that contains fresh
constants. This allows us to correctly compute certain answers (see [16] for a
dis sion of this issue). The introduction of the dom predicate in pro-
a general way to make the rules safe [72]. Despite these considerations,
in this example, the domain predicate is not necessary, because (21) is logically
equivalent to

TY(Q(X,Y)): R(X,Y) A -3Z(R(X,Y) A R(X,Z) A Z#Y).

In consequence, program  (T(Q(X,Y'))) can be written as the set of safe rules
Ans(X,Y)  R(X,Y), not S(X,Y) and S(X,Y) R(X,Y),R(X,Z2),Y # Z.

At step 3. of algorithm (19), we need a query plan to answer the query
expressed by (22)-(24). As we can see, the query contains negation and compar-
isons.

Algorithms like IRA are designed to deal with negation-free queries without
comparisons [30]. On the other side, (7(Q)) does not contain recursion but
contains negation. In consequence, an algorithm like IRA, if it is going to be
applied in this context, has to be extended in order to handle queries that are,
e.g. non recursive Datalog programs with negation and comparisons.

Some very limited extensions of the IRA algorithm have been proposed in
order to include negation [10, 74, 35]. However, we can use our speci cation
of the minimal instances (see Section 7) as a general query plan mechanism
for eventually computing consistent answers to queries. In Algorithm (19) that
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speci cation can be used in the third step. All one needs to do is combine the
query obtained after the second step (with its predicates expanded with a new,

nal argument with the annotation t4 in it) with the speci cation of the min-
imal instances. The combined program is run under the cautions stable model
semantics.

Example 24. (example 22 continued) — The query Ans(X,Y)  P(X,Y)
not R(X,Y) has to be combined with the spe
stances of the integration system, which entially the same as the one given
in Example 18. If we want or need® to use the re ned version of the speci -
cation of minimal instances, then the query has to be rst transformed into
Ans(X,Y)  P(X,Y,tq), not R(X,Y, tq).

cation of the minimal in-

8.2 CQA from speci cations of repairs

A more general methodology that the one presented in Section 8.1 is based on
a logic programming speci cations of the repairs of the minimal instances of
an integration system. First results were presented in [15], and full details can
be found in [16]. This methodology works for queries expressed in extensions
of Datalog, in particular, for rst-order queries; and universal ICs combined
with acyclic sets of referential ICs. In the rest of this section, we will assume
that sources are open, and de ned as conjunctive views over the global schema.
However the solution can be extended to combinations of closed and open sources
(see Section 9), and views de ned as disjunctions of conjunctive queries [16].
Figure 2 describes the methodology in general terms. In order to compute the

istent answer to a global query, the query is expressed as a query program,
'h is run in combination with other programs that speci es, in two layers, the
minimal instances of the integration systems, rst, and then, the repairs of the
minimal instances. Of course, the same speci cation program can be used with
di erent queries. The speci cation of minimal instances is the one presented in
Section 7.

‘What we have so far is a speci cation of minimal instances of an open in-
tegration system, but they may not satisfy certain global ICs. In consequence,
we may consider specifying their repairs wrt those ICs. For this we can apply
the ideas and techniques developed to specify repairs of single databases (Sec-
tion 5). Actually, we can combine into a repair program, (G, IC), the program
that speci es the minimal instances with a program that speci es the repairs of
each minimal instance. This is because a minimal instance can be seen as (or
is) a single database instance. Instead of a full treatment (see [16]), we give an
example.

Example 25. (example 21 continued) Consider system Gg, but now with the
global integrity constraint Sym: VaVy(P(z,y) — P(y,)). Since Mininst(Gs) =

© In this example this is not necessary, because the simple program correctly speci es
the class of minimal instances. In [16] su cient conditions are identi ed for this to
happen.
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My = {dom(a), dom(c),..., Vi(a), Va(a,c), Pla,c;nvi), Pla,c,va),
Pla,c,ta), Pla,c,t*), auzy,(a), Pla,a,£%), P(c,a,£*), P(c,c,f*),
P(a,a,f**), P(c,a,ta), P(c,c,f**), P(a,c,t**), P(c,a,t*),
P(c,a,t**)}.

Ms = {dom(a), dom(c),..., Vi(a), Va(a,e), Pla,e,nvi), Pla,c,va),
Pla,c,ta), Pla,c,t*), auzy,(a), Pla,a,£*), P(c,a,£%), P(a,c,*),
Ple,e,f*), Pla,a,f), P(c,a,f*), Pla,c, ),  Ple,c,£*),
Pla,c,fa)}.

By reading the literals annotated with t**, we see that the st model corre-
sponds to the repair {P(a, ¢), P(c,a)}; the second one, to the empty repair. O]

Repair programs can be given for specifying the repairs of any open integration
system under the LAV approach with conjunctive view de nitions; and for any
set of ICs containing universal and acyclic referential integrity constraints [15,
16].

The restriction to sets of ICs that do not contain cycles in its referential
ICs has to do with limitations of the logic programming based approach to the
speci cation of repairs of single relational databases as presented in Section 5.
Fundamental, theoretical reasons behind these limitations, that are inherited by
our repair programs for integration systems, are studied in depth in [26, 20, 38].

With the repair programs, we c: i

1 now compute consistent answers to global
queries. Let Q(z) be a query posed to an integration system G. The methodology
is as follows. First the query gets its literals annotated with t**, £**, c.g. if the
query is rst order, say Q( P(u)  —R(v) ), we pass to Q' Q(  P(u,
t**)  R(v,f**) ). Next, aquery program (Q') with an Ans(X) predicate is
produced from @ (this is standard [64]). Finally, the program = (Q")U (G,
IC) is run under the stable model semantics; and the ground atoms Ans(t) €
N{S | S is a stable model of } are collected in the answer set to be returned
to the user.

Exzample 26. (example 25 continued) Consider G and the global query @ :
P(X,Y)? From it we generate Q" : P(X,Y,t**), which in its turn is trans-
formed into the query program (Q'): Ans(X,Y)  P(X,Y,t**). Next, we
form = (G, Sym)U (Q'), with  (Gs, Sym) as in Example 25.

Now, the models of program  are those of  (Gs, Sym) but extended with
ground Ans atoms, namely they are: M; = My U {Ans(a,c), Ans(c,a)}; Mo =
M3 UW. Since there are no Ans atoms in common, then query has no consistent
answers (as expected).

Erample 27. (example 16 continued) The program that computes the consistent
answers to query Q(X,Y): R(X,Y)? from system G, wrt FD is:

Subprogram for minimal instances:

dom(a). dom(b). dom(c). dom(d). dom

. Vi(a,b). Vi(c,d). Va(c, a). Va(e,d).
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Fig. 2. Computing Consistent Answers

{{P(a,c)}}, an the only instance does not satisfy Sym, the system is inconsis-
tent.

The repair program, (Gs, Sym), consists of two layers. The rst one is
exactly program  (Gs) in Example 21 that speci es the minimal instances; and
the second layer is the following subprogram that repairs the minimal instances;
it builds on the atoms annotated with tq in the rst layer:

P(X,Y,t")  P(X,Y,ta), dom(X), dom(Y).
P(X,Y,t")  P(X,Y,ta),dom(X),dom(Y).
P(X, Y, dom(X),dom(Y), not P(X,Y,tq).
£1) P(X, Y, £), dom(X), dom(Y).
P(X,Y, ) VP(Y,X,ta)  P(X,Y,t*), P(Y, X, £*), dom(X), dom(Y).
) P(X, Y, ta), dom(X), dom(Y).
P(X,Y,t")  P(X,Y,ta),dom(X),dom(Y), not P(X,Y,f).
P(X,Y, ) P(X,Y, ), dom(X), dom(Y).
P(X,Y, ) dom(X),dom(Y), not P(X,Y,ta)
not P(X,Y,ta).
P(X,Y,ta), P(X, Y, ).

The stable models of this program are:

R(X,Y,ta) Vi(X,Y).
R(Y,X.ta) Va(X.,Y).

Repair subprogram:

) R(X.Y,ta),dom(X),dom(Y).

) R(X.Y,ta), dom(X),dom(Y).
R(X,Y,f*)  dom(X),dom(Y), not R(X,Y, tq).

) R(X,Y.fa),dom(X),dom(Y).

) R(X,Y,t"),R(X,Z.t"),Y # Z,
dom(X),dom(Y'),dom(Z).
R(X,Y, ) R(X,Y,ta),dom(X),dom(Y).
R(X.Y.t™)  R(X,Y,ta),dom(X),dom(Y), not R(X,Y,fa).
R(X,Y, ), R(X, Y, ta).

Query subprogram:
Ans(X,Y) R(X,Y,t*™).

The Ans atom in common to the two stable models are Ans(c,d), Ans(d,e),
then the set of consistent answers to the query is {(c,d), (d,e)}.

Here we have used the simple version of the program that speci es the min-
imal instances. In this case the speci cation is sound, i.e. it does not compute
any model that does not correspond to a minimal instance. Classes of system
descriptions for which the simple speci cation has a sound behavior wrt the class
of minimal instances are studied in [16]. The example here falls into one of those
classes. a

The speci cations we have presented are sound and complete for CQA for sets
of ICs consisting of universal integrity constraints and acyclic sets of referential
integrity constraints [16]. Views can be de ned by disjunctions of conjunctive
formulas; and queries can be arbitrary Datalog™ queries.

9 Specification of Minimal Instances: Mixed Case

So far we have assumed that all the sources are open. Now we will consider the
mized case, where some of the sources may be closed or closed and open (clopen).
In consequence, a virtual data integration system will have a description like the
one in (1), but each source will have a label indicating if it is open, closed or
clopen [43]. Intuitively speaking, a closed source contains a superset of the data
of its kind in the system, and the clopen source contains exactly all the data of
its kind in the system.
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More precisely, if a material source relation v, de ned as the view V(X)
@, (X) of the global system, has been de ned as a closed (clopen) source, then
in any legal instance D, it must hold v 2 ¢, (D) (resp. v = ¢, (D.

In this section we will describe how to modify the program that speci es the
minimal instances presented in Section 7 when some of the sources are declared
closed or clopen.

Ezample 28. For the domain D = {a,b,c, ..}, consider the integration system
Ga:
Vi(X,Z) P(X,Y),R(Y,Z); vy = {(a,b)} open (25)
B(X,Y) P(X,Y); vy = {(a,¢)}  clopen (26)

In Example 18 we had the same sources and de nitions, but then they were
all declared open; and we had Mininst(Gs) = {{P(a,c), P(a, 2), R(z,b)} | = €
D}. Now, the label on the second sources forces relation P to be {(a,c)}. In
consequence, we obtain Mininst(Gs) = {{P(a, ), R(c,b)}}.

Tt is clear that the closed and clopen labels will impose additional restrictions on
the legal instances we had for the purely open case, when all sources are open. In
particular, these labels will never force to add new tuples to the legal instances.
Actually, if a source is declared closed, then that source will contribute with the
empty set of tuples to the minimal instances of the integration

With open, closed and clopen sources, the sets of legal and minimal instances
will always be subsets of the same sets for the case where the same sources are
all declared open. In order to obtain the minimal instances in the mixed case, all
we have to do is Iter out some of the minimal instances obtained in the purely
open case, namely those that violate the closedness condition for some of the
sources. This can be captured at the logic program speci cation level by means
of a program denial constraint, which has the e ect of discarding some of the
stable models.

In the mixed case, the program ,,i,(G) that speci es the minimal in-
stan of the program  (G) we had for the open case in Section
7 (as if all the sources were open) plus a denial constraint of the form
Py(X1),...,Py(Xy), not V(X), for each closed (or clopen) source v with view
de nition V(X)  Pi(X1),..., P.(Xy). That is, the open sources contribute
with rules to the program, the clopen sources both with rules and program
constraints, and the closed sources with program constraints only.

‘With these modi cations, the obtain the same correspondence between the
stable models of the program ,,;;(G) and the minimal instances of the mixed
integration system G.

onsis

Ezample 29. (example 28 continued) The program  ,i»(Gs4) that speci es the
minimal instances of system Gy is:

dom(a). dom(b). dom(c). ... Vi(a,b). Va(a,c).
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with the underlying databases has to be optimized. Some optimizations for CQA
in single databases are introduced in [7, 13].

Evaluation issues are also extremely relevant. They have to do with split-
ting the program, caching intermediate results, reusing previous computations,
localizing computations to the relevant parts of the data sources. Answering a
particular query may not require a full computation of the repairs, but only
partial computation could su  ce. It becomes important to detect which are the
relevant portions of data [32].

Query evaluation is a crucial point. Current implementations of answer set
programming are not oriented to the problem of query answering as found in
5, where open queries are usually posed and a set of answers is returned
ad, the emphasis in answer set programming has been placed
on computation of (some) models, and answering ground queries. Actually, the
evaluation methodology in such systems n general terms, based on massive
grounding of the program, full computation of stable models, and recollection
of atoms in the intersection of all of them. Grounding is already a problem
if the program is to be grounded on the full active domain of the databases,
because the ground program generated can be huge. See [31, 59] for a discussion
of implementation details.

Query evaluation methodologies that are directed by the query seem to be
necessary for applications in databases, in particular, the development and im-
plementation of “magic sets” methods [1] for disjunctive logic programs under
the stable model semantics is a promising area of research. Recent research has
started addressing this problem [46].

Most of the research around query answering in virtual data integration sys-
tems starts from a xed class of mappings that describe the contents of the
sources. Given a class, the semantics and query answering mechanisms are pro-
vided. However, in spite of the fact that design issues of data integration systems
have been studied [8, 9, 71], the analysis of the impact of particular forms of
design on the syntax of the mappings and on query answering has been largely
neglected. In particular, if would be interesting to investigate how the integra-
ystem is to be designed if certain restrictions on the mappings are to be
satis ed. Determining what is a good design for a virtual data integration in
terms of the query answering features of the system is something that deserves
further investigation.

11 Related Work

Here we will mention only those papers that more or less explicitly consider
consistency issues in virtual data integration systems. Other important papers
on virtual data integration have been cited in the main body of this paper,
including those that assume that certain integrity constraints hold when query
plans are derived.

An early approach to virtual data integration is presented in [68]. There, op-
erations on the relations and attributes in the sources are de ned, e.g. meet, join,

P(X)Y) Wi(X,Z),FY(X,2,Y)

R(Y,Z) Vi(X,Z),FY(X,2,Y)

P(X)Y) Va(X.Y)

FY(X,2,Y) Vi(X,Z),dom(Y),choice((X, Z),(Y))
P(X,Y), not Va(X,Y).

This program, excluding the last denial, coincides with program  (G) in Exam-
ple 18, where the same sources and de nitions are considered, but all the sourc
are open only. With the denial constraint, that enforces the closeness of source
Va, the only stable model of i, (Ga) is {dom(a), ..., Vi(a,b), Va(a, ), Pla,c),
FY(a,b,¢), R(c,b)}, which corresponds to the only minimal instance {{P(a,c),
RO g

Notice that the solution we have reached via logic programs is similar in spirit to
the solution presented in [43], where the mixed case is treated. There tableaux
with constraints are used to compactly represent the legal instances and obtain
certain answers. The tableaux capture the open part, and the constraints, as in
our solution, the closed part.

10 Ongoing and Future Work

There are still many relevant open issues in this line of research. Consistency
issues have barely investigated in the context of virtual data integration systems.
Other research results obtained by other authors in this direction are described
in Section 11.

The solution to the problem of certain and consistent query answering in
virtual data integration system under the LAV approach presented in Sections
7 and 8.2, resp. are quite general, and conceptually clear, however many imple-
mentation issues are still open. They have to be addressed in order to use those
solutions in real database applications.

A st step would be to implement certain and consistent query ans
for the most common queries and constraints found in database pract
hoc mechanisms could be derived from the logic programming speci cations. In
this direction, [13] shows how to derive, for some classes of queries, rst order
rewritings from the logic programs that specify repairs of single databases. Of
course, by complexity reasons, this is not always possible [11].

In more general terms, the research should be focused on the specialization,
optimization, and evaluation of the logic programs we have presented. Special-
ization has to do with deriving program for particular classes of queries and
constrains from the general ones, that are better behaved in terms of evaluation.
Optimization has to do with producing equivalent programs that can be more
easily evaluated, in particular, the interaction of the logic programming system
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aggregate, add. These operators applied to a set of source databases generate
a global virtual database schema. In this way, mappings are derived and ex-
press the global relations as results of a set of operations on the source relations.
When a query is posed, it is translated to the sources relations by considering
the operators in the inverse order in which they where applied.

In [69], a model is presented where the integration system is considered to
have a real global database, and the sources are views obtained by applying
projections and selections to this global database. In this framework, the pos-
sibility of having inconsistencies in the instances is sidered. T y is
re ected in the fact that it can be impossible for the sources to be views of this
single global database instance. For example. Consider the global schema with
a binary relation R with attributes A, B. Let source I have elements {a}, and
source II, elements {b}, and the respective views Vi = 4(R), Vo= 4(R). In
this case, there is an instance inconsistency, because even though both sources
are views of the single global database and they have the same view de nitions,
their elements are di erent. In order to handle this situation, the notion of ap-
proximate answer is introduced, actually a lower bound and an upper bound
are given, corresponding, respectively, to the intersection and tmion of all the
possible answers of the rewriting of the query using the views. No complexity
is provided. Global integrity constraints are not considered.

In [19], the use of integrity constraints in a data integration system under
the GAV approach for clopen and open sources is studied. In the clopen” case,
the authors argue that the integration system can be seen as a single database,
and therefore, the query answering process in the presence of ICs can be done
appealing to the concept of repair [3] and CQA mechanisms for single databases
[3, 47, 6]. If the sources are open and there are no ICs, queries can be answered
by unfolding. If there are ICs, the semantic is given by the set of legal instances
that satisfy both the open mappings and the integrity constraints. Their legal
instances can be seen as repairs (in our sense) of the retrieved global database that
is obtained by propagating the source elements through the mapping. Repairs
admit only tuple insertions. Since [19] considers as legal those databases that
satisfy the ICs, it holds that their “certain answers” correspond to our consistent
answers. If there are no legal instances (in their sense), the integration system
is said to be “inconsistent”. In this case, tuple deletions are also needed in order
to achieve consistency.

In [17] the same semantics as in [19] is consider, for GAV and open sources.
There they present an algorithm for rewriting a conjunctive query [1] in order to
retrieve the “certain answers” (our consistent answers). This algorithm handles
foreign key constraints and assumes that the key constraints are preserved by
the mapping, i.e. that the retrieved global instance will not violate the key
constraints. For these integrity constraints there will always be legal instances
(in their sense), and therefore the integration system is consistent. The rewritten
query can be unfolded with the mapping in order to calculate their “certain

7 In several papers, instead of open, clopen and closed, the terms sound, ezact and
complete are used, resp.
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answers”. In [19] an implementation of this method is presented. The complexity
of the rewriting is polynomial wrt data complexity.

According to the semantic considered in [17, 19], if a key constraint is not
satis ed, then there is no legal instance. This is why in [57] the loosely-sound
semantic (in opposition to the previous strictly-sound semantic) is introduced.
Now, a database is legal if it is satis es the integrity constraints and if there is
10 other database that is better. A database is better than another if the portion
of the former that is contained in the retrieved global database is greater that
the one of the latter. In this way, we have that the inconsistencies wrt foreign
key constraints are solved by adding tuples to the retrieved global database, and
those wrt key constraints, by deleting a minimal number of tuples from it. The
global instances in this case correspond to a subclass of the repairs introduced
in [10] for integration systems.

In order to compute the legal instances for the loosely-
Datalog™ program under cautious stable model semantics is
calculates a maximal superset of the retrieved global database that satis es the
key constraints. In order to retrieve the certain answers, the query is transformed
as de ned in [17] and added to that program. This approach works for global
relations de ned by Datalog queries (and then, GAV is followed). The complexity
of retrieving the “certain answers” becomes co-NP-complete.

Still under the GAV approach, the results in [57] were extended in [21],
considering key constraints and inclusion dependencies, and also queries that
are expressed as unions of conjunctive queries. For the strictly-sound semantics
two cases are analyzed. In the rst case, where only inclusion dependencies (IDs)
are considered, the integration system cannot be “inconsistent”; so there is at
least one legal database. The rewriting of a query becomes the mapping rules
plus the query that is successively unfolded by rules that represent the inclusion
dependencies. The second case considers the combination of key dependencies
(KDs) and non-key-con icting IDs (NKC), i.e. IDs where the target (global)
relation has no key dependencies or where the target attributes are not a strict
superset of the key of the target relation. The rewriting of a query is the same
as in the st case plus some rules that enforce that if a global relation violates
a KD, then all the tuples are an answer to the query.

For the loosely-sound semantics, the rewriting in [21] is expressed with the
same Datalog™ program presented in [57]. In order to repair wrt the IDs, this
program is coupled with the query rewriting for the case of only IDs and strictly-
sound semantics. The data complexity under the strictly-sound semantics for
NKC integration systems is PTIME. For loosely-sound semantics, it becomes
coNP-complete.

In [32] logic programs for consistent query answering in virtual integration
systems are presented. The GAV approach is followed and the global relations
can be de ned using strati ed Datalog™ queries. The ICs considered are universal
integrity constraints and the queries are expressed in non-recursive Datalog™.
The speci cation program is a disjunctive Datalog™ program consisting of three
ally evaluated modules. The rst one uses the mapping and the data
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[19] Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. On the Role of Integrity
Constraints in Data Integration. [EEE Data Engineering Bulletin, 2002, 25(3):
39-45.

[20] Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In Proc. of the ACM
Symposium on Principles of Database Systems (PODS 03), ACM Press, 2003, pp.
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sources to compute the “retrieved global database” (as in [19]). The second one
enforces the satisfaction of the integrity constraints through repair rules; and
the third one corresponds to the query. The structure of each of them depends
on the mappings, ICs and query, respectively.

The source of complexity for the program in [32] comes from the second
module. In consequence, optimizations are introduced. The optimization process
consists of three steps: pruning the rules that are not relevant for computing the
answers to the query, next determining and computing the set of facts that need
to be repaired, and nally, recombining the repairs in order to compute the
answers. The second step decomposes the facts in two sets, those that might be
repaired and those that for sure are not going to be repaired. The recombination
process presents the repairs in a compact way in order to query them as a
relational database. For this, an extra attribute marking each fact is added to
each relation. This attribute is a string of zeros and ones. A one (zero) in position
i means that the fact is (not) in the repair i. The facts for which no repairs are
calculated in the second step are marked with ‘111...11". The query needs to be
reformulated in order to pose it directly to the marked database. Experiments
show that the optimizations signi cantly improve the performance of the naive
and direct techniques.

It seems that the optimizations presented in [32] can be adapted to the logic
programs we have presented for CQA.

Finally, we will just mention that there scem to be interesting connections
between the area of consistently querying virtual data integration systems and
other areas, like querying incomplete databases [66, 44], merging inconsistent
theories [63, 5], semantic reconciliation of data [54], schema mapping [71, 28, 70],
data exchange [33, 34], and query answering in peer-to-peer systems [55, 52, 53,
36, 12, 24].
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Abstract. When data sources are integrated into a single global system,
inconsistencies wrt global integrity constraints are likely to occur. In this
paper, the notion of consistent answer to a global query in the context
of the local-as-view model of data integration is characterized. Further-
more, a methodology for generating query plans for retrieving consistent
answer to global queries is introduced. For this purpose, an extension of
the inverse-rules algorithm for deriving query plans is presented. It can
be used to answer first order queries posed to data sources integrated
according to the local-as-view.

1 Introduction

In last few years, due the increasing number of information sources that are avail-
able and may interact, the subject of data integration has been widely studied
from different points of view. Topics like mediated schemas, query containment,
answering queries using views, etc., have been deeply discussed in this context.
However, less attention has attracted the important and natural issue of consis-
tency of data derived from the integration process and from answering queries
posed to the integrated system.

A data integration system provides a uniform interface to several informa-
tion sources. This interface, referred as global schema or mediated schema, is a
context-d dent set of virtual rel. used to formulate queries to the inte-
grated system. When the user queries the system in terms of the global schema,
a query processor or a mediator is in charge of rewriting the global query into a
query plan that will eventually access the underlying information sources.

In order to perform this query transformation, the processor needs a map-
ping between the mediated schema and the information sources. Two general
paradigms have been proposed to provide this mapping. One of them, called the
Local-as-View (LAV) approach [15], considers each base information source as

query plan to answer it:
ans(L) « s1(P, pods, 1989), s(P, L).

This plan proceeds as follows. It first finds some paper presented at PODS89
using source s1, and then finds the location of the conference at which this
paper was presented using source s2. This plan is correct because every paper is
presented at one conference and in one year only. In fact, if these dependencies
would not hold, there would be no way to answer this query using the given
sources.

In the previous example, the ICs are supposed to hold in the global system.
Nevertheless, it is not obvious that certain desirable, global ICs will hold at that
level. After all, the data is in the sources, the global relations are virtual?, and
there may be no consistency checking mechanism at the global level.

In addition to this, and particularly in the local-as-view approach, it is not
clear what it means for the global system to be consistent, because we do not.
have a global instance. Actually, given a set of data sources, there may be several
potential global instances that (re)produce the data sources as views according
to the view definitions.

A global system will be a global schema plus a collection of materialized data
sources that are described as views over the global schema. In this context, it is
quite natural to pose queries at the global level, expecting to retrieve those an-
swers that are consistent wrt a given set of global ICs, because, as we mentioned
before, global ICs may be easily violated due to the lack of a global maintenance
mechanism and the high likelihood of duci ies when data from
different. sources is integrated. AcLuale, as the following example shows, each
data source, with its own, ind can be consis-
tent, but inconsistencies may arise when the sources are integrated.

Ezample 2. Consider the global relation R(X,Y') and two source relations {V; (a,
b), Vi(c,d)} and {Va(a,c), Va(d, )} described by the view definitions:

Vi(X,Y) « R(X,Y) Va(X,Y) « R(X,Y).

Then, the global functional dependency (FD) R: X — Y is violated, but not
Vi: X=Y,Vz: XY, [m]

We will be interested in posing queries to a global system that is inconsistent
wrt to certain global ICs. In such a situation of global inconsistency, we would
like to retrieve as answers only those tuples that are consistent wrt the global
1Cs.

2 Even in the local-as-view approach where, from a theoretical perspective, sources
are seen as views over the global relations: sources are still materialized, but global
relations are virtual.

a view defined in terms of relations in the global schema. The Global-as-View
(GAV) approach, considers each global predicate as a view defined in terms of
the source relations [20,22]."

In this paper we concentrate on the LAV approach. This scenario is more
flexible than GAV for adding new data sources into a global system. Actually,
preexisting data eourcee in the system do not, need to be considered when a new
source is i di In ies are more likely to occur.
Furthermore, from the point of view of studying the logical issues around con-
sistency of data, the LAV paradigm seem to be more challenging than the GAV,
that can be more easily assimilated to the classical problem of consistency of
views defined over relational databases.

In the context of the local-as-view approach, several algorithms have been
proposed to rewrite a global query into a query plan that accesses the data source
relations to answer the original query [14].

Several approaches to query plan generation assume that certain integrity
constraints (ICs) hold at the global level, and they use the ICs in the query
plan generation. In [13], a rewntmg algorithm t]lat uses functional and inclusion

ies in the mediated schema is d. In [9], another algorithm for
query plan generation that uses functional and full dependencies is introduced.
This algorithm may take a global query written in Datalog as an input. In [11],
a deductive, resolution based approach to data integration is presented. It may
also use global integrity constraints in the deductive derivation of the query plan.

There are situations where, without assuming that certain global ICs hold,
no query plan can be generated.

Egample 1. (taken from [9]) Consider the following relations in the global schema

con ference(Paper, Conference)
year(Paper, Y ear)

location(Con ference, Y ear, Location)
plus the functional dependencies (FDs):
conference : Paper — Conference
year : Paper — Year
location : Con ference,Year — Location

and the following data sources expressed as views over the global schema:

51(P,C,Y) « conference(P,C),year(P,Y) (1)
s2(P,L) - conference(P,C), year(P, Y), location(C, Y, L) @

If we want to know the location where PODS89 was held, we can pose the global
query @ : ans(L) ¢ location(pods,1989, L), and we could use the following

" It is also possible to specify this mapping using description logics [5]-

Ezample 3. (example 2 continued) If we pose to the global system the query
Q: ans(X,Y) « R(X,Y), we obtain the answers {ans(a,b), ans(c, d), ans(a, c),
ans(d,e)}. However, only the tuple (c,d), (d,e) should be returned as answers
that are consistent wrt the global FD. o

In order to address these issues, several semantic problems appear: (a) When
and in what sense is global system consistent wrt a given set of global ICs? (b)
Which are the answers to a global query that are consistent wrt the given ICs?

(c) Is there a ism to those i answers?
In [3], the problem of ch izing and istent query answers

from an inconsistent relational database instance were addressed. In this case,

the datat instance r is i i when it does not satisfy a given set of ICs.

Intuitively speaking, an answer to a query is considered to be consistent in r if it
is an answer to the query in every possible repair of the original instance, where a
repair is a new instance that satisfies the ICs and differs from r by a minimal set
of tuples under set inclusion. The 1 hanism basically consists
in rewriting the query into a new query that, posed to the original, inconsistent,
database, gets as (normal) answers the consistent answers to the original query.

In this paper we characterize the consistent answers to a query posed to a
global, virtual, integrated system. We also consider the problem of deriving mech-
anisms for computing consistent answers from a global system. This scenario is
quite different from the one considered in [3]. There are important differences.

First of all, in the context of virtual data integration we do not have a global
instance. As shown in [10], a data integration system may determine a possible
infinite set of global instances. The notions introduced in [10] will help us define
our consistent answers.

A second problem has to do with deriving query plans for retrieving, hopefully
all and only, answers to a global query that are consistent wrt the desired,
global ICs. Following the approach in [3], we may rewrite the global query into
a new query, and then pose the new query to the global system. The problem is
that the rewritten query may not be handled by any of the existing query plan
generation algorithms, e.g. [11,15,13]. In consequence, we need to develop query
plan mechanisms that are appropriate for our rewritten queries. For this purpose,
we extend the “inverse rules” algorithm from [9] for the kind of rewritten queries
we need to answer, namely Datalog queries with negation, but no recursion.
In this part we restrict ourselves to the case of “open” sources [10], the most
common scenario.

2 Preliminaries

2.1 Global sch and view definiti

A global schema, R, is modeled by a finite set of relations {R1, Ry, ..., R, } and a
possibly infinite domain D. With these predicate symbols and the elements of D
treated as constants, a first order language £(R) can be defined. This language
can be extended with new defined predicates.

Page 73



A view, denoted by a new global predicate V', can be defined by means of an
L(R)-formula of the form ¢y: V() + body(pv), where £ is a tuple containing
variables and/or constants, and body(ypy) is a conjunction of global atoms. The
formula ¢y is implicitly universally quantified. That is, a view is defined by a
conjunctive query [1].

A database instance D over schema R can be considered as a first order
structure with domain D, where the extensions of the interpretations of the
predicates R; are finite (unless they are built-in predicates, in whose case they
may have infinite, but fixed extensions). An integrity constraint is a first order
sentence ¢ written in language £(R). The instance D satisfies ¢, denoted D |= 1,
if 4 is true in D.

Given a database instance D over schema R, and a view definition ¢y,
@y (D) denotes the extension of V' obtained by applying the definition ¢y to D.

Assume we are given a definition ¢y of a view V, a set v of ground atoms
on predicate V (think of a fixed, given data source), and a global instance D.
It is possible that the view extension v of V differs from the extension ¢y (D)
of V obtained by applying ¢y to instance D. According to [2,10], if the view
extension v stores all the tuples that satisfy the definition of view V, we say the
view extension v is closed wrt D. On the other hand, if the view extension v is
possibly incomplete and stores only some of the tuples that satisfy the definition
of V, we say the view extension is open wrt D. In example 1, the first source
definition (1) has to be read as s:(P,C,Y) C conference(P,C),year(P,Y) if
the source is considered to be open. Most mechanisms for deriving query plans
are based on open sources [15,9,18].

Following [10], we say that a source, S, is a triple < ¢, label,v >, where @ is
a view definition, label € {open, closed, clopen} and v is a view extension v for
. Here, clopen stands for closed and open. A global system (or source collection
in [10]), @, is a finite set of sources. The schema R of the global system can be
read from the bodies of the view definitions. It consists of the predicate names
that do not have a definition in the global system. The underlying domain D for
‘R (maybe properly) contains all the constants appearing in view extension v;s
in the sources.

2.2 Global instances

‘When we talk about consistency in databases wrt a set of ICs we think of in-
stances satisfying ICs. However, in a global system for data integration there is
not such a global instance, at least not explicitly. Instead, a global system &
defines a set of possible instances.

Definition 1. [10] Given a global system &, the set of legal global instances is

Linst(8) = {D instance over R | v; C @i(D) for all open sources S; € &,
and v; 2 (D) for all closed sources S; € ®,
and v = (D) for all clopen sources Sy, € ®}.

contain global relations that, cannot be defined (directly or indirectly) in terms
of the global relations appearing the source descriptions are deleted. To the
resulting query, denoted as @™, the rules in V=" are added; and the query so
obtained is denoted by (Q~,V~"). Notice that the global predicates can be seen
as EDB predicates in the rules for Q. However, they become I.D B predicates in
(@~,V™1), because they appear in heads of the rules in V~'. In consequence,
the query plan is given essentially in terms of the source predicates.

3 Global Systems and Consistency

‘We assume from here on that we have a fixed set of static first order integrity
global constraints, IC, on a global schema. We also assume that the set of ICs is
consistent as a set of logical sentences. Furthermore, we will also assume that the
set IC is general, in the sense that there is no ground literal L in the language
of the global schema such that IC |= L. The ICs used in database praxis are
always general.

We also have an open global system adapted to schema R. In general ,
the global system & may determine a possibly infinite set, Linst(&), of global
instances D, and each of them may or may not satisfy IC"

We could say that a global system & is consistent if every D € Linst(®)
satisfies IC'.

Ezample 5. Consider the global system &, = {S},S,}, with
S1= (Vi(X,Y) « R(X,Y),{Vi(a,b)}),
S = (a(X,Y) « R(X,Y),{Va(c,d)}),

and IC, the functional dependency R(X,Y): X = Y. D = {R(a,b),R(c,d)}
is an instance in Linst(®:) that satisfies IC, and D' = {R(a,b), R(c,d), R(a,€)}
is another instance in Linst(G,) that does not satisfy IC. In consequence, &;
would be inconsistent wrt IC, because D’ violates IC. [m]

In this example, the global system &; determines an infinite number of in-
stances in which the ICs should be checked in order to sanction the system as
consistent. We can see that, under such definition of consistency, it could be
very easy for a global system to become inconsistent. We will have many global
instances that will violate the ICs due to tuples that have no relation to the
original data sources. In this sense, the notion of consistent system we suggested
seems not to be the natural and useful one. We need a precise definition of
consistency of a global system that somehow captures the intuitive notion of
consistency related to the definitions of the sources and the only available data,
namely the one in the sources.

Ezample 6. (example 5 continued) The global system &; should be consistent
wrt to the FD, because the data in the global instance D that comes from the
sources, namely { R(a,b), R(c, d) }, does not violate the FD. In contrast, the global

Here, v; is the extension in the source S; of the view defined by @, i(D) is the
set of tuples obtained by applying the view definition ; to instance D. O

As mentioned before, this definition considers the possibility that the set
@i(D) differs from the extension in the original data source v;.

Ezample 4. (example 2 continued) If both sources were open, a legal instance for
the global system would be D = {R(a,b), R(a,c), R(c,d), R(d,e)}. Another legal
instance could be D' = {R(a,b), R(a,c), R(c,d), R(d,e), R(m,n)}. In general,
any superset, of D would be a possible instance in Linst(®). On the other hand,
if both view sources were closed, there are no legal instances, except for the empty
one. Finally, if both sources were clopen, there would be no legal instances. O

If all sources are open in a global system &, we say that & is an open global
systern. In this case, following [2], we may say that we are working under the
open world assumption. On the other hand, if all sources are clopen, we say that,
we are working under the closed world assumption.

Remark 1. In this paper we will concentrate on open global systems, as in [9].
In section 7 we make some comments about other sources. In consequence, if we
do not label the sources, we assume they are open.

Since this paper deals with the notion of consistent answers to queries, we
first need a notion of answer to a query in a global system.

Definition 2. (a) [2] The ground tuple a is a certain answer to a query Q posed
to a global system & if for every instance D € Linst(®), a € Q(D), where Q(D)
is the answer set for Q in D.

(b) We denote by Certaing(Q) the set of certain answers to query Q in ®.

2.3 Short review of the inverse rules method

The inverse-rule algorithm [9]) for generating query plans under the local as view
paradigm assumes that sources are open and each source relation V' has a source
description that defines it as a view of the global schema

V(X) < Pi(X1),ee s Pa(Xn).

Then, for j =

..n,
P(X)) « V(X)

is an inverse rule for V. The tuple X; is transformed to obtain the tuple X
as follows: if X is a constant or is a variable in X, then X is unchanged in X’;.
Otherwise, X is one of the variables X; appearing in the body of the definition of
V, but not in X. In this case, X is replaced by a Skolem function term f5,;(X) in
Xj. We denote the set of inverse rules of the collection V of source descriptions
in & by V1.

Given a Datalog query Q and a set of conjunctive source descriptions in
®, the construction of the query plan is as follows. All the rules from Q that

system ®j, defined exactly as ®,, but with the extensions < ...,{Vi(a,b)})
and < ...,{Vi(a,c)}) for the views, should be inconsistent, due to the data
{R(a,b), R(a, )} obtained from the sources that violates the FD. o

Definition 3. Given a global system, ®, a minimal global instance of & is an
instance D € Linst(®) that is minimal wrt set inclusion, i.c. there is no other
instance in Linst(®) that is a proper subset of D (as a set of atoms). We denote
by mininst(®) the set of minimal legal global instances of  wrt set inclusion.

This definition is particularly relevant in the case of open sources®. In this
case, there is only one minimal instance if the intersection of the elements in
Linst(®) is again an element of Linst(&).

Definition 4. A global system @ is consistent wrt to a set of global integrity
constraints, IC, if every minimal legal global instance of & satisfies IC: for all
D € mininst(®), D = IC.
Ezample 7. (example 5 continued) The only minimal legal global instance D
satisfies the FD. In consequence, the global system @ is consistent. Nevertheless,
the global system &3 in example 6 is inconsistent wrt the same FD. This is
because its only minimal legal global instance does not satisfy FD. o
Ezample 8. Consider & = {S;,S,}, with
Si= (Vi(X,Y) « P(X,Z) AQ(2,Y),{Vi(a,b)})
Sy = (Va(X,Y) « P(X,Y),{Va(a,c)}).

In this case, the elements of mininst(®) are of the form D, = {P(a,2),Q(z,b),
P(a,c)}. The global FD P(X,Y): X — Y is violated exactly in those minimal
legal instances D, for which z # c. Thus, the global system is inconsistent.
Notice that it would be consistent if in definition 4 we require that at least one
global instance is consistent. The only certain answer to the query Ans(X,Y)
P(X,Y) is {(a,c)}.

A global system & could be inconsistent in the sense of not satisfying the
given set of ICs, but still be possible or realizable in the sense that Linst(®) # 0.

Definition 5. (a) The ground tuple @ is a minimal answer to a query Q posed
to a global system ® if for every minimal instance D € mininst(®), & € Q(D),
where Q(D) is the answer set for Q in D.

(b) We denote by Minimalg(Q) the set of minimal answers to query Q in ®.

In general, Certaing(Q) C Minimalg(Q). For monotone queries [1], the no-
tions of minimal and certain answers coincide. Nevertheless, in example 8 the
query Ans(X,Y) « —P(X,Y) has (b,a) as a minimal answer, but (b,a) is not a
certain answer, because there are legal instances that contain P(b,a). Later on
our queries will be allowed to contain negation. Since consistent answers have
been defined relative to minimal global instances, for us the relevant notion of
answer is that of minimal answer. Notice that this assumption is like imposing a
form of closed world ion to global i iated to local sources.

3 For closed sources, the only minimal instance is empty.
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3.1 Repairs of global systems
Given a database instance D, we denote by 5(D) the set of ground formulas
{P(@) | P € R and D |= P(a)}.

Definition 6. [3] (a) Let D, D’ be databuse instances over the same schema and
domain. The distance, A(D, D'), between D and D' is the symmetric difference:

A(D,D") = (2(D)\ (D)) U (Z(D')\ Z(D)).

(b) For database instances D,D',D", we define D' <p D" if A(D,D') C
A(D,D"), i.e., if the distance between D and D' is less than or equal to the
distance between D and D". ]

Given a possibly inconsistent global system &, we want to define the notion
of consistent answer from & to the a query. This will done on the basis of
the possible global instances and their repairs. More precisely, given a global
database instance D, we will be interested in those instances D’ that satisfy the
given, global ICs and are minimal wrt the order <p, that is, that have a minimal
difference with D wrt set inclusion®.

Definition 7. Let & be a global system and IC a set of global ICs. A repair of
& wrt IC is a global database instance D', i.e. an instance over global schema
R, such that:

(a) D'=IC  and

(b) D' is <p-minimal for some D € mininst(®). [u]

We can see that a repair of a global system is a global database instance
that minimally differs from a minimal legal global database instance. Notice
that if & is consistent (definition 4), then the repairs are exactly the elements
in mininst(®).

Ezample 9. Consider the global system &; = {S1, Sz}, with

Si = (N(X) « R(X,Y),{Vi(a)}),

Sz = (Va(X) « R(X,Y),{Va(a)}),
and the global FD R(X,Y): X — Y. In this case, D = {R(a, 1), R(a,b2)} €
Linst(®4), but D £ IC. However, D ¢ mininst(&,). Actually, the elements
in mininst(®4) are of the form {R(a,b)}, for some b in the global database
domain. The elements in mininst(&,) coincide with the repairs. Notice that &,
is a consistent global system. o

Notice that in this definition of repair we are not requiring that a repair
respects the (open) labels, i.e. that the i iation of each view definition in
the repair contains the corresponding view extension in the source. That is it may
be the case that a repair -still a global instance- does not belong to Linst(®). If
we do not allow this kind of label violation, then a global system might not be
repairable.

* Notice from definition 6 that built-in predicates do not contribute to the As, because
they have fixed extensions, identical in every database instance

Definition 8. (a) Given a global system &, a set of global integrity constraints
IC, and a global first order query Q(X), we say that a (ground) tuple T is a
consistent answer to Q wrt IC, denoted by & = Q[t], iff for every repair D of
& DE Q.

(b) We denote by Consise(Q) the set of consistent answers to query Q in ®. O

Ezample 12. (example 10 continued) For the query @:(X) : 3Y R(X,Y), ais
a consistent, answer, i.e. 8 = 3Y R(X,Y)[a]. Instead, the query Qo(X,Y) :
R(X,Y), does not have any consistent answer. Nevertheless, a query plan for
Qa, e.g. found according to [10], without, caring about inconsistency, would be:

Ans(X,Y) « R(X,Y)
R(X,Y) + Vi(X,Y)
R(X,)Y) + Wa(X,Y),

that evaluated on the data sources would give the answers [a, b1], [a,bs], that
are not consistent answers. a

Ezample 13. (example 11 continued) For the query Q1(X,Y, Z): Ri(X,Y,Z),
[a,b,1] and [e, f, —5] are consistent answers, i.e. & =, Ri(X,Y, Z)[a,b,1] and
&g |=. Ri(X,Y, Z)le, f, —5]. However the certain answers to query Q(X,Y, Z)
are [a, b, 11, e, £, —5] and [l,m, 3. a

Proposition 1. Given an open global system ®, a set of global integrity con-
straints IC such that IC | L for every ground literal L, and o global query Q,

it holds: ) o
(a) Every consistent answer is a minimal answer.

(b) If & is consistent wrt IC, then every minimal answer is consistent. u]

4 Computing Consistent Answers

After having given a semantic definition of consistent answer to a global query
from a global system, we on the ional problem of i
query answering (CQA). For this purpose, in [3], but in the case of a stand alone
relational database, the operator T“ was introduced. It does the following: Given
a first order query Q(X), a modified query T%(Q(X)) is computed. The new
query T%(Q(X)) is posed to the original database, and the returned answers
are consistent in the semantic sense. In section 4.2 we will use this operator
to transform queries posed to a global systems. In section 4.1 we give a short
description of the rewriting algorithm as introduced in [3].

4.1 The rewriting operator for CQA

‘We consider universal first order integrity constraints expressed in the so-called
“standard format” [3]: V(V/I~, 1i(Z:) V ¢), where [; is a database literal and ¢ is
a formula containing built-in predicates only.

Ezample 10. Consider the global system &5 = {S1, S}, with
S1=Wi(X,Y) « R(X,Y), {Vi(a,01)}),

Sz = (Va(X,Y) & R(X,Y), {Va(a,b2)}),

and the FD R(X,Y) : X — Y. The only element in mininst(®s) is Do =
{R(a,b1), R(a,bs)}, that does not satisfy IC. The global system is inconsistent.
The only repairs are the global instances that minimally differ from Dy and
satisfy the FD, namely Dj = {R(a,b1)} and D} = {R(a, by)}. Notice that they
do not belong to Linst(&s). o

Ezample 11. Consider the global system & = {S1, 52}, with

S =(Vi(X,Y,Z) « Ri(X,Y, Z), Ba(X,U), {Vi(a, b, 1), Vi(e, £, —5),
Vi(l,m,3)}),
Sz = (Va(X,Y) « R3(X,Y),{Va(a,D)}),

and the inclusion dependency IC: VXYZ(Ri(X,Y,Z),Z > 0 - Ry(X,Y)).
The elements in mininst(®) are of the form

Deycaes = { Ri(a,b,1), Ri(e, f, =5), Ra(l,m, 3), Ra(a, ¢1), Ra(e, c2), Ra (I, c3),
Rs(a,0)},

where ¢y, ¢, c3 are any elements in the underlying domain. They do not satisfy
IC because Rg(l, m) ¢ Dq,cyc,- The global system is inconsistent. The next two
global instances minimally differ from D,,c,c; and satisfy IC, in consequence
they are repairs of De, cyey!

D} 0yes = {Ra(a,b,1), Ru(e, f,—5), Ra(a, c1), Ra(e, c2), Ra(l, c3), Ra(a, b)}
Dicaes = {R1(a,0,1), Ra(e, £,=5), Ra(l,m.3), Ra(a,c1), Rale,c2), Ra(l, s),
Rs(a,b), Rs(l,m)} o

Notice that, as in [3], we are not interested in the repairs by themselves. We
are not interested in repairing the global system, neither its instances of any
kind. Repairs will be used as an auxiliary notion to define consistent answers.

3.2 Consistent answers to global queries

There are algorithms in the literature for obtaining certain answers to a global
query @ from a global system &. This system may violate desired, global in-
tegrity constraints IC. Our goal is to characterize those answers to @ that are
consistent with IC, even when the global system is inconsistent as a whole. As
in [3], we formalize this notion appealing to the repairs of the global system.
Nevertheless, in this new scenario, we do not start form a single, possibly in-
consistent relational databases instance, but from a possibly inconsistent global
system, with a collection of implicit instances.

The new query T“((Z)) is computed via the iterative T operator, which
transforms an arbitrary query by appending the corresponding residue to each
database literal appearing in the query until a fixed point is reached. The residue
of a databas literal forces the local satisfaction of the ICs for the tuples satisfying
the literal. Resid can be obtained by lution between the table and the
ICs.

Egample 14. Consider IC = {R(X)V ~P(z) V-Q(z), P(z)V -Q(x)} and the
query @(z) = Q(x). The residue of Q(x) wrt the first IC is (R(z) V ~P(x)),
because if () is to be satisfied, then that residue has to be true if the IC is to
be satisfied too. Similarly, the residue of Q(x) wrt the second IC is P(x). The
operator T iteratively appends the residues to the tables in the queries.

T (¢(2)) = Q@) A (R(x) V =P (x)) A P(x).
T*(p(z)) = T(T(¢(x))) = Q(z) A (T(R(z)) V T(~P(x))) A T(P(x)).
= Q(z) A (B(z) V (=P(z) A =Q(x))) A P(z) A (R(z) V ~Q(z)).
T*(¢(x)) = Q(x) A (R(z) V (=P(z) AT(=Q(x)))) A P(z) A (T(R(x)) v
T(-Q(x)))-

Since T(~Q(z)) = ~Q(z) and T(R(z)) = R(z), we obtain T*(¢(z)) = T*(p(z)),
and a fixed point has been reached. Since T°(ip(z)) = A, {Tu(¢(x))}, here
we obtain 7, (p(z)) = Ti(p(z)) A Ta(p(z))- o

The methodology based on the T operator works for conjunctive queries only.
In the rest of this paper we will concentrate on this case. Notice that sometimes
the fixed point may be hard or impossible to detect. To address this problem
and other implementation issues, an improved algorithm, QUECA, to compute
T* was presented in [6].

4.2 Computing consistent answer to global queries

In the context of integration of open data sources, under the local-as-view
paradigm, with global universal integrity constraints, /C, we now present an
algorithm to compute consistent answers to conjunctive queries. Given a global
query Q(X), the algorithm starts applying the 7" operator, and next the rewrit-
ten query is answered by producing an appropriate query plan. At a high level,
the algorithm is as follows:

Algorithm:

Tnput: a conjunctive global query Q.
Output: a query plan to obtain consistent answers to Q.

1. Rewrite Q(X) into the first order query T%(Q(X)) applying the algorithm
presented in 4.1 using IC as the input set of ICs.
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Using a standard methodology [1, 16], transform T%(Q(X)) into a Datalog™
program, i.e. a Datalog program with negation, II(T“(Q)).

bad

Find a query plan to answer IT(T“(Q)) seen as a query to the global system.

'S

. Evaluate the query plan on the view extensions of ® to compute a set of
answers.

The most problematic step, apart from the limitations of operator T, is 3.,
because the resulting Datalog program may contain negation. There are no
mechanisms to obtain query plans for global queries containing negation (al-
though some heuristics are sketched in [11]). On the positive side, the generated
Datalog™ program does not contain recursion.

In some cases, when no negation appears in the rewritten query, e.g. when
we obtain a positive conjunctive query, we can use the views in &, and apply
the inverse rule algorithm in [9] to obtain the query plan P(Q). Otherwise, in
the presence of negation, we need to extend that methodology to generate query
plans. In section 5 we present an extension of the algorithm in [9], considering
negation (but no recursion). We first present an example where we do not need
an extended query plan generator. Next we show an example, where negation is
obtained.

Ezample 15. Consider the global system &; = {Si, S5}, with
S = (N(X,Y) + Ri(X,Y),{Vi(a,b), Vi(c,d)})

Sy = (B(X,Y) « Re(X,Y),{Va(a, ), Va(m,n)}),

and the global integrity constraint IC : R:i(X,Y) - Ra(X,Y)
In this case there is only one instance in mininst(&7):

Do = {Ri(a,b), Ri(c,d), Ry(a, b), Ra(m,m)}.

Clearly, this instance does not satisfy the IC, because Ra(c,d) ¢ D. Therefore,
the global system G+ is inconsistent and repairs need to be considered. They are

D = {Ri(a,b), Ra(a,b), Ra(m,n)}

Dj = {Ri(a,b), Ri(c,d), Ra(a, ), Ra(m,n), Ra(c,d)}.

I we have the global query Q(X,Y) : Ry(X,Y) and we do not care about
consistency, a query plan can be obtained applying the inverse rule algorithm
[9] to query Q:

Ans(X,Y) « Ri(X,Y).

Ri(X,Y) « Vi(X,Y).
Ba(X,Y)  Va(X,Y).

At step 1. the query has to be rewritten. We obtain
TY(Q(X)): R(X,Y)A-3Z(R(X,Z)NZ#Y). 3)
This query can also be translated into the following Datalog™ program IT(T“(Q)):

Ans(X,Y)  R(X,Y), not S(X,Y)
S(X,Y) « R(X,Z),Y # Z.

We need a query plan to answer this query program containing negation. [

5 Plans for Queries with Negation

In [9], the inverse-rule algorithm for generating a query plans for a global Dat-
alog query @ is presented. This plan produces an answer set that is mazimally-
contained in the answer set for Q. In [17], it is shown that such a maximally-
contained query plan retrieves all certain answers to the query Q.

A limitation of the inverse-rules algorithm for query plans is that it allows
Datalog queries only. In our case, even if we start with a conjunctive global query,
the query program obtained after transforming the query rewritten using the 7'
operator may contain negation. In consequence, we need to find plans for recur-
sion free Datalog™ query programs with built-in predicates, like the I7(T,,(Q))’s.
Notice that the absence of recursion immediately makes the resulting query pro-
grams stratified [1].

Given a recursion free Datalog™ query @ in terms of global and defined
relations, the extended inverse rules algorithm works analogously to the one
presented in [9] (see section 2.3), except that in the case a rule in Q contains a
negated literal in the body, say S(Z) < ..., L1(Z), “G(Z), La(Z),...., then it is
checked if G can be eventually evaluated in terms of the global relations appear-
ing in the source descriptions (because those are the global relations that can be
eventually evaluated using the inverse rules). If this is not the case, then that
goal is eliminated, obtaining the modified rule S(Z) < ..., L1(Z), Ln(Z),.... We
show the methodology by means of an example®.

Ezample 17. Consider the global system & = {S1, S2} with
S1 = (Vi(X,2) « Ri(X,Y), Ra(Y, Z), {Vi(a, D)})
Sz = (Va(X,Y) « Ry(X,Y), {Va(c, d)})-
The global query @ is:
Ans(X, Z) « Ry (X,Y), Rp(Y, Z), not Ry(X,Y)
Ry(X,Y)  R3(X,Y), not Rs(X,Y) )
Re(X)  Ra(X,Y), Re(X,Y). (5)

5 It should be easy to extend this methodology to stratified Datalog™ queries, but we
do not need this extension here.

Evaluating this query plan on the view extensions, tuples [a,b] and [c,d] are
obtained as certain answers to Q(X,Y’) . However, tuple [¢, d] is not a consistent,
answer according to definition 8.

Let us now apply the Algorithm for CQA. After the first step, using IC' and
@, we obtain:

TQ(X,Y)): Ri(X,Y) A Ry(X,Y).

Now, we proceed with step 2, translating the first order query T¥(Q(X,Y’) into
the Datalog program IT(T“(Q(X,Y))):

Ans(X,Y) « Ry(X,Y), Ry(X, Y).

Because this Datalog program is a conjunctive query, we can proceed with step
3;a query plan P(Q) for IT(T“(Q)) using the view definitions in & is generated:

Ans(X,Y) B (X,Y), By(X,Y)
Bi(X,Y) « Vi(X,Y)
By (X,Y)  Va(X,Y).
Finally, at step 4. we evaluate this query plan on the view extensions (in a

bottom-up manner). The tuple [a,b] is obtained, which is the only consistent
answer to Q(X,Y). o

Egample 16. Consider the global system &g = {Si, S, }, with
Si=((X,Y) « R(X,Y), {Vi(a,0)})

Sy = (a(X,Y)  R(X,Y),{Va(a,c), Va(c. d) }),
the FD R(X,Y): X — Y, and the global query Q(X,Y): R(X,Y).

Here, the only element in mininst(®s) is Do = {R(a, b), R(a, c), R(c,d)}. The
only minimal instance violates FD through the tuples [a, b, [a, ¢|. In consequence,
the global system g is inconsistent. It has two repairs, Di = {R(a, b), R(c, d)}
and D} = {R(a,c), R(c,d)}. The only consistent answer to the query is the tuple
leyd].

A query plan Plan(Q) for query @ obtained using the inverse rules method
[9], without caring about consistency, is:

Ans(X,Y) < R(X,Y)

R(X,Y) « Vi(X,Y)

R(X,Y) « Va(X,Y),
which evaluated on the view extensions in &, retrieves inconsistent certain an-
swers, namely [a,b] and [a,c].

We now apply the Algorithm for CQA. First of all, we need the FD expressed
in a first order language, it becomes VXY Z(R,(X,Y)AR:\(X,Z) =Y = Z).

The inverses rules V= are obtained from the source descriptions:

RBi(X, fi(X, 7)) « Vi(X, Z)
Ra(fi(X, 2),2) « Vi(X, Z)
R3(X,Y) « (X, Y).

To compute a query plan for Q, we first need Q~:

Ans(X,Z) + Ri(X,Y), Ry(Y, Z), not Ry(X,Y)
Ry(X,Y) + R3(X,Y).

The literal notRs (X,Y) was eliminated from rule (4) because it does not appear
in any source description. For the same reason (the literal Rg(X,Y) does not
appear in any source description), rule (5) was eliminated. Then, the query plan
P (Q, V1) is:
Ans(X, Z) « Ry(X,Y), Ry(Y, Z), not Ra(X,Y)
Ry(X,Y) « R3(X,Y)
Ri(X, fi(X, 2)) « Vi(X, Z)
Ra(fi(X, Z), Z) « Vi(X, Z)
R3(X,Y) « V2(X,Y).

Finally, the query plan can be evaluated in a bottom-up manner to retrieve
Ans(a, b) as final answer for the global query Q. o

5.1 Containment

In this section we will prove that the resulting query plan is maximally contained
in the original query. We will concentrate on recursion free Datalog™ programs
(including built-ins).

Given a query plan P for Q using V, the ezpansion P°*? of P is obtained from
P by replacing all source relations in P with the bodies of the corresponding
views V, and using fresh variables for existential variables in the views. That is,
the source relations are eliminated by reinverting the inverse rules, in order to
be in position to compare the the original query, expressed in terms of global
predicates, and the query plan.

Ezample 18. le 17 inued) To PP, we first rename the IDB
predicates in P.

Ans(X,Z) « Pi(X,Y),P,(Y,Z), not Py(X,Y)
Py(X,Y) «+ P(X,Y)

Pi(X, fi(X,2)) « Vi(X, Z) (6)
Py(f1(X,2),Z) « Vi(X, Z) M
B(X,Y) « Va(X,Y). ®)

Page 76



The expansion is the following Datalog™ query P¢?:

Ans(X, Z) + Pi(X,Y), Py(Y, Z), not P;(X,Y)
Pi(X,Y) + P3(X,Y)
Pi(X, fi(X,Z)) « Ri(X,U), Ro(U, Z)
Py(fi(X,2),Z) + Ri(X,U),Re(U, Z)
P5(X,Y) « Rs(X,Y). o
Remark 2. Notice that in the extended plan obtained in the previous example,

we could keep the rules (6), (7), (8), plus the source definitions in Si, Sz of
example 17. Sometimes we will do this in the rest of this section.

Theorem 1. For every recursion free Datalog™ program Q, every set of con-
Jjunctive source descriptions V, and all finite instances of the source relations,
the query plan (Q~,V~') has a unique finite minimal fizpoint. Furthermore,
bottom-up evaluation is guaranteed to terminate, and produces this unique fiz-
point.

D ition 9. ( imall; ined plan [17]) A query plan P is mazimally
contained in a query Q using views V if P**? C  and for every query plan P’
such that (P')°*P C @, it holds P' C P.% [m]

If S = {v1,...,um} is a set of extensions for the sources, and P is a query
plan, then P(S) denotes the extension of the query predicate Ans, obtained by
evaluating P on S. Notice that P(S) may contain tuples with Skolem function
symbols. We denote by P(S)| the set of tuples in P(S) that do not contain
function symbols, and by P} the plan that computes this pruned extension.

In order to prove maximal containment, the notion of proof tree presented in
[19] for Datalog queries can be extended to recursion free Datalog™ queries (see
appendix).

Theorem 2. (compare [9], thm. 8) For every recursion free Datalog™ program
Q and every set of conjunctive source descriptions V, the query plan (Q~, V1)1
is mazimally contained in Q. [m]

Remark 3. From the proof of maximality in theorem 2, we can see that the
theorem can be restricted to minimal global instances. That is, the query plan
(@~,V~1) 1 is contained in Q, i.e. (Q=,V~1)**P(D) C Q(D) for every minimal
global instance D (this is an immediate consequence of the theorem, that holds
for arbitrary global instances); and every other plan, whose expansion is con-
tained in @ for minimal global instances, is also contained in (@, V~') | (this
follows from a particular minimal global instance D constructed in the proof).

Theorem 3. Given an open global system &, IC a set of general ICs, and a
recursion free Datalog™ query Q with built-ins, the plan Plan(Q) obtained with
the extended inverse rules algorithm retrieves ezactly Minimale(Q).

© Here, P*** C Q means that the extension of the query predicate in P*? in included
in the extension of Q for every database instance over the global schema.

the global-as-view approach, the global instances are directly derivable from the
materialized sources. Third, already existing i for obtaini i
answers, like [3], cannot be directly applied in the local-as-view scenario. This
is because complex rewritten global queries appear from the very beginning, for
which techniques for deriving query plans have not being developed yet. Instead,
with the global-as-view approach, it is easier to answer global queries by rule
unfolding, in particular rewritten queries as obtained with the methodology de-
veloped in [3]. Actually, all the notions and techniques presented in [3] for single
relational databases are more easily applicable in the global-as-view integration
scenario. Note, however, as recently pointed in [§], when global integrity con-
straints are present, the query folding on the global-as-view approach can be
also very difficult.

‘We have also focused specially on open sources. In the future, it would in-
teresting to extend the semantic and algorithm work presented in this paper to
consider open, closed and clopen sources on the global system. The work in [10]
introduces an interesting framework to deal with this kind of global system that
can be explored further, particularly in presence of global integrity constraints.

The problem of query containment is crucial in the context of data integra-
tion. However, most of this work has focused on conjunctive queries. An inter-
esting challenge is to expand the universe to more expressive queries. In this
line, the work [21]introduces an improved method for testing query containment
for union of general conjunctive queries. The methodology we have presented
here is based in its turn on the methodology presented in [3]. In consequence, it
applies to a limited class of queries and constraints. Other approaches to con-
sistent query answering based on logic programs with stable model semantics
were presented in [4,7,12]. They can handle general first order queries in the
context of a stand alone relational database. It would be interesting to see how
the methodology presented there could be integrated with the methodology pre-
sented in this paper to consistently answer conjunctive queries posed to global
integrated systems under the local-as-view paradigm.

In [11], a logic-based approach is presented for transforming a query to the
global schema into a query plan to the sources. That methodology takes into
account, on a deductive basis, the global ICs in the derivation of the query plan.
In consequence, it is close in spirit to the methodology developed in [3] to rewrite
queries to the inconsistent instance into a new query to be posed to the original
database as well. The desired, but possibly violated ICs are used in the rewriting
process.
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Grant INT-9901877/CONICYT Grant 1998-02-083, NSF Grant T1S-0119186,
Carleton University Start-Up Grant 9364-01, NSERC Grant 250279-02, Nucleus
Millenium for Web Research (Mideplan, Grant P01-029-F). We are grateful to
Alberto Mendelzon for stimulating and useful conversations.

6 The CQA Algorithm Revisited

‘We have presented an algorithm for generation of query plans for global queries
that are Datalog®™ queries, more specifically Datalog™ queries without recursion.
Let us denote by Plan(Q) the query plan for query Q. Then, the algorithm for
CQA is as follows:

Given a conjunctive query @ that waits for its consistent answer.
Obtain the FO query T%(Q).

Translate T%(Q) into a Datalog™ program Q'.

Obtain Plan(Q").

Evaluate Plan(Q') on the sources for &.

Return the answers in 3. as consistent answers to Q.

G WO

Ezample 19. (example 16 cont.) Applying the extended inverse rules methodol-
ogy to the Datalog®™ we had obtained, the following query plan Plan(II(T“(Q)))
can be generated:

Ans'(X,Y) « R(X,Y), not S(X,Y)
S(X,Y) « R(X,Z),Y #Z
R(X,Y) + Vi(X,Y)
R(X,Y) « V(X,Y).

This query plan can be evaluated on the view extensions in &g to obtain the
answer [c,d]. This answer is consistent: &g |=. R(X,Y)[c,d]. Notice that the
original query (3) could be evaluated instead of the program using SQL2, defining
first R as a view that is the union of V; and V5. [m]

Proposition 2. Given an open global system &, IC a set of general ICs, the

i answers to a j ive global query Q correspond to Minimal(T“(Q)).
Furthermore, if T“(Q) is monotone, then its certain answers are the consistent
answers to Q.

Theorem 4. Given an open global system ®, IC a set of general ICs, and o
conjuntive global query Q, Plan(II(T*(Q)) retrieves ezactly Consisg(Q). O

7 Conclusions

In this paper we have concentrated on the local-as-view paradigm. However, con-
sistency issues are present with other approaches as well. Nevertheless, the prob-
lem of obtaining consistent answers to global queries becomes more interesting
in the local-as-view approach. First, this approach is better suited to easily add
new sources, without much consideration for the other sources; in consequence
inconsistencies are more likely to occur. Second, with local-as-vie approach, we
find the issue of multiple global instances we had to deal with; whereas with
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Minimals(Q) = Consise(Q). o

Proof of Theorem 1: Q~ contains negation, but does not introduce function
symbols nor recursion. On the other hand, V! introduces function symbols,
but is not recursive nor contains negation. Therefore, every bottom-up evalua-
tion of (Q~, V") will necessarily progress in two stages. In the first stage, the
extensions of the IDB predicates in V™! are determined. The second stage will
then be a normal Datalog evaluation @~ . Because normal Datalog queries have
a finite minimal fixpoints, this proves the claims.

Lemma 1. Let Q be a global query and V a source description based on the global
EDB predicates of Q, and D a global instance. Then: v' « €/,...,€,... e} is
a function free ground instantiation of a rule of V in D iff €' « v' is a function
free ground instantiation of an inverse rule in V1. u]

Proof of Theorem 2: (Containment) We need to prove that (Q—,V~1)|¢*PC
Q. Let D = di,...,d, be instances of the global EDB predicates of Q. Let
Ans(t) € (Q—, V™')°®P(D); t without function symbols. Let T be a proof-tree
for Ans(f) from (Q~,V~1)**? and D.

If there is no occurrence of a view predicate V 7, then this is a proof tree
from @ and D, and we are done: Ans(f) € Q(D). If some V occurs in T, due
to the form of the inverse rules, it must occur as an internal node with children
P1,...Pn that are ground facts in D, in particular, without functions. Due to
the form of the inverse rules, its parent must be one of the atoms p;. Notice that
there is at most one occurrence of predicate V in a branch. Then, for each such
positive occurrence of a view predicate V' we can prune the subtree with root
V. In case of a negative occurrence of V(@) (=V (a), or equivalently, (—,V (a)),
again by the form of the rules, the parent must be of the form (-, P(a), with
P a global predicate. In this case we can prune the subtree with root (—,V),
because if we developed the node (—, P) with ist child (—, V'), that is because
P(a) was not in D. Pruning all V nodes in this way, leaves us with a proof tree
for Ans(f), but now from @ and D.

(Magimality) Assume that P is a plan such that PP C Q. We need to prove
that P C(Q~,V")l.

Let S be an instance of V, and let Ans() € P(S), f without functions. Let D
be the global instance produced applying the inverse rules d « v from . Then
there is a proof for Ans(f) with leaves containing ground view literals. Those
leaves can be further expanded using the source definitions, and new global
ground literal will now appear as leaves. By the construction of D, we obtain a
proof tree for Ans(f) from P°*? and D. Then, Ans(f) € P**?(D). Thus, by the
hypothesis, Ans(t) € Q(D). Now we need to prove that Ans(f) € (@, V") |

7 Assuming we kept the view predicates in the expanded plan as indicated in remark
2.

Appendix A: Proof trees

Let IT be a Datalog®™ program with built-in predicates, C' a ground literal,
d € {+1,-1}, and I a database instance that provides the extensions for the
EDB predicates.

Definition 10. A d-proof-tree for C from I and II is a tree, whose nodes have
all labels of the form (s, A), with s € {+1,—1} and A a (positive, ground) fact,
that is constructed as follows:

1. The label of the root is

(a) (d,A) if C = A, with a positive A

(b) (—d,A) if C = A, with a positive A.

Each leaf is labeled by either:

(a) (+1,A), where A is a fact in I, or

(b) (—1,B), where B is not a fact in I and B does not appear in the head
of any ground instantiation of a rule in IT.

. For each internal vertez with label (+1, A), there ezists a ground instantiation

A« Ay, ..., A, of a program rule in IT and for each A; there is a child which

is the root of a (+1)-proof-tree of A;.

For each internal vertez with label (—1,B), it holds that for each ground

instantiation B « B, ..., B, of a program rule, there is some j and a child

which is the oot of a (—1)-proof-tree of B;.

o

[

™~

A proof-tree will mean in what follows a d-proof tree for some d. Notice that
all positive leaves (i.e. with first component +1) are EDB atoms, but a negative
leave is never an EDB atom and cannot be further expanded using rules in the
program. For “EDB leaves”, the set of positive (resp. negative) leaves of a (d)-
proof-tree T is denoted by pos(T’) (resp. neg(T)). In our case, we will apply
the notion of proof tree to ground query atoms Ans(), where predicate Ans is
defined by means of a Datalog®™ program.

The proof-tree presented here extend those presented in [19] for Datalog
programs and queries. For each query in stratified Datalog™, and under NAF,
a proof for a query atom () on an instance I has as a witness an extended
proof-tree.

Notice that every proof-tree has a depth and a branching factor bounded
by a constant depending only on the program. Hence the number of leaves is
bounded by a constant I. Let m be the maximum arity of the EDB predicates
occurring in P. Let A = {a;},i < ml be a set of different constants.

Appendix B: Proofs

Proof of Proposition 1 (a) Let f € Consise(Q). Then for every repair D of
&, D |= Q(f). By the hypothesis on IC, D = Q(£) for every D € mininst(&),
then £ € Minimalg (Q).

(b) In this case, the repairs coincide with the elements of mininst(®), and then

Let T be a proof-tree for Ans(f) from Q and D. Bach fact d' € D comes
from a ground instance d’ < v', where v’ is a fact in the sources in S. Hence we
extend the tree T adding to each positive leaf (+,€’) the child v', with v’ in a
source in S, coming from a ground instance e’ < v’ of some rule. With respect to
negative leaves (—,€’), just note that if e’ ¢ D, then no instance of rules e + v
can instantiate it (by definition of D). For negative leaves whose predicates are
not in the schema of D, they stay the same, i.e. there are no instantiation for
them. Hence we obtain a proof-tree for Ans(f) from (Q~, V') and S. o

Proof of Theorem 3: The proof is exactly as in theorem 4.2 stated in [2] for
certain answers. The same proof goes through for minimal answers, because we
can apply the property of maximal containment of the query plan (Q~,V~")l,
ie. Plan(Q), relative to minimal global instances (see remark 3). o

Proof of Pr ition 2: Let £ € Consisg(Q). Then, for every D € mininst(®)
and every repair D' of D: t € Q(D'), with Q(D') the answer set to @ in D'.
Then, by the results in [3], for every D € mininst(8), t € T“(Q)(D), that is,
t € Minimale(T“(Q)). Due to the correctness and completeness of the T* oper-
ator for this kind of queries [3], the other inclusion can be established similarly. O

Proof of Theorem 4: From theorem 3 and proposition 2. [m]

Appendix B: Other Sources
Ezample 20. Consider now the global system &, = {S1}, with
S = (Vi(X,Y) « R(X,Y), clopen,{Vi(a,b),Vi(c,d)}),

and IC, the functional dependency R(X,Y): X — Y. The only instance in
Linst(®2) is D = {R(a,b), R(c,d)}. Since D satisfies IC, ®2 would be consistent
wrt IC. o
FEzample 21. (adapted from [10]) Consider the global system ®; = {S1, S5, S5}
with

S1 = (Vi(U,W)  S(U,W), open, {Vi(b,c),Vi(e, f)})

Sz = (Va(U) + R(U, X), open,{V3(a)})

S5 = (Va(2) « R{a, 2), elosed, {V3(8), V3 ()}),
and IC, the inclusion dependency S(X,U) — R(Z, X). The elements in mininst(
&) are of the form Dy = {S(b,c), S(e, f), R(a,d)}, where d is any element in the
underlying domain. All of them violate IC®, so the global system is inconsistent.

Dy gives rise to the repairs Dy* = {S(b,¢), S(e, f), R(a,b), R(u,€)}, where

u is any element in the underlying domain, and to Dj = {S(b,c), R(a,b)}.

8 We are applying the Unique Names Assumption, that tells us that b # e, so cannot
make d to be equal to both b and e.
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D, gives rise to the repairs DY = {S(b,c), S(e, f), R(a,e), R(v,b)}, and D,
{S(e, f),R(a,e)}. Otherwise, Dy, for d # b,e, gives rise to the repairs D"
{8(,¢), S(e, f), R(a, d), R(u,e), R(v,b) and Dj; = {R(a,d)}.
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Abstract. We address the problem of retrieving certain and consistent
answers to queries posed to a mediated data integration system under
the local-as-view paradigm with open sources and conjunctive and dis-
junctive view de nitions. For obtaining certain answers a query program
is run under the cautious stable model semantics on top of a normal
deductive database with choice operator that speci es the class of min-
imal legal instances of the integration system. This methodology works
for all monotone Datalog queries. To compute answers to queries that
are consistent wrt given global integrity constraints, the speci cation of
‘minimal legal instan d with another disj deducti
database that speci es the repairs of those legal instances. This allows
to retrieve the answers to any Datalog™ query that are consistent wrt
global universal and referential integrity constraints.

1 Introduction

Usually independent and autonomous data sources are virtually integrated by
means of a mediator, which is a program that provides a global schema as an
interface, and is responsible for generating query plans to answer global queries
by retrieving data sets from the sources and combining them into a nal answer
set to be given back to the user.

The “Local-As-View” (LAV) approa
that each data source is described as a set of views over the global sc
On the other side, the “Global-As-View” (GAV) approach, de nes every global
relation as a view of the set of relations in the sources (see [33] for a survey on
these and mixed approaches). Query answering is harder under LAV [2]. On the
other side, LAV o ers more exibility to accept or release sources into/from an
existing system.

In these virtual integration setting, inconsistencies wrt to global integrity
constraints (ICs), i.e. that refer to the relations at the virtual level, are likely
to occur. This is due to the autonomy of the participating sources, the lack of
a central maintenance mechanism; and also to the exibility to add or delete
sources, without having to consider the other sources in the system.

to virtual data integration require

ema.

In this spirit and under the LAV approach, in [9] a methodology for gener-
ating query plans to compute answers to limited forms of queries that are con-
sistent wrt an also restricted class of universal ICs was presented. This method
uses the query rewriting approach to CQA presented in [3]; and in consequence
inherits its limitations in terms of the queries and ICs that it can handle, actu-
ally queries that are conjunctions of tables and universal ICs. Once the query is
transformed, query plans are generated for the new query. However, [9] provides
the right semantics for CQA in mediated integrated systems (see Section 2).

In this paper, under the LAV approach and assuming that sources are open
(or incomplete) [2], we solve the problem of retrieving consistent answers to
global queries. We consider arbitrary universal ICs and referential ICs; that is,
the ICs that are most used in database praxis [1]. View de nitions are conjunctive
queries, and disjunctions thereof. Global queries are expressed in Datalog and
its extensions with negation.

The methodology can be summarized as follows. Tn a1t stage, we specify,

using a deductive database with choice operator [25] and stable model semant;

[24], the class of all minimal legal global instances of a virtual integration system.
This approach is inspired by the inverse-rules algorithm [21] and uses auxiliary

Skolem predicates whose functionality is enforced with the choice operator.

In order to obtain answers to global queries from the integration system, a
query program has to be combined with the deductive database that speci es
the minimal instances as its stable models, and then be run under the skeptical
stable model semantics. It turns out that minimal answers, i.e. answers that
are true in all minimal instances, can be retrieved for Datalog™ queries. The
certain answers, i.e. those true in all legal global instances, can be obtained for
all monotone queries, a result that generalizes those found so far in the literature.

In a second stage, we address the computation of consistent answers. We
rst observe that an integration system is consistent if all of its minimal legal
tisfy the integrity constraints [9]. Consistent answers from an incon-
sistent integration systems are those that can be obtained from all the repairs

ance:

of all the minimal legal instances wrt the global ICs [3,9]. In consequence, in
order to retrieve consistent answers, the speci cation of the minimal instances
has to be combined with a speci cation of their repairs wrt to given ICs. The
latter is a disjunctive deductive database that speci es the repairs as its stable
models; and uses annotation constants as in the case of repairs of single rela-
tional databases [3] as presented in [6, 5]. We have experimented with this query
answering mechanism (and the computation of minimal instances and their re-
pairs) with the DLV system [22,35], which implements the stable model and
answer set semantics of disjunctive extended deductive databases

The paper is structured as follows. In Section 2 we review some basic no-
tions we need in the rest of this paper. In Section 3, the minimal legal global
instances of a mediated system are speci ed by means of logic programs with a
stable model, or answer sets, semantics. In Section 4, the repairs of the minimal
global instances are speci ed as the stable models of disjunctive logic programs
with annotation constants, like those used to specify repairs of single relational

Ezample 1. Consider the LAV based global integration system Gy with a global
relation R(X,Y) and two source relations v = {Vi(a, b), Vi(c, d)} and vy =
{Va(a, c), Va(d, ¢)} that are described by the view de nitions Vi(X,Y)  R(X,
Y): Va(X,Y)  R(X,Y). The global functional dependency (FD) R: X — Y
is violated through the pair of tuples {(a,b), (a,c)}. O

Inconsistencies are not exclusive to integration systems. For several reasons also
single databases may become inconsistent wrt certain ICs. Restoring consistency
may be undesirable, di cult or impossible [10]. In such a situation, possibly
most of the data is still consistent and can be retrieved when queries are posed
to the database. In [3] consistent data in a stand-alone relational database is
characterized as the data that is invariant under all minimal restorations of
consistency, i.e. as data that is present in all repaired versions of the original
instance (the repairs). In particular, an answer to a query is de ned as consistent
when it can be obtained as a standard answer to the query from every possible
repair.

In [3,17,30,4, 5], some mechanisms have been developed for consistent query
answering (CQA), i.e. for retrieving consistent answer when queries are posed
to such an inconsistent database. All those mechanisms, in di erent degrees,
work only with the original, inconsistent database, without restoring its consis-
tency. That is, inconsistencies are solved at query time. The above mentioned
repairs provide an auxiliary concept that allows de ning the right semantics for
. Furthermore, in some of the query evaluation method-

irs are also an auxiliary computational intermediate step that, for
complexity reasons, has to be kept to a minimum.

In virtual data integration systems, there is also an intuitive notion of con-
sistent answer to a query.

Ezample 2. (example 1 continued) If we pose to the global system the query
Q: Ans(X,Y) R(X.Y), we obtain the answers {Ans(a,b), Ans(c,d), Ans(a,
¢), Ans(d, e)}. However, only the tuples Ans(c,d), Ans(d, e) should be returned
as consistent answers wrt the FD R: X — Y. O

Several algorithms for deriving query plans to obtain query answers from virtual
data integration systems have been proposed in the last few years (see [36] for
a survey). However they are not designed for obtaining the consistent answers
to queries. Even more, some of those algorithms assume that certain ICs hold
at the global level [31,21,29]; what may not be a realistic assumption due to
the independence of the di erent data sources and the lack of a central, global
maintenance mechanism. Only a few exceptions, including this paper, consider
the problem of CQA in virtual integration systems [32,9,13, 16].

In a virtual data integration system, the mediator should solve potential
inconsistencies when the query plan is generated; again without attempting to
bring the whole system into a global consistent material state. Such an enhanced
query plan generator should produce query plans that are guaranteed to retrieve
all and only the consistent answers to global queries.

databases for CQA [6]. Tn Section 5, consistent answers to queries are obtained
by running a query program in combination with the previous two speci cation
programs. In Section 6 several and possible extensions around the spec-
i cation presented in the previous sections are discussed in detail. Finally, in
Section 7, we draw some nal conclusions, and we point to related and future
work. Appendix A.1 contains the proofs of the main results in this paper.

This paper is an extended version of [13] that now includes the most general
speci cation of minimal instances, the proofs, an extension to disjunctive view
de nitions, and an analysis of: complexity, the underlying assumptions about
. a comparison between the use of the choice operator and the use of
Skolem functions.

the domais

2 Preliminaries

2.1 Global schemas and view de nitions

A global schema R consists of a nite set of relations {Ry, R, ..., R} over a
xed, possibly in nite domain &/. With these relation symbols and the elements
of U treated as constants, a rst-order language £(R) can be de ned. This
language can be extended with de ned and built-in predicates, like (in)equality.
In particular, we will extend the global schema with a local schema S, i.e. a
nite set of new view predicates Vi, Va, ..., V;,, that will be used to describe the
relations in the local sources.

A view, denoted by a new predicate V, is de ned by means of conjunctive
query [1], i.e. an £L(R US)-formula ¢, of the form V(t)  body(e, ), where t
is a tuple containing variables and/or constants, and body(, ) is a conjunction
of R-atoms. In general, V € S.

A database instance D over schema R can be considered as a  rst-order
structure with domain U, where the extensions of the relations R; are nite.
The extensions of built-in predicates may be in nite, but xed. A global integrity
constraint (IC) is an L(R)-sentence . An instance D satis , denoted D |
if s true in D.

Given a database instance D over schema R, and a view de nition ¢, ,
@, (D) denotes the extension of V obtained by applying the de nition ¢, to
D. If the view already has an extension v (corresponding to the contents of a
data source), it is possible that v is incomplete and stores only some of the tuples
in @, (D);ie.v ¢, (D), and we say the view extension v is open wrt D [2].
Most mechanisms for deriving query plans assume that sources are open, e.g.
[21].

A source S is a pair (¢, v), where ¢ is the view de nition, and v is an extension
for the view de ned by ¢. An open global system G is a nite set of open sources.
The global schema R consists of the relation names that do not have a de nition
in the global system. The underlying domain U for R is a proper superset of
the active domain, which consists of all the constants appearing in the view
extensions v; of the sources, and in their de nitions. When considering global
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integrity constraints the active domain also includes the constants in them. A
global system G de nes a set of legal global instances [33].

De nition 1. Given an open global system G = {{1.v1), .- . {¢n, va) }, the set
of legal global instances is Linst(G) = {D instance over R | v;  9i(D), i =
L...,n}. u]

Ezample 3. (example 2 continued) Let us denote by ¢, , ¢, the view de nitions
of Vi, Va, tesp. in G1. D = {R(a, b), R(c, d), R(a, c), R(d, ¢)} is a legal global
instance, because vy = {Vi(a, b), Vi(c, d)} @, (D) = {Vi(a, b), Vi(c, d), Vi(a,
Vi(d, e)} and vy = {Va(a. ©), Va(d, €)} (D) = {Va(a, b). Vale, d), Va(a,
¢), Va(d, e)}. Supersets of D are also legal instances; but proper subsets are not.
(m]

The semantics of query answers in mediated integration systems is given by the
notion of certain answer. In this paper we will consider queries expressed in

Datalog and its extensions with negation.

De nition 2. [2] Given an open global system G and a global query Q(X) €
L(R). a ground tuple ¢ is a certain answer to Q in G if for every global instance
D € Linst(G), it holds D = Q[t]." We denote with Certaing(Q) the set of
certain answers to Q in G. O

The inverse-rules algorithm [21] for generating query plans under the LAV ap-
proach assumes that sources are open and each source relation V' is de ned as
a conjunctive view over the global schema: V(X)  Pi(Xy),..., Po(Xy), with
X U, Xi. Since the queries posed to the system are expressed in terms of the
global relations, that now appear in the bodies of the view de nitions (contrary
to the GAV approach), those de nitions cannot be directly applied. The rules
need to be “inverted”.

Forj=1,...n. P(X}) V(X) isan “nverse rule” for P;. The tuple X;
is transformed to obtain the tuple X7 as follows: if X € Xj is a constant or is a
variable appearing in X, then X is unchanged in X}. Otherwise, X is a variable
X that does not appear in X, and it is replaced by the term f;(X), where f; is
a fresh Skolem function. We denote the set of inverse rules of the collection V of
source descriptions in G by V1.

Ezample 4. Consider the integration system Gy with global schema R = {P, R}.
The set V of local view de nitions consists of Vi(X,Z) P(X,Y), R(Y,Z),
and V5(X,Y)  P(X,Y). The set V! consists of the rules P(X, f(X,Z))

Vi(X,Z); R(f(X,2),2) Vi(X,Z); and P(X,Y) Vh(X,Y).

For a view de nition, we need as many Skolem functions as existential vari-
ables in it. For example, if instead of V1(X,Z)  P(X.,Y), R(Y.Z) we had,
say Vi(X,Z)  P(X.Y), R(Y, Z,W), we would need two Skolem functions for
that view, and the inverse rules arising from that view would be P(X, f(X, Z))

VA(X.Z) and R(f(X, Z), Z.9(X. Z)) Vi(X,Z). o

' D |= Q[f] means that query Q(X) becomes true in instance D, when tuple of variables
X is assigned the values in the tuple ¢ of database elements.

We may assume that the original data sourc
do not contain null values, however when de

s and the global legal instances
ing with referential integrity con-
straints (RICs), we will consider the possibility of having them, in order to restore
the consistency of the database. If no RICs are present, we will assume that null
values are not available either. However, if necessary, the null value null will be
treated as a new, special constant. Its presence in a tuple means that there is an
unknown value for the correspondent attribute, i.e. we have incomplete informa-
tion. Since we do not have precise information about it, we will consider that no
inconsistencies arise due to its presence. This leads to the following de nition of
consistency in the presence of null values:

De nition 6. [6] For a database instance D, whose domain ¢ may contain the
constant null and a set of integrity constraints /C' = IC'y U IC g, where ICy is
a set of universal integrity constraints and IC'g is a set of referential integrity
constraints, we say that D satis es IC, written D |= IC, i :

1. For each Yp € ICy, D = gla] for every ground tuple a of elements in
@ {nuil}), and

2. For each sentence in IC'g of the form (1), if D = PJ
of elements in (U {null}), then D =3YQ(a,Y).

with @ a ground tuple

Ezample 6. Consider the universal IC Yay(P(x,y) — R(z,y)) and the referen-
tial IC Va(T\(x) — 3yP(r,y)). The database instance D = {P(a,d), R(a,d),
T(a), T(b), P(b,null)} is consis s ed even
in the presence of P(b,null) since the incomplete information cannot generate
inconsistencies. [m}

De nition 7. [6] Let D, D', D" be database instances over the same schema
and domain . It holds D" p D" i :

-

. For every atom P(a) € (D, D'), witha € ¢ {null})? it holds P(a) €
(D,D"), and

For every atom Q(a,null) € (D,D’), it holds Q(a,null) € (D, D") or

Qa,b)e (D, D")withbe U {null}). =

N

De nition 7 de nes which databases are closer to the original one in the presence
of null values. This partial order is used in the next de nition for repairs in the
presence of universal and referential I1Cs.

De nition 8. (based on [3]) Let G be a global system and IC' a set of global
ICs. A repair of G wrt IC is a global database instance D', such that D' = IC
and D' is  p-minimal for some D € Mininst(G). u]

According to this de nition the repairs of violations of referential ICs are ob-
tained by either deleting the atom that is generating the inconsistency or by
adding an atom with a null value. In particular, if the instance D is {P(a)}

% That a € (U — {null}) means that cach of the clements in tuple a belongs to (U —

{null}).

The inverse rules are then used to answer Datalog queries expressed in terms
of the global relations, that now, through the inverse rules, have de nitions in
terms of the sources. The query plan obtained with the inverse rule algorithm
is maximally contained in the query [21], and the answers it produces coincide
with the certain answers [2].

2.2 Global systems and consistency

We assume that we have a set of global integrity constraints IC' £(R) that is
consistent as a set of logical sentences, and generic, in the sense that it does not
entail any ground database literal by itself, i.e independently of concrete instance
[10]. ICs used in database praxis are always generic. The ICs can be universal,
i.e. a sentence of the form Vi, where ¥ is a pre x of universal quanti ers and ¢
a quanti er-free formula; or referential, i.e. of the form

YX(P(X) - VQ(X',Y)), X' X2 (1)
De nition 3. 9] (a) Given a global system G, an instance D is minimal if
D € Linst(G) and is minimal wrt set inclusion, i.e. there is no other instance
in Linst(G) that is a proper subset of D (as a set of atoms). We denote by
Mininst(G) the set of minimal legal global instances of G wrt set inclusion.
(b) A global system G is consistent wrt IC, if for all D € Mininst(G), D = IC.
(m]

Ezample 5. (example 4 continued) Assume that Gy has the source contents vy =
{Vi(a,b)}, vs = {Va(a,c)}, and that U = {a,b,c,u,...}. Then, the clements of
Mininst(Gs) are of the form D. = {P(a,z), R(z,b), P(a,c)} for some z € Y.
The global FD P(X,Y): X — Y is violated exactly in those minimal legal
instances D for which z # c. Thus, Gs is inconsistent. a

De nition 4. [9] The ground tuple a is a minimal answer to a query Q posed
to G if for every D € Mininst(G), a € Q(D), where Q(D) is the answer set for
Q@ in D. The set of minimal answers is denoted by Minimalg(Q). o

Clearly Certaing(Q) ~ Minimalg(Q). For monotone queries [1], the two notions
coincide [9]. Nevertheless, in Example 5 the query Ans(X,Y)  —P(X,Y) has
(b,a) as a minimal answer, but not as a certain answer, because there are legal
instances that contain P(b, ). Since consistency was de ned wrt minimal global
instances, the notion of minimal answer is particularly relevant.

De nition 5. [3] (a) Given a database instance D, we denote by (D) the set
of ground atomic formulas {P(a) | P € R and D = P(a)}.

(b) Let D, D" be database instances over the same schema and domain. The
distance, (D, D’), between D and D' is the symmetric di erence (D,D’') =
D\ (D)YU( D)\ (D). o

% To keep the presentation simple, ¥ is a single variable, however it could be a tuple
of variables, actually interleaved with those in X’

and IC contains only ¥z (P(z) — JyQ(x,y)), then {P(a), Q(a, null)} will be a
repair, but not {P(a), Q(a,b)}, with b € U and b # null. In the absence of null
values, i.c. without null values in the original instance nor in the repair process,
De nitions 7 and 8 coincide with the ones given in [3]. In [4,5, 15] repairs with
non null values have been considered.

Ezample 7. Consider the universal integrity constraint Vay(P(x,y) — R(x,y))
together with the referential integrity constraint Va(T'(x) — JyP(x,y)) and an
tent minimal instance of an integration system D = {P(a, b), T(c)}. The
s for the la

ter are:

i D; ‘ (D, D;)
1[{P(a,b). R(a,b),T(c), P(c,null)}[{R(a,b), P(c, null)}
2 {P(a.b), R(a,b) {T(c), R(a,b)}

3 {T(c), P(c,null)} {P(a,b), P(c,null)}
4 [ {P(a.b), T(c)}

=

In the rst repair it can be seen that the atom P(c, null) does not propagate
through the universal constraint to R(c, null). We also have that the instance
= {P(a,b), R(a,b), T(c), P(c,a)}, where we have introduced P(c,a) in or-
der to satisfy the referential IC, does satisfy IC, but is not a repair because
(D,Dy) p (D,D7)={R(a,b),P(c,a)}.

We can see that a repair of a global system is a global database instance that
satis es IC' and minimally di ers, in the sense of De nition 7, from a minimal
legal global database instance. If G is already consistent, then the repairs are
the elements of Mininst(G). In De nition 8 we are not requiring that a repair
respects the property of the sources of being open, i.e. that the extension of
each view in the repair contains the corresponding view extension in the source.
Thus, it may be the case that a repair - still a global instance — does not belong
to Linst(G). If we do not allow this this exibility, a global system might not
be repairable. Repairs are used as an auxiliary concept to de ne the notion of
consistent answer.

Erample 8. (example 1 continued) The only element in Mininst(Gy) is Dy =
{R(a,b), R(c,d), R(a,c), R(d,e)}, that does not satisfy /C. Then, G, is inconsis-
tent. The repairs are the global instances that minimally di er from Dy and sat-
isfy the FD, namely D§ = {R(a,b), R(c,d), R(d,e)} and D3 = {R(a,c), R(c,d),
R(d,e)}. Notice that they do not belong to Linst(Gy). [m}

De nition 9. [9] (a) Given a global system G, a set of global integrity con-
straints IC, and a global rst-order query Q(X), we say that a (ground) tuple £
is a consistent answer to Q wrt IC i for every repair D of G, D = Q[f]. (b)
We denote by Consisg(Q) the set of consistent answers to Q in G. [}

Ezample 9. (example 8 continued) For the query Q1(X): 3V R(X,Y), the
consistent answers are a,¢,d. Q2(X,Y): R(X,Y) has (c,d), (d, ¢) as consistent
answers. o
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If G is consistent wrt IC, then Consisg(Q) = Minimalg(Q). Furthermore, if the
ICs are generic, then for any G it holds Consisg(Q)  Minimalg(Q) [9]. Notice
also that the notion of consistent answer can be applied to queries expressed in
Datalog or its extensions with built-ins and negation.

3 Speci cation of Minimal Instances

The speci cation of the class Mininst(G) for system G is given using normal
deductive databases, whose rules are inspired by the inverse-rules algorithm.
They use auxiliary predicates instead of function symbols, but their functionality
is enforced using the choice predicate [26]. We consider global system all of whose
sources are open.

3.1 The Simple Program

In this section we will present a rst approach to the speci cation of legal in-
stances. In Section 3.2 we present the de nitive program, that re nes the one
given in this section. We proceed in this way, because the program we g
although it may not be suitable for all situations (as discussed later in this sec-
tion), is simpler to understand than its re ned version, and already contains the
key ideas.

ve now,

De nition 10. Given an open global system G, the logic program  (G), con-
tains the following clauses:
1. Fact dom(a) for every constant a € U; and the fact V;(a) whenever a € v;
for some source extension v; in G.
2. For every view (source) predic
Py(X1)....,Py(X,). the rules
Pi(X)) ViX) Ageq o FHX.Z).
3. For every predicate F!(X, Z;) introduced in 2., the rule
FUX,Z))  Vi(X),dom(Z), choice((X), (Z)). m]

e V; in the system with description V;(X)

In this speci cation, the predicate F!(X, Z;) replaces the Skolem function based
atom f/(X) = Z introduced in Section 2.1, and, via the choice predicate, it
assigns values in the domain to the variables in the head of the rule in 3. that are
not in X. There is a new Skolem predicate for each pair formed by a description
rule as in item 2. above and a di erent existentially quanti ed variable in it.
The predicate choice((X), (Z;)) ensures that for every (tuple of) value(s) for X,
only one (tuple of) value(s) for Z; is non deterministically chosen between the
constants of the active domain.

Example 10. (examples 4 and 5 continued) Program  (G2) contains the follow-
ing rules:

1. dom(a). dom(b). dor

dom(u). Vi(a,b). Va(a,c).

Ms = {dom(a),  dom(b), dom(c), dom(u), Vi(a,b), Va(asc),
Pla,c), di Choicey(a,b,a), di Choice,(a,b,b), choseny(a,b,c),
di Choicey(a,b,u), Fi(a,b,c), R(c,b)}

My = {dom(a), dom(b), dom(c), dom(u), Vi(a,b), Va(a,c), P(a,c),
di Choices (a,b, a), di Choice, (a,b,b), di Choice,(@,b,c),
choseny (a,b,u), Fy(a,b,u), R(u,b), P(a,u)}.

The underlined atoms of the models correspond to the elements in which we are
interested, namely the global relations of the integration system.

De nition 11. The global instance associated to a choice model M of  (G) is
D = {P(a)| P €R and P(a) € M}. =

Ezample 12. (example 11 continued) Dy, , Daty, Dats, Dag, are the elements
of Mininst(Gs), namely {P(a,b), R(b,b), P(a,c)}, {P(a,a), R(a,b), P(a,c)},
{P(a,c), R(c.b)}, {P(a.u). R(u.b), P(a,c)}, respectively. [}

Theorem 1. It holds that
Mininst(G)  {Da | M is a choice model of (G)}  Linst(G). O

From the inclusions in the theorem it is clear that for monotone queries Q,
answers obtained using () under the skeptical or cautious stable model se-
mantics -that sanctions as true what is true of all the stable models of the
program- coincide with Certaing(Q) and Minimalg(Q). This may not be the
case for queries with negation, as pointed out in the remark after De nition 4.

In Example 12 the stable models are in a one to one correspondence with the
minimal legal instances, but this may not be always the case.

Ezample 13. Consider an integration system Gs with global schema R = {P}.
The set V of local view de nitions consists of V;(X) P(X, Y), and
(X,Y)  P(X,Y) with source contents v; = {Vi(a)}, va = {Va(a.c)
We have that Mininst(Gs) = {{P(a,c)}}. However, the global instances
sponding to models of  (Gs) are of the form {{P(a,c),P(a,2)} | z € U}. As
V4 is open, it forces P(a,¢) to be in all legal instances, and with this, the same
condition on Vj is automatically satis ed, and no other values for Y are needed.
But the choice operator still has freedom to chose other values (the z € U). This
is why we get more legal instances than the minimal ones. [m]

Now we investigate su cient conditions under which the simple program of
De nition 10 captures the minimal instances. This is important because the
general program to be presented in Section 3.2 is much more complex than the
simple version presented so far.

We de ne a section of a view V; as a set S! consisting either of all the
predicates in the body of its de nition that share a same existential variable
Z; or all the atoms without existential variables, in which case I = 0 and the
view section is denoted with S?. For example, the view de ned by V(X,Y)
P(X,71),R(Z1,Y),T(X,Y) has two sections: S} = {P(X, Z1), R(Z1,Y)} and
89 = {T(X,Y)}. Sec denotes the set of all view sections for system G.

11

2 P(X,Z) Vi(X,Y),Fi(X,Y,Z).
R(Z)Y) Vi(X,Y),F(X,Y,2).
P(X,Y) Vh(X,Y).
3. R(X,Y,Z) VA(X,Y).dom(Z), choice((X,Y),(Z)).

In this section we will restrict ourselves to a nite domain ¢, what is necessary to
run the program in real implementations. In this example we have i = {a, b, ¢, u}
(the extension of predicate dom). In section 6.2 we study how to handle in nite
domains by adding to the active domain a nite number of extra constants, like
constant u here.*

For every program  with the choice operator, there is its stable version SV( ),
whose stable models correspond to the so-called choice models of — [26]. The
program SV( ) is obtained as follows:
(a) Each choice rule r: H B, choice((X),(Y)) in is replaced by the rule
H B, chosen.(X.,Y).
(b) For each rule as in (a), the following rules are added
choseny(X,Y)  B,not di Choice,(X,Y).

di Choice,(X,Y)  chosenn(X,Y"),Y # Y.

The rules de ned in (b) ensure that, for every tuple X where B is satis ed, the

predicate chosen, (X,Y) satis es the functional dependency X — V.

Ezample 11. (example 10 continued) Program SV (  (G2)) contains the following
rules:

1. dom(a). dom(b). dom(c). dom(u). Vi(a,b). Va(a,c).
2. P(X,Z) Wi(X.Y).F\(X,Y,Z).
R(Z)Y) Vi(X,Y),F(X,Y,Z).
P(X,Y) TA(X,Y).
3. (XY, Z) Wi(X.Y),dom(Z),choseny(X,Y, Z).
4. choseny(X,Y.Z)  Vi(X,Y).dom(Z), not di Choice,(X,Y,Z).

di Choice,(X,Y.Z)  chosen)(X,Y.Z'), dom(Z),Z' # Z.

Its stable models are:

My = {dom(a), dom(b), dom(c), dom(u), Vi(a,b), Va(a,c),
P(a,c), di Choicey(a,b,a), choseny(a,b,b), di Choice;(a,b,c),
@i Choice,(a.b,u), Fi(a.b,b), R(b,b), Pa,b)}

Ms = {dom(a), dom(b), dom(c), dom(u), Vi(a.b), Va(a, c),
P(a,c), choseni(a,b,a), di Choicey(a,bb), di Choice(a,b,c),
di Choice,(a,b,u), Fi(a,b,a), R(a,b), P(a,a)}

“In principle, null could be in the domain, and then we should include dom(null)
among the atoms, and, since we do not want legal instances to contain the null value,
the literal Z # null in the body of the rule in 3. Instead, to keep things simpler, we
will not include dom(null) in ~ (G), even if null belongs to the undelying domain U.
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Given a view section S!, we denote by Const(S!), UVar(S!) and EVar(S!)
the sets of constants, universal variables and existential variables, respectively,
that occur in predicates in S'.

Let 1,e be two new constants. For a view section Sf, an admissible mapping
is any mapping h: Const(S!) U UVar(S!) U EVar(S!) — Const(S!) U {u.c},
such that: (a) h(c) = c for every ¢ € Const(S!); (b) h(X) = D with D €
Const(S!) U {u} for every X € UVar(S!); (c) h(Z) = F with F € Const(S!) U
{1, e} for every Z € EVar(S!).

A particular admissible mapping L is given by (a) L(c) = c for every
¢ € Const(S!); (b) L(X) = p for every X € UVar(S!); (¢) L(Z) = & for every
Z € BEVar(S!). For an admissible mapping h, h(S!) denotes the set of atoms
obtained from S! by applying & to the arguments in S!.

Theorem 2. Given an integration system G, if for every view section S! with
existential variables, there is no admissible mapping h for S!, such that h(S!)

Use(seew (st L(S); then the instances associated to the stable models of the
simple version of  (G) are exactly the minimal legal instances of G. u]

Basically, the theorem says that if there is an admissible mapping, such that
B(S) Use(see sty E(S). then it is possible to have some view contents for
which the openness ‘will be satis ed by the other sections in Sec, and then it
will not be necessary to compute values for the existential variables in section
S!. Since the simple version will always compute values for them, it may specify
more legal instances than the minimal ones.

Erample 1/. (example 13 continued) The rst view is de ned by Vi(X)  P(X,
Y), and has only one section S} = {P(X,Y)}. For the admissible mapping h
de ned by h(X) = h(Y) = u, we have that h(S}) = {P(u, )}  L(S9). The
conditions of the theorem are not satis ed, and there is no guarantee that the
simple version will calculate exactly the minimal instances of G3. Actually, we
already know that this is not the case.

Ezample 15. (examples 4 and 5 continued) There are two view sections: S¥ =
{P(X,2),Q(%,Y)} and S§ = {P(X,Y)}, where X and Y are universal variables
and Z is an existential variable. It is easy to see that there is no mapping h
for which h(S?)  L(S9) nor h(S9)  L(S{). In consequence, for any source
contents, the simple version of ~ (G) will calculate exactly the minimal instances
of Gy. O

3.2 The Re ned Program

In the general case, if we want to compute only the elements of Mininst(G), we
need to re ne the program  (G) given in the previous section. For this we will
introduce auxiliary annotation constants that will be used as extra arguments
in the database predicates. They and their intended semantics are given in the
following table
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annotation] _atom _[the tuple P(a)

ta P(a,tq) | an atom of the minimal legal instances
to | P(a,to) | I an obligatory atom in all the minimal legal instances
Vi P(a,v;) | an optional atom introduced to satisfy the openness of

view v;
nv; P(a,nv;)| an optional atom introduced to satisfy the openness of
view that is not v;

De nition 12. Given an open global system G, the re ned program  (G), con-
tains the following clauses:

. Fact dom(a) for every constant a € U

~

Fact V;(a) whenever a € v; for some source extension v; in G.

b

For every view (source) predicate V; in the system with description V;(X)
Pi(X1),. o Pu(X):
(a) For every Py with no existential variables, the rules

(X, to)  Vi(X).

(b) For every set S;; of predicates of the description’s body that are related
by common existential variables {Z1,..., Z,}, the rules,

Pe(Xevy)  addy, (X)), Azexoxn FUX', Z)), for P € Syj.
add,, (X')  Vi(X), not aua,,,(X'), where X' = X 0 {Up,cs,, Xi}-
auz,, (X')  NL vary,z,(Xz,).
vare,z,(Xz)  Apes,ezex, Pe(Xrnvij),

where Xz, = {Up,es,,uzex, X} for 1 =

™

For every predicate F!(X', Z;) introduced in 3.(b), the rules,
FUX',Z))  addy, 7, (X'), dom(Z:), choice((X"), (Z))-
addy, 7,(X")  add,,;(X'), not auw,,;z,(X"), for | =
auzy, 7, (X')  vars,z(Xz). Nz, g2, ex5, FEX 2,

forl=1,... m.

. For every global relation P(X) the rules
P(X,nvy)  P(X,vi), for {(ij, hk)|P(X) € Si; O Si,ij # hk}.
P(X,nvy)  P(X,to), for {(ij)|P(X) € Si;}.

P(X,ta)  P(X,vy), for {(ij)|P(X) € Sij}.
P(X,ta)  P(X,t,). o

We know that under the hypothesis of Theorem 2, the simple and re ned pro-
grams compute the same legal database instances, namely the minimal ones.
Beyond this, it is worth mentioning that, under the same hypothesis, there
simple mechanical, syntactic transformation of the re ned program into a simple
program (in the sense of Section 3.1) that has the same stable models, and then,
in particular, produces the same database instances (see Appendix A.2).

s a

4 Speci cation of Repairs of a Global System

In [6], repairs of single relational databases are speci ed as stable models of
disjunctive logic programs. We brie y explain those programs, because they will
be used to specify repairs of instances of integration systems.
First, the database predicates are expanded with an extra argument to be
Tled with one of a set of new annotation constants. An atom inside (outside)
the original database is annotated with tq (f4).> Annotations t, and f, are
considered advisory values, to solve con between the database and the ICs.
If an atom gets the derived annotation fa, it means an advise to make it false,
i.e. to delete it from the database. Similarly, an atom that gets the annotation
ta, this is seen as an advice to insert it into the database.

Ezample 17. (example 7 continued) Consider the ICs Va(P(z,y) — R(x,y))
and Va(T'(x) — JyP(x,y)), together with the inconsistent database instance
D = {P(a,b),T(c)} and a domain U = {a,b,c,u} . The logic program should
have the e ect of repairing the database. Single, local repair steps are obtained
by deriving the annotations t, or f,. This is done when each IC is considered
in isolation, but there may be interacting ICs, and the repair process may take
several steps and should stabilize at some point. In order to achieve this, we use
annotations t*, £*. The latter, for example, groups together the annotations fq
and f, for the same atom (rules 2. and 5. below). These derived annotations are
used to give a feedback to the bodies of the rules that produce the local, single
repair steps, so that a propagation of changes is triggered (rule 3. below).

The annotations t** and f** are just used to read o the literals that are
inside (resp. outside) a repair. This is achieved by means of rules 7. below,
that are used to interpret the models as database repairs. The facts of rule 1.
correspond to all the elements of the domain except for the null constant, which
is left outside of dom. The following is the program:

1. dom(a). dom(b). dom(c). dom(u).
2. Pz, P(z,y,ta), dom(x), dom(y).
) P(z,y.ta), dom(z), dom(y).
P(x,y,t*)  P(z,y.ta), dom(x), dom(y). (similarly for R and T')
3. P(z,y,fa) V R(z,y,ta) P(z,y,t*), R(z,y.£*), dom(z), dom(y).
T(x,fa) V P(x, null, to)  T(x,t*), not aux(x), not P(x, null,tq), dom(x).

The annotation ta is the same we had in the previous section, actually the program
there will provide the contents of the minimal instances in terms of ta; next, in the
repair process, the new annotations introduced here will be generated.

Ezample 16. (example 13 continued) The re ned program  (Gs) is:

dom(a).  dom(c). (2)

vi(a).  wva(a,c). (3)
P(X.Zv1)  addy, (X), F.(X, Z). (1)
addy, (X)  v1(X), not auz,, (X). ()

auzpy (X)  vares(X, Z). (6)
vare-(X.Z)  P(X,Znv). @)
F.X,Z)  addy, (X),dom(Z), choseny, (X, Z). (8)
chosen,,-(X,Z)  add,,(X),dom(Z), not di choice,,.(X,Z). (9)
di choice, .(X,Z)  chosen,,.(X,Z'),dom(Z), Z' + Z. (10)
P(X.Y.to)  ua(X,Y). (11)
P(X,Y,nv1)  P(X,Y,to). (12)
P(X,Y,ta) P(X,Y,v1). (13)
P(X,Y.ta) P(X,Y.to). (14)

Rules (4) to (7) ensure that if there is an atom in source Vi, e.g. Vi(a), and
if an atom of the form P(a, Z) was not added by view Va, then it is added by
rule (4) with a Z value given by the function predicate F.(a, Z). This function
predicate is calculated by rules (8) to (10). Rule (11) enforces the satisfaction
of the openness of V5 by adding obligatory atoms to predicate P and rule (12)
stores this atoms with the annotation nvy, implying that they were added by a
view di erent from V;. The last two rules gather with annotation t4 the elements
that were generated by both views and that are in the minimal legal instances.
The stable model of this program is {dom(a), dom(c), v1(a), v2(a,c), P(a, ¢, ta),
P(a, ¢, to), P(a,c, nvy), auz,, (a)}, which corresponds to the only minimal legal
instance {P(a,c)}. [m}

Theorem 3. If M is a stable model of SV(  (G)), then Dpg := {P(a) | P €
R and P(a,ta) € M} € Mininst(G). Furthermore, the minimal legal instances
obtained in this way are all the minimal legal instances of .

The program  (§) (or its stable version) can be used to compute Minimalg(Q),
where Q is a query expressed as a, say Datalog” program  (Q). This can be
done by running the combined program under the skeptical stable model seman-

tics. The following corollary for monotone queries, ¢.g. a Datalog querics, can
be immediately obtained from Theorem 3 and the fact that for those queries

Certaing(Q) = Minimalg(Q).

Corollary 1. The certain answers to monotone queries posed to an open inte-
gration system G can be computed by running, under the skeptical stable model
semantics, the query program in combination with the program () that spec-
i es the minimal legal instances of G. u]

auz(z)  P(x,y,ta), not P(z,y,fa).
auz(z) Py, ta).

4.
5. dom(z), dom(y),not P(z,y,ta).  (similarly for R and T)
6. P(v.ta), P, fa). R, ta), R(x, £a).
7. P(x,y,t**)  P(x,y,ta), dom(z), dom(y).
P(x,y,£*)  P(x,y.fa), dom(z), dom(y).
P(x,y,t**)  P(x,y,ta), not P(z,y.fa), dom(x), dom(y).

P(x,y, **) dom(z), dom(y), not P(x,y,tq), not P(z,y,ta).
(similarly for R and T)

Only rules 3. depend on the ICs. The rst rule in 3. corresponds to the universal
ICs and the rest to the referential IC. These rules say how to repair the inconsis-
tencies. Rules 4. contain the database atoms. Rules 5. capture the closed world
assumption (CWA) [40]. Rules 6. are denial program constraints to discard mod-
els that contain an atom annotated with both t, and fa. The program has four
stable models. The repairs are obtained from them by selecting the atoms anno-
tated with t**: Dy = {P(a,b), R(a,b)}, D2 = {P(a,b), R(a,b),T(c), P(c,null)}
and Dy = {T(c), P(c,null)}, Dy = 0. As expected, they coincide with the ones
obtained in Example 7. [m]

It can be proved [6] in the context of single relational databases that the stable
models of these disjunctive programs are in a one to one correspondence with
the repairs of the original database, for any combination of universal and acyclic
referential integrity constraints. If there are cycles between the referential ICs,
then the speci cation programs may produce a class of stable models that prop-
erly extends the class of repairs [12]. Those models that do not correspond to
repairs still satisfy the ICs, but may not be minimal repairs. In this case the
stable models that do not correspond to (minimal) repairs can be pruned by
comparison with the other stable models [12]. These properties will be inherited

by our application of this kind of programs to the speci cation of the repairs of
the minimal instances of an integration system.

The next de nition combines into one program the re ned version that spec-
i es the minimal legal instances and the speci cation of the repairs of those
minimal instances.

De nition 13. The repair program, (G, 1C), of G wrt IC contains the follow-
ing clauses:

1. The same rules as in De nition 12.

2. For every predicate P € R, the ¢
P(X,t*)  P(X,ta), dom(X).5

P(X.t)  P(X.ta). dom(X).
P(X,f*) P(X,fa). dom(X).
P(X,f*)  dom(X), not P(X, tq).

Xu), we abbreviate dom(X1) A -+ A dom(X,) with dom(X).

16
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3. For every rst-order global universal IC of the form ¥(Q1 (Y1) V. V Qu(Y)
Py(X1) A A Pn(X) Aw), where P;,Q; € R. and ¢ is a conjunction
of built-in atoms, the clause:
Visa P, £2) VILy Q55 ta) N PG t7), ALy Q4 (Y5, £),
dom(X), ¢;
where X is the tuple of all variables appearing in database atoms in the rule.
. For every referential IC of the form VX (P(X) — 3YQ(X'.Y)), with X’
X, the clauses
P(X.fa) V QX' null, ta)  P(X,t*),not aux(X'), not Q(X', null, ta),
dom(X).
aux(X')  Q(X',Y,ta), not Q(X"Y,fa), dom(X"Y).
aux(X')  Q(X',Y,ta), dom(X'Y).
5. For every predicate P € R, the interpretation clauses:
P(a, ) P(a,fa).
P(a,f*) not P(a,tq), not P(a,ta).
P(a,t**) P(a ta).
P(a,t**) P(a,ta). not P(a.fa). m]

-

Rules 4 repair referential ICs by deletion of tuples or insertion of null values
that are not propagated through other ICs [6]. For this purpose, dom(null)
is not considered as a fact and therefore the null values will not propagate.
Optimizations of the repair part of the program, like avoiding the materialization
of the CWA, are analyzed in [6].

The choice models of program (G, IC) that do not contain a pair of lit-
erals of the form {P(a,ta). P(a.fa)} are called coherent models. Only coherent
models can be obtained for the program if the denial constraints of the form

P(x,t**), P(x,f**) are included in the program.

De nition 14. The global instance associated to a choice model M of (G, IC)
is Dy = {P(a)| P €R and P(a,t**) € M}. u]

The repair program can be split [37] into the speci cation of the minimal in-
stances and the speci cation of their repairs. Therefore, the minimal legal in-
stances can be calculated rst, and then the repairs of them. Each minimal
model calculated by the rst part of (G, IC) can be seen as a simple, relational
database, which is repaired afterwards by the second part of (G, IC). This
gives us the following theorem straightforwardly.

Theorem 4. Let IC be an arbitrary class of universal and acyclic referential
integrity constraints. If M is a coherent choice model of (G, IC), then D is
a repair of G wrt IC. Furthermore, the repairs obtained in this way are all the
repairs of G wrt IC.

In the case in which a cyclic set of referential ICs is considered, the global
instances associated to the choice models of the program will be a superset of
the repairs of G wrt IC, and in order to obtain the repairs, the choice models
will have to be compared to choose those minimally di_ er from the minimal legal
instance [12].

% Repair subprogram
P(X,Y,t*)  P(X,Y,ta),dom(X),dom(Y).
P(X,Y,t*)  P(X,Y,ta),dom(X),dom(Y).
P(X.Y.£*)  dom(X),dom(Y), not P(X,Y,ta).
P(X.Y.£5)  P(X,Y.£a),dom(X), dom(Y).
R(X,Y,t*)  R(X,Y,ta),dom(X),dom(Y).
R(X.Y,t*)  R(X,Y,tq),dom(X),dom(Y).
R(X.Y,f*)  dom(X),dom(Y), not R(X,Y, tq).
R(X,Y,£*)  R(X,Y,fa),dom(X),dom(Y).
R(X,Y,£2)VR(Y,X,ta)  R(X,Y,t*), R(Y, X.£*), dom(X), dom(Y).
P(X,Y,t*)  P(X,Y,ta), dom(X), dom(Y).
P(X,Y,t™)  P(X,Y,ta),dom(X),dom(Y), not P(X,Y,fa).
P(X.Y.£%)  P(X,Y.fa),dom(X),dom(Y).
P(X.Y,£%)  dom(X),dom(Y), not P(X,Y.ta), not P(X.Y,ta).
R(X.Y,t)  R(X,Yta),dom(X),dom(Y).
(X.Y,6%)  R(X.Y,ta),dom(X),dom(Y), not R(X.Y,fa).
(XY, f*)  R(X,Y.fa),dom(X),dom(Y).
(X.Y.£*)  dom(X),dom(Y), not R(X,Y,ta), not R(X,Y, ta).
R(X,Y, ta), R(X, Y, f).
P(X.Y,ta), P(X,Y.fa).

This program has ve stable models with the following associated repairs: (a)
Duy = { Pla,b), R(b, b). P(a, ¢) }. corresponding to the already consistent
minimal instance D, in Example 12; (b) Dy = { P(a, a), Pla, ¢) } and
Damy = { Rla, b), R(b, a), P(a, a), P(a, ¢) }, the repairs of the inconsistent
instance D,s (¢) Dy = { Pla, ¢) } and Dy = { R(e,b), R(b, ¢), P(a, ¢) },
the repairs of instance Dag,; and () Dagg = { Pla, u), Pla, ¢) } and Dygy = {
R(u, b), R(b, u), P(a, u), P(a, ) }, the repairs of Dy,. )

The corresponding stable models of  (Q) U SV( ( Gs, sim)) are: (a) Ml
= Mj U {Ans(a. b), Ans(a, ¢)}: (b) My = Mj U {Ans(a, a), Ans(a, c)}; My
= M3 U {Ans(a, a). Ans(a, )}; (c) My = Mj U {Ans(a, ¢)}; My = M5 U
{Ans(a, ¢)}; (d) Mg = My U {Ans(a, u), Ans(a, ¢)}; My = Mg U {Ans(a,
), Ans(a, ¢)}. Ans(a, c) is the only query atom in all stable models, then the
tuple (a, ¢) is the only consistent answer to the query.

1f G is consistent, then the consistent answers to @ computed with this method
coincide with the minimal answers to @, and then to the certain answers if Q is
monotone.

6 Further Analysis, Extensions and Discussion

6.1 Complexity

The complexity analysis of consistent query answering in integration of open
sources under the LAV approach can be split according to the main two layers
of the combined program, namely, the speci cation of minimal instances and the
speci cation of the repairs of those minimal instances.
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5 Consistent Answers

posed to a system G that are consistent
wrt to IC. First we will consider universal and acyclic referential ICs. We do the
following:

1. We start with a query Q that is expressed, e.g. as astrati ed Datalog program,
(Q), whose extensional predicates are clements of the global schema R. Each

positive occurrence of those predicates, say P(t), is replaced by P(t.t**); and

cach negative occurren not P(t), by P(t.f**). This query program has

a query predicate Ans that collects the answers to Q. In particular, rst order

queries can be expressed as strati ed Datalog programs [1].

2. Program (Q) is appended to the program SV ( (G, IC)), the stable version

of the repair program.

3. The consistent answers to @ are the ground Ans atoms in the intersection of

all stable models of  (Q)USV( @.1C)).

Ezample 18. (example 11 continued) We have the integration system Go with the
local view de nitions Vi(X,Z) P(X.Y), R(Y,Z),and Va(X,Y) P(X,Y),
and source contents v; = {Vi(a.b)} and vy = {Va(a.c)} respectively. Consider
the global symmetry integrity constraint sim : VaVy(R(x,y) — R(y,z)) on
Go. We want the consistent answers to the query Q: P(x,y). First, the query
is written as the query program clause Ans(X,Y)  P(X,Y,t**). This query
program, (Q), is run with the revised version of SV( (G, sim)) that has the
following rules:

% Subprogram for minimal instances

dom(a).  dom(b). dom(c). dom(u).

vi(a,b).  va(asc).

P(X,Y,nv1)  P(X,Y,to).

P(X.Y.nva)  P(X,Y,v1).

P(X.Y.ta) P(X,Y.v1).

P(X.Y,ta) P(X,Yt,).

R(X.Y,ta) R(X,Y,v1).

% Speci cation of V;

P(X,Y,v1) addy, (X, 2),FY (X, Z,Y).

R(Y,Z,v1)  addy, (X, 2), FY (X, Z,Y).

addy, (X, Z) (X, Z), not auzy, (X, Z).

auzy, (X, Z)  vary,y(X.Y, Z).

var,,y(X,Y,Z)  P(X,Y,nv1), R(Y, Z,nv,).
FY(X,2,Y)  addyy(X, Z),dom(Y), choseny,y (X, Z,Y).
chosenyy (X, 2,Y)  addy,y (X, Z),dom(Y), not di choice,, (X, Z,Y).
di choice,, (X, 2,Y)  choseny,y (X, Z,Y"),dom(Y),Y" #Y.
add,,y(X,Z)  add, (X,Z), not auz,y(X,Z).
auzy,y(X,Z)  vary,y(X,Y, Z).

% Speci cation of Vo

P(X.Y.to)  va(X,Y).

Query evaluation from the program  (G) with choice under the skeptical
stable model semantics is in coNP (the case singularize
in [41]). Actually, if the choice operator program is rep:
stable version (see Section 3.1), we are left with a normal (non-disjunctive), but
non-strati ed program whose query answering complexity under the skeptical
stable model semantics is coNP-complete [19,35] in data complexity [1], in our
case, in terms of the combined sizes of the sources. This complexity of computing
minimal answers is inherited by the computation of certain answers when the two
notions coincide, e.g. for monotone queries like Datalog queries. This complexity
result is consistent and matches the theoretical complexity lower bound on com-
puting certain answers to Datalog queries under the LAV approach [2]. With
disjunctive views, as considered in Section 6.4, the complexity of the program
goes up to being  {’-complete.

The complexity of query evaluation wrt the disjunctive normal program

(G, IC) that speci es the repair of minimal instances is 4 -complete in data
complexity [19], which matches the complexity of i query answerin,
10,18, 15].

There are some cases studied in [6], e.g. only universal ICs, where the repair
part of the program for CQA is head-cycle free (HCF) and therefore the complex-
ity is reduced to coN P [7,34]. This coNP-completeness result can be extended
to some cases where both universal and RICs are considered. It is possible to
show [12] that the program (G, IC) is HCF for a combination of: (a) Denial
constraints, i.e. formulas of the form \/!_, Pi(t;) — ¢, where P;(t;) is an atom
and ¢ is a formula containing built-in predicates only; (b) Acyclic referential
integrity constraints, i.e. without cycles in the dependency graph.

This case includes the usual integrity constraints found in database prac-
tice, like (non cyclic) foreign key constraints. In [18, 15] some cases where func-
tional dependencies and referential integrities coexist are presented, for which
the problem of CQA becomes  {’-complete. Actually, in the case when repairs
wrt cyclic RICs is done by introducing arbitrary, non null elements of the under-
lying domain, the problem of consistent query answering becomes undecidable
[15]. However, if repairs wrt cyclic RICs are obtained by introducing null val-
ues that do not propagate via ICs, the problem of consistent query answering
becomes decidable [12].

6.2 In nite vs. Finite Domain

In Section 2.1 we considered the possibility of having an in nite underlying
domain U. At the purely speci cation level there is not problem in admitting,
in the rst item of De nition 10, an in nite number of facts. Our soundness and
completeness theorems hold. However, in the logic programs we have presented
in the examples we had a nite domain, c.f. Example 10 (the nite domain is
speci ed by the dom predicate), but also an extra constant u that does not
appear in the active domain of the integration system, that consists of all the
constants in the sources plus those that appear in the view de nitions. The reason
is that we need a nite domain to run the programs, but at the same time we
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need to capture the potential in niteness of the domain and the openness of the
sources. Furthermore, we should not be forced to use only the active domain,
because doing so might assign the wrong semantics to the integration system.

Ezample 19. Consider an integration system G4 with one source de ned by the
view V(X)  R(X,Y) and the query Q(Y)  R(X,Y). If the view extension
has only one tuple, say {(a)}, we have that the active domain is {a} and that
R(a,a) is in all the legal instances of G, if only this domain is used; and we
would have Certaing,(Q) = {a}. Now, if the view extension becomes {(a), (b)},
the active domain is {a,b}, and there is a global instance containing just the
tuple R(a,b), and another containing just {R(a,a)}. In consequence, there will
be no certain answers. This simple example shows that a positive query may
have an undesirable non-monotonic behavior

In Example 10, introducing one extra constant (u) is good enough to correctly
answer conjunctive queries (see below). In the general case, the number of extra
constants may vary depending on the situation.

It is necessary to make all these considerations, because, the set of minimal
legal instances may depend on underlying domain, as we saw in Example 5,
where Mininst(G2) = {{P(a,¢), P(a,z), R(z,a)} | z €U ={a,b,c,..}}.

Since we want only the certain answers, those that can be obtained from all
the stable models, it is easy to see that the values taken by the “free variables”,
like z above, will not appear in a certain answer. However, the absence of the
extra, new constants may sanction as certain some answers that are not if the
domain is restricted to the active domain (see Example 19). In consequence,
we need a larger domain, with enough variables to represent the relations and
di erences between the free variables. Depending on the query, there is a nite
domain that generates the same certain and minimal answers as the in nite
domain. It can be shown that if the query is conjunctive, then adding only one
new constant to the active domain is good enough (see Example 10).

If the query is disjunctive, then the smallest “equivalent” nite domain is
the active domain plus n new constants, where n is the maximum number of
instantiations of existential variables in a minimal legal instance. This number
of instantiations cannot be obtained from the view de nitions alone, because it
also depends on the number of elements in the sourc ciated to the Skolem
ates. An upper bound on the number of constants to be added to the
» domain to correctly answer disjunctive ques the sum over all sources
of the product of the number of existential variables in a view de nition with
the number of atoms in the corresponding source.

Ezample 20. Given an integration system Gs:

Vi(X.Y)  P(X.Z0).R(Zo.Y).  {Vi(a.b)}

V(X.Y)  P(X.Z0).R(Z0Y).  {Va(a,b), Vale, )}
The set of minimal legal instances is {{P(a, 21), R(21,b), P(c, 22), R(z3,d)} | 21,
22, 23 € U}. By looking at this representation, we see that in order to obtain cor-
rect certain answers to disjunctive queries, it is good enough to add to the active
domain {a, b, c,d} three extra constants, obtaining, say U = {a,b,c.d. e, f,g}. a
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%V

P(X, fi(X), f2(X),v1)  addy, (X), addy, y (X), addy, 7(X).
S(fi(X),v1)  addvi (X).

add,, (X) v (X), not aux,, (X).

auzy, (X)  vary,y (XY, Z),var, z(X,Y, Z).
var,y(X.Y,Z) P(X.Y,Znvy),S(Y.nvy).
vary, 2(X,Y,Z)  P(X,Y,Znvy).

addy,y(X)  addy, (X), not auz,,y (X).
auzy,y (X)  wvary,y(X,Y,2),Z = fo(X).

addy, 2(X)  addy, (X), not auwy, z(X).

auwy, z(X)  wvare,z(X,Y.2),Z = fi(X).

%V

P(X.Y, f5(X.Y),v2)  addy,(X,Y), addy,7(X,Y).
addy, (X,Y)  0a(X,Y), not auz,,(X,Y).
auwy, (X,Y)  vary, (XY, Z).

vary,z(X.Y,Z)  P(X,Y,Z.nvs).
addy,2(X,Y)  addy,(X,Y), not auw,,z(X,Y).
aury,z(X,Y)  wary,z(X,Y,Z).
P(X.Y,Znvy) P(X,Y.Z,v3).
P(X,Y,Znvy)  P(X,Y,Z,v1).

P(X.Y,Zta)  P(X,Y,Z.v1).

P(X,Y,Z,ta) P(X,Y,Z,vs).

S(Vita)  S(Y.va).

(m)

The stable models of the re ned program with Skolem functions are calculated
under the unique names ption [40]. As a cc of this, the program
may not be able to distinguish those cases where the openness condition for a
source can be satis ed because the condition already holds for another source
(see the discussion at the end of Section 3.1). For example, if two atoms, say
P(a, f1(a), f2(a)) and P(a.e, f3(a.€)). are added to the stable models in or-
der to satisfy the openness conditions for two di erent views, the program will
treat those two atoms as di erent, what may not be the case when the Skolem
functions are interpreted. As a consequence, stable models that are larger than
needed might be produced. If each of these stable models is seen as a com-
pact representation of a set of intended global instances, which can be recovered
through all possible instantiations of the Skolem functions in the model, we may
end up generating global instances that are not minimal. In other words, the
class of stable models of the re ned program with Skolem functions represents a
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nite domain that is able to simulate an in nite domain wrt disjunctive queries.
Instead of inspecting the minimal i to determine the number of new
constants, we can use an upper bound, in this case, ve, which can be computed
as: 1 existential variable times 1 atom plus 2 existential variables times 2 atoms.
So, we could use a domain ¢ with ve extra constants. [}

6.3 Choice Models vs. Skolem Functions

In this paper we have used the choice operator to replace the Skolem functions
used in the inverse rules algorithm. In this way we were able to specify the
minimal global instances, which was one of our original goals, is interesting in
itself, and allows us to specify the repairs of the integration system wrt the ICs.
However, if we are interested in query answering only, it becomes relevant to
analyze if it is possible to retrieve the minimal, certain and consistent answers
by keeping the Skolem functions in the program, evaluating it, and then ltering
out the nal answers that contain those functions (as done in [21]).

We  rst analyze the case of the simple program (see Section 3.1), in which we
want to consider using the Skolem functions instead of the functional predicate
together with the choice operator. For example, we would have P(X, f(X))
V(X) instead of the couple of rules P(X,Y)  V(X), F(X,Y)and F(X,Y)
V(X), dom(Y), choice((X),(Y)).

In this case, the program will have the same rules V=" as in the inverse rules
algorithm. The resulting de nite program is positive and, therefore, its stable
model corresponds to the minimal model. That model will have atoms with
instantiated Skolem functions, and can be seen as a compact representation of
the collection of stable models of the choice program, in the sense that the latter
can be recovered by considering the di erent ways in which the Skolem functions
can be de ned in the underlying domain.

If a query is posed to the program with Skolem functions, the answer set
may contain or not answers with Skolem functions. Those answers with Skolem
functions correspond to answers that would be di erent in di erent stable models
of the choice program, because in a su  ciently rich domain (see Section 6.2) the
functions may be de ned in di erent ways. This is why if we delete those answers
with functions, we get the same answers as from the choice program  (G) under
the cautious stable model semantics. In cc for cc ing the certain
answers to a monotone query, we can indistinctly use the program with Skolem
functions (pruning the answers with Skolem functions at the end) or the choice
program.

Let us now consider the re ned program (see Section 3.2). In this case, if
Skolem functions are used instead of the choice operator, the resulting program
is a normal program that may have several stable models.

Ezample 21. Consider an integration system G with
Vi(X) P(X1.1,7Z1),S(M)  Vi(a)
Va(XY)  P(X3,Y2,Z5) Va(a.€)

The following is the program with Skolem functions:
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class that possibly properly extends the one of minimal instances, by including
global instances that are legal but not minimal.

Ezample 22. (example 21 continued) The minimal instances of this integration
system can be represented by {{P(a,e, f3(a,e)), P(a, fi(a), f2(a)), S(f1(a))} |
fa(a,e) €U, fo(a) €U, fr(a) € Un{e}} U {{Plae, fa(a,e)), S(e)} | fala,e) €
U}. By interpreting the Skolem functions in the underlying domain, we obtain
all and only the minimal instances. Notice that in this case, it is necessary to
give all the possible values in the domain to the existential variables (or function
symbols), the only exception being when the existential variable Y; is made equal
to e. In tha good enough to give values to Z; or Zs in order to satisfy
the openness conditions for V; and Va.

In the context of the re ned program with function symbols, due to the
unique names assumption, fi(a) will always be considered di erent from e, and
therefore the program will not realize that there is a minimal model that does
not contain the tuple P(X, f1(X), f2(X),v1). In consequence, the program will
generate the stable model {P(a.e, f3(a,e)), P(a, fi(a), f2(a)), S(fi(a))}, that
represents a proper superclass of the minimal legal instances. For example, it
represents the instance {P(a,e,u), P(a,e,v),S(e)} that is not minimal. O

The possibly strict superset of the minimal instances that is represented by the
models of the program with functions can be used to correctly compute the
minimal and certain answers to monotone queries (in this case it is better to use
the simple program though), but not for queries with negation.

‘We now consider the repair program. In those cases where the stable models
of the simple or revised programs with Skolem functions do not represent the
minimal legal instances, it is clear that it is not possible to compute their re-
pairs. When the stable models do represent the minimal legal instances, it is not
possible for the repair program to detect all the inconsistencies in them because
of the underlying unique names assumption.

Erample 23. (examples 4 and 5 continued) The minimal legal instances are
represented via Skolem functions by M = {P(a, f(a,b)), R(f(a,b),b), P(a,c)},
which can be obtained as a model of by the simple program with Skolem func-
tions. This model is inconsistent wrt IC': VaVy(R(X,Y) — R(Y, X)).

The repair program (G, IC) has the rule
R(X,Y,fa) VR(Y, X, ta) R(X,Y,t*), R(Y, X, f*).

that will produce the set of repairs Dy, = {P(a, f(a.b)), P(a,c)} and Dy, =
{P(a, f(a,b)), R(f(a,b),b), R(b, f(a,b)), P(a,c)}, which represent a superset of
the real repairs of the minimal legal instances. Because of the unique names
assumption, the program will not detect that for f(a.b) = b the instance is
consistent wrt IC. [m}

Additional remarks on this issue can be found in [8].

6.4 Disjunctive Sources

In Section 3 we considered sources de ned as conjunctive views only. If sources
are now described as disjunctive views, i.e. with more than one conjunctive
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rule [20], then the program (G) has to be extended in order to capture the
minimal instances. In this case, a source S; is a pair { ;,v;), where ; is a st
of conjunctive rules de ning the same view, say ¢, ..., @, » and v; is the given
extension of the source.

De nition 15. Given an open global system G = {{ 1.v1), ....{ n.va)}, the
set of legal global instances is Linst(G) = {D instance over R | v; Uy ¢, (D),
for i=1,....n}. o

Example 24. Consider the global integration system Gr with global relations
{R(X.,Y),S(X),T(X,Y)} and two source relations v; and vy with the following
view de nitions and extensions:

Source Extension View De nitions

v Vila, b), Vile, )} [ Vi (X,Y)  R(X.Y),S(Y)
Vig : Vi(X,d)  T(X,d)

vz {Va(b). Va(a)} Vo1t a(X)  S(X)

Examples of legal instances are {S(b), S(a), R(a,b), T(c.d)}, {S(b), S(a), R(a, b)
R(c,d), $(d)} and {S(b), S(a), R(a,b), T(c,d), T(a,b)}.

If we have disjunctive view de nitions, in order to satisfy the openness of a
source, it is necessary that one or more views generate each of its tuples. To
capture this, in [20] the concepts of truly disjunctive view and witness are intro-
duced, together with an exclusion condition. Informally, a set of views is truly
disjunctive if there is a tuple ¢ that can be generated by any of the views. This
tuple is called a witness. The lusis dition is a constraint on the witness
that determines for which tuples the truly disjunctive views are the most general.

Ezample 25. (example 24 continued) The atoms of v that have the constant
d as the second attribute can be generated either by Vi; or Via. On the other
hand, if the second attribute is not d, the atom can only be generated by Vi.
This is expressed in terms of truly disjunctive views, most general witness and
exclusion condition by the following table:

truly disjunctive | most general | exclusion condition
views witness
Vi (X1,X2) | second attribute # d
Vi, Vo (X1,d) true

O

In order to extend the simple version of (), incorporating disjunctive view
de nitions, we need to take into account the di erent sets of truly disjunctive
views with their witnesses and exclusion conditions. For example, for the second
truly disjunctive set in Example 25, the following rule needs to be imposed

(R(X,d) AS(@)VT(X,d)  V(X,d), (15)

program in Section 3.2, for which Mininst(G) = {Daq | M is a stable model
of Y(G)} also holds.

7 Conclusions

‘We have presented a general approach to specifying, by means of disjunctive
deductive databases with stable model semantics, the database repairs of a me-
diated integration system with open sources under the LAV approach. Then,
consistent answers to queries posed to such a system are computed by running
a query program together with the speci cation of database repairs under the
skeptical or cautious stable model semantics.

The speci cation of the repairs is achieved by rst specifying the class of
minimal global legal instances of the integration system (without considering
any global ICs at this level yet). To the best of our knowledge, this is also
the 1st speci cation, under the LAV paradigm, of such global instances in a
logic programming formalism. The speci cation is inspired by the inverse rules
algorithms, where auxiliary functions are replaced by auxiliary predicates that
are forced to be functional by means of the non deterministic choice operator.

The speci cation of the minimal legal instances of the integration system al-
lows obtaining the minimal answers to arbitrary queries; and the certain answers
to monotone queries, what extends previous results in the literature related to
query plan generation under the LAV approach.

The methodology for specifying minimal legal instances, computing certain
answers and CQA works for conjunctive view de nitions and disjunctions of
them. Wrt the ICs and queries this approach can handle, the solution is sound
and complete for combinations of universal ICs and acyclic referential ICs, and
queries expressed as Datalog™ programs. In consequence, the current approach
to consistent query answering (CQA) subsumes and th(,nd: the methodolo-
gies presented in [9] for integration systems, and the one in [6] for stand alone
relational databases. Also the complexity of query evaluation using the logic
programs presented here matches the theoretical lower bounds for computing
certain and consistent answers.

For reasons of space, we just mention a few optimizations of the speci cation
programs and their execution (more on optimization of repair programs can
be found in [6]). The materialization of the CWA present in (G, IC) can be
avoided by program transformation. We have identi ed classes of common ICs
for which SV( (G, IC)) becomes head-cycle-free, and in consequence, can be
transformed into a non disjunctive program [7,34]. Transformations are shown
in [6].

The program for CQA can be split [37] into: (1) the program that speci es
minimal legal instances; (2) the program that speci es their repairs; and (3) the
query program. If the simple version can be used in (1), that layer is a strati ed
program. Otherwise, if the re ned version is used, that layer is not strati ed, but
its models can be computed bottom-up as xpoints of an iterative operator [27].
The second layer, i.e. the repair part, is locally strati ed [39]. Finally, if the query
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which is equivalent to the pair of disjunctive Datalog rules

R(X,d)VT(X,d) V(X,d) (16)
S@VT(X,d)  V(X,d). (17)

For cach set of truly disjunctive views, rules like (16) and (17) will have to be
satis ed by the legal instances. These remarks motivate the following program
as an speci cation of the minimal legal instances.

De nition 16. Given an open global system G, the program, Y(G), contains
the following clauses:
1. Fact dom(a) for every constant a € U; and the fact V;(a) whenever a € v;
for some source extension v; in G.
2. For every set of truly disjunctive views for a source V; of the form

Vit Vi(X1)  Pu(Xi)--. Pia(Xin,)

Vie:  ViXe)  Pa(Xi) - Pen(Xgny),
where the variables in cach view are di erent (fresh), for its more general witness
W and its most general exclusion condition @, the rules

P (X{5)V VP (Xis) VW) Ao A Ngexnwy FLHW, Z0),
where X' = i, X/s and & € {L,...,ny} for 1= 1,.... k.
The vectors X}, ..., X}, are those obtained by the substitution of X; by W
in all the view de nitions. These rules represent all the possible combinations of
k predicates where each of them is chosen from a di erent view de nition.
3. For every predicate F!(X, Z;) introduced in 2., the rule

FNX.Z))  Vi(X).dom(Z), choice((X), (Z1)). o
Erample 26. (example 25 continued) The program Y (Gr) is:

dom(a). dom(b).  dom(c). dom(d). (18)

RX,Y) VA(X.Y),Y £d. (19)

S(Y)  VA(X.Y).Y #£d. (20)

T(X.d)VR(X,Y) Vi(X,Y). (21)

T(X.d)VSY) Vi(X,Y). (22)

S Va(X). 23)

Rules (19)-(20) and (21)-(22) represent, respectively, the rst and second truly
disjunctive set for source v1. Rule (23) is for the non-disjunctive source v,. O

1f all the sources are de ned by conjunctive views, then is easy to see that ¥(G)
becomes the simple program  (G) introduced in Section 3.1. As before, it holds
that

Mininst(G) {Da | M is a stable model of  Y(G)}  Linst(G).

For monotone queries @, the answers obtained using  ¥(G) coincide with
Certaing(Q) and Minimalg(Q). This might not be the case of queries with nega-
tion. It is possible to give a re ned version, corresponding to the non disjunctive
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program is strati ed, e.g. if the original query is rst-order, then the consistent
answers can be eventually computed by a bottom-up evaluation mechanism.

We have already indicated that in the case the set of ICs contain referential
ICs with cycles between them the stable models of the speci cation programs
we gave may correspond to a superclass of the repairs of the global system
[12]. Non minimal repairs may appear as models of the program. It should be
possible to modify the given program by adding a new layer of rules that does
the job of pruning all the stable models of the original program that do not
correspond to (minimal) repairs. In this direction the answer set programming
based speci cation of some “local t for minimality as given in [38] (and used
in [11] in the context of database repairs) could be attempted.

For CQA from integration systems we have successfully experimented with
DLV [22,35]. The current impl ations of the disjunctive stable models se-
mantics would be much more e ective in database applications if it were possible
to evaluate open queries in a form that is guided by the query rather than based
on, rst, massive grounding of the whole program and, second, considering what
can be found in every (completely constructed) stable model of the program.
First optimizations of this kind have been reported in [23].

Wit related papers, query answering in mediated integration systems under
the assumption that certain global ICs hold has been treated in [31,21,29,14].
However, in CQA, we do not assume that global ICs hold. Logic programming
speci cations of repairs of single relational databases have been presented in [4,
30,5].

In [9], CQA in possibly inconsistent integration systems under the LAV ap-
proach is considered. There, the notion of repair of a minimal legal instance is
introduced. The algorithm for CQA is based on a query transformation mecha-
nism [3] applied to rst-order queries. The resulting query may contain negation,
and is run on top of an extension of the inverse algorithm to the case of strati-

ed Datalog™ queries. This approach is limited by the restrictions of the query
transformation methodology. In particular, it can be applied only to queries that
are conjunctions of literals and universal ICs.

Integration systems under the GAV approach that do not satisfy global key
dependencies are considered in [32]. There, legal instances are allowed to be
more exible, allowing their computed views to accommodate the satisfaction
of the ICs. In this sense, the notion of repair is implicit; and the legal instances
are the repairs we have considered here. View de nitions are expressed as Data-
log queries; and the queries to the global system are conjunctive. The “repairs”
of the global system are speci ed by normal programs under stable model se-
mantics. In [16] and still under the GAV approach, this work is extended by
introducing rewriting techniques to retrieve the consistent query answers with-
out constructing the “repairs”. More related work is discussed in the survey
[8].

With respect to current and future work, apart from considering all kinds of
implementation and optimization issues around the programs and their interac-
tion with a database, we have extended [8] our treatment of CQA in integration
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systems to the mixed case where open, closed and sources that are both open and
closed (clopen) coexist [28]; and to particular, but common and natural combi-
nations of them. We are working on identifying conditions on the view de nitions
that make it possible to compute, from the program (G), the certain answers
to possibly non-monotonic queries.

In this paper we have considered null values based repairs under RICs. The
null values have a special treatment wrt to satisfaction of ICs, and as a conse-
quence, they do not propagate in the repair process. In [4, 5, 15], repairs of RICs
using normal domain values are considered. This, under cyclic sets of RICs, may
lead to undecidability of consistent query answering. It would be interesting to
study some sort of mixed approach, and also the possibility of limited propaga-
tion of null values.

Research related to the design of virtual data integration systems and its
impact on global query answering has been mostly neglected. Most of the re-
search in the area starts from a given set of view de nitions, but the conditions
on them hardly go beyond classifying them as conjunctive, disjunctive, Datalog,
cte. However, other conditions, imposed when the s s being designed,
could have an impact on, e.g. query plan derivation. Much research is needed in
this direction.
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{Dp | Mis a choice model of  (G)}  Linst(G). (24)

Assume that there is a stable model M of  (G) such that its associated database
Dipq is not a legal instance. Then there is a view V; for which v; / ;(Da), that
is, for some a:
— a € v, and then by rules 1. of  (G), Vi(a) is true in any model of the
program, in particular, in M.
— a ¢ pi(Dpm), ie. in M, it holds =3z(Py(ar, z1)A...APy(an, 2,)), fora; a,
and z; 2. This is equivalent to

Vz (=Pi(a1.21) V...V =Py(an, z0)) (25)

A consequence of (25) and rules 2. of () is the following:

vz (Vila) v\ =Ff(a, 2)). (26)
1

Since V;(a) € M and rules 3. of (G) are satis ed by M we have that for some
b's in the domain the atoms F!(a,b) € M. But we had that equation (26) holds.
‘We have reached a contradiction because (26) is false in M; and (24) is proven.
Now we want to prove: Mininst(G) {D | M is a choice model of  (G)}.
The program  (G) can be split [37] into the bottom program  p, that
contains the facts and rules in 1. and 3. of (G), and the top program, 7,
that contains the rules in 2.. If Mp is a stable model of 5 and M¥ is a stable
model of M (the top program partially evaluated by the atoms in M), then
MpUMZ is astable model of ~ (G), and all the models of latter can be obtained
in this way. The bottom program contains the choice operator and therefore its
stable models will correspond to all the possible combinations of values for the
Skolem predicates subject to the condition of functionality [41]. Since % is
a non-disjunctive-positive program (without the choice operator), there will be
a unique stable model for each Mp that will correspond to its minimal model.
We will now prove that every minimal legal instance is of the form D4,
where M is of the form Mp U M? with Mp a stable model of g and M¥ a
minimal model of 7.
Let D be a minimal legal instance of G. Let us de ne a structure M for the
program  (G) containing the following ground atoms:

1. The atoms in D;

2. Vi(a) whenever a € v;, where v; is a source extension in G;

3. dom(a) for every constant a € U;

4. For each view V(x), consider the rules F}(x,2)  body(e,, ), for each vari-

able z; from the body that does not belong to x. Evaluate the bodies accord-
ing to the atoms in 1. When the body is true, add to M the corresponding
atom in the head.

. If for a view Vi, a € v; and Fl(a,b) € M, add choice(a, b) to M.

o

Note that Dy = D. Now we have to prove that the structure M is a stable
model of  (G). This can be shown by proving, rst, that Mp := (M ~ D) 1€ a
stable model of 5, and, next, that M7"® = D is a minimal model of
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p contains rules 1. and 3. of ~ (G). By construction M will satis es rules 1.
For Mp to satisfy rules 3. it is su  cient to prove that for each Vj(a) € Mp there
is exactly one F!(a,b) € Mp with b € U for each z and that if V;(a) ¢ M then
there is no F!(a, z) in Mp. This is enough because it is proven that the choice
operator will enforce that F}(z, ) satis es a functional dependency between x
and 2.

Let us suppose by contradiction that for V;(a) € Mp there are two atoms
F!(a,b1) € Mp and F}(a,by) € Mp. This would imply by construction of M
that the following rules are satis ed by evaluating the bodies with the elements
of D: Fl(a,b;)  body(p, ) and F/(a,bs)  body(p,, ). This would imply that
D has two set of atom fying the mapping Vi(a)  body(p,,) and therefore

D is not minimal. Since D is minimal we have reached a contradiction.

Now we have to prove that if V;(a) € M then there is no F!(a, z) in Mp. Let
us suppose by contradiction that there for a given value b € U, F}(a,b) € Mp.
This would imply by construction of M that it holds, by evaluating the bodies
with the elements of D, F/(a,b)  body(p,,). This implies that D satis es
body(¢p,, ) without V;(a) belonging to the source. Then D is not minimal. Since
D is minimal we have reached a contradiction. This proves that Mp := (M~ D)
is a stable model of . Now we have to prove that D is a minimal model of

The program  '? contains only facts of the form  V(a,b) where
Vi(a) € Mp and b is constructed from all the function predicates F!(a,by) €
Mp. By construction this facts are exactly the elements of D. Then, D is a
minimal model of "7, This proves that M is a stable model of (G) and
since Dpaq = D we have that every minimal legal instance has a stable model of

(G) associated. [}

Proof of Theorem 2: Let us suppose by contradiction that we have an
integration system G that has no admissible mapping h for S! (with i # 0), such
that h(S!)  Use(sec sty L(S). and that there is a stable model M of the
simple version of  (G) such that the database associated D is not a minimal
legal instance.

Since Dy is not minimal, there is a minimal legal instance E such that
E S Da. From Theorem 1 we have that there is a model M’ of (G) such
that Dy = E. Then there should be a non empty set C, such that C € M and
CgM.

From the proof of Theorem 1 we have that the program  (G) can be divided
into two parts g and 5545 , where the second is a result of an evaluation of
the model Mp of g over the rules of (G) that do not belong to 5. The
interesting thing is that the program 7’1"“ turns out to be a set of facts of global
relations. This shows that the di erent models will be determined only by the
functional predicates atoms of the form F!(a,b) chosen in each model. Each of
this atom will generate exactly one global atom for each relation that has the
existential variable z in the view V;. Then, we have that the only way that one
model might generate a legal instance of G with less elements than other model is
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L. Vi(a) € M and au,,, (a') ¢ M. Then, add,,,(a’) € M. From the third rule
of (3b) we have that there exists a non-empty st £ such that var,,, 7, (az,)
M for I € £. Now let us take a look at rules in (4). ;From the 37 rule, we
have that for every | € L, au,, 7 (a') ¢ M. Then, from the 2" rule and
since add,,; (a') € M we have that for every I € £, add,,; 7 (a') € M. Now,
from the rst rule, the choice operator will assign one value of the domain to
Z), e.g. by for each | € £. Then we will have F!(a’,b;) € M for every | € L.
Now let us have a look at the rules in (3b). For Py, € S;;, there are two cases
to analyze wrt the rst rule:

(a) {Zi|Z € (Xk \X")} {Z|l € L}. Then Pi(ax,vi;) € M where ay is a
projection of @ and the by of the functional predicates. Hence Py (ax, ta) €
M and therefore Py(ax) € Daq.

{Z1|Z) € (X, \X")} / {Zi]l € L}. For every Zy € {{Z1|Z) € (Xx\ X")}\

{Z|l € L}} we have that since I' ¢ L, var,,;z,(az,) € M. Since the

only way for an atom to belong to a model is to have a rule with it in the

head and the body satis ed, we have that the body of the fourth rule of

(3b) has to be true. This implies that Pj(ax,nvs;) € M. We also have

that since F!'(a/,b;) ¢ M for any value of by, then add,,,z, (') ¢ M

and therefore auz,,, 7, (a') € M. Then because of the third rule of (3b)

we have that the values associated to the existential variables that are
not Zy in Py(ax, nvyj) coincide with the values given by the functional

predicates of the view. Since Py (ay, nvy;) € M we have from rules in (5)

that Py (ak, nvpyk) (with hk # ij) or Py.(ak, to) belong to M and therefore

that Pr(ak,tq) € M. Then Py(ax) € Dy sharing the same existential
variable that the ones generated by the previews case considered.

Then we have that as,; € @is,,(Dam)”

Vi(a) € M and auw,,;(a') € M. Then, add,,(a’) ¢ M. From the 3"

rule of (3b) vary,z (az) € M for all Z;. Then, from the fourth rule of

(3b) Py(ak,nvi) € M for all P, € Si; such that Z € Xj. From rules in

(5),with hk # ij, Pi(ax,nvhk) or Py(ak, to) belong to M and therefore that

Py(a, ta) € M. Then Py(ax) € Dpq. Then we have that as,; € wis,; (D)

(b

4

Now, since the di erent S;; do not share existential variables we have that
@i(Dam) = ws,evi @is, (Dar). Then since as,; € s, (D), a € 9i(Dag)-
We have reached a contradiction and the Lemma is proven. m]

Lemma 2. If D is a minimal instance of G, then there is a stable model M of
SV( (G)), such that Dy = D.

Proof. We need to de ne a Herbrand structure that will be our candidate to be
the stable model M that generates instance D. For doing this, we use the same
notation as in the De nition 12 of  (G). We put the following facts into M:

7 as,, corresponds to the atom a restricted to the variables of the view @ that belong

to 53, and gis,, is the view de nition ¢; restricted to the predicates in S and its
variables

if two functional predicate atoms generate the same global atom. Then, C has to
be formed by instantiations of sections with existential variables. For simplicity
and without lost of generality let us suppose that C has exactly one instantiation
of one section. For C to belong to M and not to M’, M should have di erent
values of the existential variables that generate the instantiations of C than the
ones assigned in M and the rest values should be the same (since D g D).
Furthermore, the values given in M’ should generate the same set of predicates
that another section or sections generates in M and in M’. Then, if C is the
instantiation of a section S!, we have that the following has to hold for every
value ay, in position k of the atom P(a) € C, being this atom an instantiation of
P(r1,..., @, ....T,) € S
1. If 2y, € Const(S!) then thereisadi erent section Sy such that P(...,a,...) €
Sy and x), € Const(S]") and ), = ay..
2. If 2, € UVar(S!) then there are two option:
(a) There is other section S} such that P(..., zx,...) € S, 2 € Const(S]")
and ), = ag.

(b) There s other section S} such that P(..., x,...) € S,z € UVar(S]")

and (... ax,...) € vj.
3. If x), € EVar(S!) then there are three options:
() There is other section S7" such that P(...,a,...) € S, ay, € Const(S}")
and rp = ag.
(b) There s other section S} such that P(..., z,...) € S,z € UVar(Sy")
and (... ax,...) € vj.
(c) Thereis other section S} such that P(...,x,...) € S,z € EVar(S]")
and FJ (b,ax) € M’ for (b) € v;.
Consider a mapping h de ned by the di erent cases just described, for example if
we are in case (2b) we have that h(x) = p and in case (3a) we have that h(xzy) =
ay. By construction this mapping is such that h(S})  Use(seeqsty) L(S). We
have reached a contradiction since we assumed the mapping h did not exists.
Therefore we have proved Theorem 2. [m]

The following intermediate results refer to the re ned program (G) intro-
duced in Section 3.2.

Lemma 1. If M is a stable model of SV( (G)), then D is a legal instance
of G.

Proof. Tn the proof we use the same notation as in the De nition 12 of (G).
Assume that Dy is not legal. Then there must be a view Vi, with de nition
@it Vi(x)  An_q Pu(@u,zu), for which v; / ©;(Da). More speci cally, there
is a such that a € (v; \ (D). If a € v; then Vi(a) € M.

For every global relation P, without existential variables in the view de -
nition ¢;, we can conclude from rules (3a) of (G) that P,(ay,to) € M with
a, a. Then, by rules (5), Pi(ay,ta) € M and therefore P,(a,) € D

Now we will analyze the case of global relation with existential variables
treated by rules de ned in (3b). For a certain S,;, in order to satisfy the second
rule of (3b), we have to analyze two ca
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. Py(a, ta) for every global atom Py(a) € D. No other atom annotated with

ta belongs to M.

dom(a)i a€l.

Vi(a)i a€cw forv; €g.

Pr(ak,to) i there is a view V;(X) Pi(X1), ..., Pe(Xk),

which Py has no existential variables and such that a € v;.

. For every atom Py(ay) € D, where Py(ay, to) & M, we need to check which
views had the potential of generating it. After some considerations we will
specify at the end of this item what new atoms go into M and which do not.
We have that for each view section S! with an existential variable 2%, such
that P € S!, de ne the following views:

W

P,(Xy,), in

o

Pu(X{, 1) N PG AVIX),
Pj(X;)es!

where S! is considered as an annotation constant in the second argument of
head of the view. This view will contain the information of which
Let P be the result of instantiating these views over the atoms in D and the
source extensions. P contains the possible section that might have generated
the presence of each global atom in D. We willde ne §™ = {S! | Pi(ar, S!) €
P}, ie. Sk contains al the sections from which Py (ay. could have been gen-
erated. Note that there is only one S,]9 in G such that S;; 2 Sj". Then, for
each section S! € S that does not have an admissible mapping '° such that
h(Sh Use(see~qsty) L(S) do the following: Py(ak, vij) € M, add,, (a') €
M, Vila) € M, auy, (@) & M, vare, . (a,) & M, auzy,z(@) ¢ M,
add,,, -, (a') € M. For all the rest of the sections of S™*, e.g. S, we have that
the var,,,, ., (a.,,) € M. If for all the sections in a view var,,, ., (a.,) € M
then auz,,, (a') € M and add,,,(a') ¢ M.
For every Py(ax.vi;) € M, we add the fact Py(ar,nvim) to M for every
Sk # Sij-
. For every add,,;,(a'), Py(ay, vij) € M, add F!/(X,2) into M, where 2 is
the value of that existential variable in Py (ax, vi;).

B

-

By construction M minimally satis es rules (1), (2), (3a), (5) and the rst
rule of (3b) in the program  (G)M. If aux,,,(a’) € M, (G)™ does not in-
clude the second type of rules of (3b). If auzy, (a') ¢ M, (G)™ has the rule
add,, (X')  Vi(X) corresponding to second type of rules of (3b). This rule
is satis ed by M because of the facts added to M in item 5. For the section
! such have no admissible mapping such that h(S))  Use(secn (s L(S), we
have that no other views can can generate the facts for this section and therefore
that the body of the fourth rules in 3b will not be satis ed. Since in that case
vary,, -, (az,) ¢ M, the whole rule is satis ed. For the sections that are not in this
case, i.e there is an admissible mapping, then the body of the fourth rules in 3b

® The S! are the view sections introduced in Section 3.1.
9 Here the Si; are those appearing in De nition 12.
19 As de ned in section 3.1
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will be satis ed and since var,,; -, (a.,) € M, the whole rule will be satis ed. If
all the sections are in the situation last described, auz,,;(a') € M and therefore
the third rules in 3b will be satis ed. Following the same analysis and the fact
that the choice operator will choose any value of the domain, it is easy to see that
rules in (4) are also minimally satis ed. M is a minimal model of ~(G)and
therefore there is a stable model of ~ (G), M, such that D corresponds to the
minimal legal instance D.

Lemma 3. If M is a stable model of SV(  (G)), then D x4 is a minimal instance
of G.

Proof. The legality of D was established in Lemma 1. Assume, by contradic-
tion that Day is not a minimal instance of G. Then there must be a minimal
instance D such that D G D By Lemma 2 we have that there is a model
M’ such that Dy = D. Then, Dayr g D . In particular, we have that there
is an atom of a global relation, say Py(a,ta), such that Pyi(a,tq) € M and
Py(a,tq) € M'. If Pp(a,ta) € M we have two options:

1. Pi(a,to) € M. Then there is a view v; in which Py has no existential
variables. Tn that case Pg(a, t,) belongs to all the models and in particular
to M’. We have reached a contradiction since Py (a, ta) ¢ M’

Pi(a,vij) € M. This implies that add,,, (a') € M and for all a; € (a\ a’),
Fl(a',a;) € M. Hence there is an atom V;(A) € M such that the rst rule of
(3b) is satis ed. We can also conclude that vary,; 7, (az,) ¢ M. Then there is
no other view that satis es this section S!. This implies that if M’ does not
contain Py(a,tq) then, in order to satisfy the openness of view v; it must
add a new predicate annotated with ta. But D)y G Daq. We have reached
a contradiction

b

As we reached a contradiction in both cases, we have proven that D, is a min-
imal legal instance of G.

Proof of Theorem 3: Directly from Lemma 2 and 3 O

A.2 Obtaining the Simple Program from the Re ned Program

Assume the hypothesis of Theorem 2 hold. We denote the view sections with S}
as in Section 3.1. The sections Sf are all associated to the de nition of view V;.
‘We show now a syntactic transformation of the re ned version of the program

(G). We justify each step of the transformation, so that at the end it will be
clear that they have the same models.

Since there is no admissible mapping, each S! can only be generated by
view V;. In consequence, for every model M of the re ned version of Pi(G), we
have that for all a, var,,; 7 (a) ¢ M. This implies that for every model M and
a, auwy,(a) ¢ M and auz.,,,, (a) ¢ M. Since those atoms will never appear
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in a model of the re ned version of Pi(G), we can delete the rules with those
predicates in their heads. We can also delete them from the bodies of the rules
where they appear negated. We obtain the following program:

Fact dom(a) for every constant a € U.
Fact V;(a) whenever a € v; for some source extension v; in G.
For every view (source) predicate V; in the system with description V;(X)
Pi(X1),- o Pal(X):
(a) For every Py with no existential variables, the rules
Py (X, to)  Vi(X).
(b) For every set Sy, of predicates of the description’s body that are related
by common existential variables {Z1, ..., Z,}, the rules,
Pe(Xiyvi)  addu, (X7, Agexoxn FIX' Z0), for Py € Sij.
add,, (X')  Vi(X), where X' = X 1 {Up, cs,, Xi}-
. For every predicate F}(X', Z;) introduced in 3.b., the rules,
FNX'.Z))  add,,z(X').dom(Z,), choice((X').(Z1))-
addy,7(X")  add,,,(X'), for | =1,...m.
. For every global relation P(X) the rules
P(X,nvij)  P(X,vni), for {(ij, hk)|P(X) € Si; and Spx}.
P(X,nv;;)  P(X,1,), for {(ij)|P(X) € Sij}.
P(Xta)  P(X,uv), for {(ij)|P(X) € Sij}.
P(X,ta) P(X.t,).

@

IS

o

This is a positive program with choice. Because of the second rule in 3.(b)
and the second rule in 4., we can replace every occurrence of add,,, (X') and
add,,; 7,(X') by Vi(X). Also from the third and fourth rules in 5., we can replace
every occurrence of P(X,t,) and P(X,v;;) by P(X,t4). It is also easy to see that
the rst two rules in 5. will generate atoms that are useless in the calculation
of the the global predicates; then these rules can be deleted. We obtain the
following program:

Fact dom(a) for every constant a € U.
Fact V;(a) whenever a € v; for some source extension v; in G.
For every view (source) predicate V; in the system with description V;(X)
PU(X1),- s Pal(X):
(a) For every Py with no existential variables, the rules
Pp(Xi,ta)  Vi(X).

(b) For every set S;; of predicates of the description’s body that are related

by common existential variables {Z1, ..., Z }, the rules,

Pe(Xpita)  Vi(X), Agexoxy FH(X', Z0), for P € 5.

4. For every predicate F}(X', Z;) introduced in 3.b., the rules,
FAX',Z)  Vi(X),dom(Z)),choice((X"),(Z1)).

@

By merging rules 3.(a) and 3.(b), the revised version of  (G) is eventually syn-
tactically transformed to the simple version of the program.
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Abstract. The problem of answering queries posed to a peer who is a
member of a peer-to-peer data exchange system is studied. The answers
have to be consistent wrt to both the local semantic constraints and
the data exchange constraints with other peers; and must also respect
certain trust relationships between peers. A semantics for peer consistent
answers under exchange constraints and trust relationships is introduced
and some techniques for obtaining those answers are presented.

1 Introduction

In this paper the problem of answering queries posed to a peer who is a member
of a peer-to-peer data exchange system is investigated. When a peer P receives a
query and is going to answer it, it may need to consider both its own data and
the data stored at other peers’ sites if those other peers are related to P by data
exchange constraints (DECs). Keeping the exchange constraints satisfied, may
imply for peer P to get data from other peers to complement its own data, but
also not to use part of its own data. In which direction P goes depends not only
on the exchange constraints, but also on the trust relationships that P has with
other peers. For example, if P trust another peer Q’s data more than its own, P
will accommodate its data to Q’s data in order to keep the exchange constraints
satisfied. Another element to take into account in this process is a possible set
of local semantic constraints that each individual peer may have.

Given a network of peers, each with its own data, and a particular peer P in it,
a solution for P is -loosely speaking- a global database instance that respects the

i cc ints and trust relati ips P has with its immediate neighbors
and stays as close as possible to the available data in the system. Since the
answers from P have to be consistent wrt to both the local semantic constraints
and the data exchange constraints with other peers, the peer consistent answers
(PCAs) from P are defined as those answers that can be retrieved from P’s portion
of data in every possible solution for P. This definition may suggest that P may
change other peers’ data, specially of those he considers less reliable, but this is
not the case. The notion of solution is used as an auxiliary notion to characterize
the correct answers from P’s point of view. Ideally, P should be able to obtain its
peer consistent answers just by querying the already available local instances.
This bles the h to i query answering (CQA) in databases

* This is slightly extended version of the paper that appeared in the Proceedings of the
International Workshop on Peer-to-Peer Computing & Databases (P2P&DB 2004),
collocated with EDBT 04, and published by Springer Verlag in its LNCS series.

Each peer P is responsible for the update and maintenance of its material instance
wrt IC(P), independently from other peers. In particular, we assume r(P) |=
IC(P). However, when local data is virtually changed to accommodate to other
peers’ data, the local ICs could be virtually violated. It is possible to keep the
local ICs satisfied also at query time by using methodologies for consistent query
answering, i.e. for consistently answering queries in databases that fail to satisfy
certain ICs [6] (see Section 3.2). A peers may submit queries to other peers in
accordance with the restrictions imposed its DECs and using the other peer’s
relations appearing in them.
Definition 3. (a) We denote with R(P) the schema consisting of R(P) extended
with the other peers’ schemas that contain predicates appearing in Z(P). (b)
For a peer P and an instance r on R(P), we denote by 7, the database instance
on R(P), consisting of the union of r with all the peers’ instances whose schemas
appear in R(P). (c) If r is an instance over a certain schema S and &' is a
subschema, of S, then r|S’ denotes the restriction of r to §'. In particular, if
R(P) C 8, then r[P denotes the restriction of r to R(P). (d) We denote by
R(P)'** the union of all schemas R(Q), with (P, less,Q) € trust. Analogously is
R(P)**™¢ defined. o
From the perspective of a peer P, its own database may be inconsistent wrt the
data owned by another peer Q and the DECs in X(P,Q). Only when P trust q
the same as or more than itself, it has to consider Q’s data. When P queries its
database, these inconsistencies may have to be taken into account. Ideally, the
answers to the query obtained from P should be consistent with 3 (P, Q) (and its
own ICs X(P)). In principle, P, who is not allowed to change other peers’ data,
could try to repair its database in order to satisfy 3(P) U IC'(P). This is not a
realistic approach. Rather P should solve its conflicts or shortcomings at query
time, when it queries its own database and those of other peers. Any answer
obtained in this way should be sanctioned as correct wrt to a precise semantics.
The semantics of peer consistent query answers for a peer P is given in terms
of all possible minimal, virtual, simultaneous repairs of the local databases that
lead to a satisfaction of the DECs while ing P’s trust rel ips to
other peers. This repair process may lead to alternative global databases called
the solutions for P. Next, the peer consistent answers from P are those that
are invariant wrt to all its solutions. A peer’s solution captures the idea that
only some peers’ databases are relevant to P, those whose relations appear in its
trusted exchange constraints, and are trusted by P at least as much as it trusts
its own data. In this sense, this is a “local notion”, because it does not take into
id transitive d dencies (but see Section 4.3).

Definition 4. (direct case) Given a peer P in a P2P data exchange system and
an instance ¥ on R, an instance ¥ on R is a solution for P if #' is a repair of ¥ wrt
to X(P)UIC(P) that does not change the more trusted relations, more precisely:
(a) ¥ = U{Z(P,Q) | (P, less, Q) or (P, same,q) € trust} UIC(P); (b) F|P =7|P
for every predicate P € R(Q), where Q is a peer with (P, less,Q) € trust; (c) 7
minimally differs from 7 in the sense that (7 ~. 7) U (7 ~ ) is minimal under set
inclusion among those instances that satisfy (a) and (b). o

[1,6], where answers to queries that are consistent with given ICs are computed
without changing the original database.

‘We give a precise semantics for peer consistent answers to first-order queries.
First for the direct case, where transitive relationships between peers via ECs
are not automatically considered; and at the end, the transitive case. We also
ll by means of d and 1 ‘hani: for
obtaining PCAs. One of them is first order (FO) query rewriting, where the
original query is transformed into a new query, whose standard answers are
the PCAs to the original one. This methodology has intrinsic limitations. The
second, more general, approach is based on a specification of the solutions for a
peer as the stable models of a logic program, which captures the different ways
the system stabilizes after satisfying the DECs and the trust relationships.

‘We first recall the definition of database repair that is used to characterize
the consistent answers to queries in single relational databases wrt certain in-
tegrity constraints (ICs) [1]. Given a relational database instance r with schema
‘R (which includes a domain D), X(r) is the set of ground atomic formulas
{P@)| PeRandr = P(a)}.

Definition 1. [1] (a) Let r1,r; be database instances over R. The distance,
A(r1,72), between r1 and 1 is the symmetric difference A(r1,r2) = ((r1) ~
Z(ra))U(Z(ra)~E(r)). (b) For database instances 7,71, 73, we define 1 <, 75
if A(r,r1) C A(r,r2). (c) Let IC be a set of ICs on R. A repair of an instance
7 wit IC is a <,-minimal instance r', such that r' |= IC. o

A repair of an instance r is a consistent instance that minimally differs from r.

2 A Framework for P2P Data Exchange

In this section we will describe the framework we will use to formalize and
address the problem of query answering in P2P systems.

Definition 2. A P2P data ezchange system B consists of:

(a) A finite set P of peers, denoted by 4, B, C, ..., P, Q, ...

(b) For each peer P, a database schema R(P), that includes a domain D(P), and
relations R(P), ... However, it may be convenient to assume that all peers share
a common, fixed, possibly infinite domain, D. Each R(P) determines a FO lan-
guage L(P). We assume that the schemas R(P) are disjoint, being the domains
the only possible exception. R denotes the union of the R(P)s.

(c) For each peer P, a database instance r(P) cor ding to schema R(P).
(d) For each peer P, a set of £(P)-sentences IC(P) of ICs on R(P).
(e) For each peer P, a collection X(P) of data exch ints X(P,Q) con-

sisting of sentences written in the FO language for the signature R(P) U R(Q),
and the Q’s are (some of the) other peers in P.

(f) A relation trust C P x {less, same} X P, with the intended semantics that
when (A, less,B) € trust, peer A trusts itself less than B; while (A, same, B) € trust
indicates that A trusts itself the same as B. In this relation, the second argument
functionally depends on the other two. By default a peer trusts its own data
more than that of other peers. [u]

Intuitively, a solution for P repairs the global instance wrt the DECs with peers
that P trusts more than or the same as itself, but leaving unchanged the tables
that belong to more trusted peers. As a consequence of the definition, tables
belonging to peers that are not related to P or are less trustable are not changed.
That is, P tries to change its own tables according to what the dependencies to
more or equally trusted peers prescribe.

The solutions for a peer are used as a conceptual, auxiliary tool to charac-
terize the peer consistent answers; and we are not interested in them per se. So-
lutions are virtual and may be only partially computed if necessary, if this helps
us to compute the correct answers obtained in/from a peer. The “changes” that
are implicit in the definition of solution via the set differences are expected to be
minimal wrt to sets of tuples which are inserted/deleted into/from the tables.

In these definitions we find clear similarities with the characterization of

consistent, query answers in single relational databases [6]. However, in P2P
query answering, repairs may involve data associated to different peers, and also
a notion of priority that is related to the trust relation.
Ezample 1. Consider a P2P data exchange system with peers P1, P2, P3, schemas
R; = {R%,...}, instances r(Pi), i = 1,2,3, resp., with: (a) r(P1) = {R'(a,b),
Ri(s, ), r(p2) = {R(c,d), R2(a,e)}, 1(P3) = {(a, ), B (s,w)}. (b)
trust = { (P1,less, P2), (P1,same,P3) }. (c) X(P1,P2) = { Vzy(R%(z,y) -
Ri(x.y) }; Z(LPY) = { Vayz(R'(e.9) AR (2,2) — y=2) ).

Here, the global instance is r = {R'(a,b), R (s, t), R*(c, d), R*(a,€), R*(a, f),
R3(s,u)}. The solutions for P1 are obtained by first repairing r wrt the relation-
ship between P1 and P2. Thus, r; in condition (c2) in Definition 4 is r; =
(R (@,b), R (5,8, B(c,d), R (a,¢), B (), B(a,e), B(a, £), B¥(s,u)}. So,
we have only one repair at this stage, which now has to be repaired wrt the DEC
between P1 and P3 (but keeping the relationship between P1 and P2 satisfied).
There are two sets of tuples violating X (P1,P3) in r1: {R'(s,t), R*(s,u)} and
{R!(a,b), R'(a,e), R*(a, f)}. The first violation can be repaired by deleting any,
but only one, of the two tuples. The second one, by deleting tuple R%(a, f) only
(otherwise we would violate the relationship between P1 and P2). In consequence,
we obtain two repairs, ' = {R!(a,b), R' (s, t), R (c,d), R' (a,e), R*(c,d), R*(a,€)
}; and 1 = { B(a,b), B'(c,d), R (a, &), B*(c,d), B(a, ¢}, B*(s,u)}. o
The minimization involved in a solution is similar to a minimization with some
fixed predicates as found in non-monotonic reasoning [26]. Actually, the notion
to be given now of peer consistent answer, that captures the intended answers
from a peer’s perspective, is -as the notion of CQA- non-monotonic [6].!

Definition 5. Given a FO query Q(&) € £(P) posed to P, a ground tuple f is a
peer consistent answer to Q for P iff r'|P = Q(F) for every solution r’ for P. O

Ezample 2. (example 1 continued) The query @: R'(z,y) posed to P1 has as peer
consistent, answers the tuples: (a,b), (c,d), (a, €), because those are the tuples
found in relation R! in the restriction to P1’s schema in every solution for P. O

! A circumscriptive approach to database repairs was given in [7]. It should not be
difficult to extend that characterization to capture the peer solutions.
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Notice that this definition is relative to a fixed peer, and not only because the
query is posed to one peer and in its query language, but also because this
notion is based on the “direct or local” notion of solution for a single peer, which
considers its “direct neighbors” only. This is a first step towards the general case
of transitive dependencies, that will be explored in Section 4.3. However, this
restricted case is the basis for the transitive case, because P does not see beyond
its neighbors; and when P requests data to a neighbor, say Q, the latter may
have to find local solutions of its own by considering its direct neighbors. The
transitive case has to combine these local solutions.

Peer consistent answers to queries can be obtained by using techniques sim-
ilar to those for CQA, e.g. query rewriting [1,6]. However, there are important
differences, because now we have some fixed predicates in the repair process.

Ezample 3. (example 1 continued) If P1 is posed the query @ : R!(z,y), ask-
ing for the tuples in relation R', we first rewrite the query using the DEC in
X(P1,P2), obtaining Q': R'(z,y) V R*(z,y), with the effect of bringing P2’s
data into P1. Next, considering the DEC in ¥ (P1,P3) the query is rewritten as

Q": [R'(z,y) AV21(R¥(z,21) A=32aR*(2,22)) = 21 =y)] V R’(z,y). (1)

To answer this query, P1 first issues a query to P2 to retrieve the tuples in
R? that will be in R' for all the solutions due to X(P1,P2). Next, a query is
issued to P3 to leave aside the tuples of R! that have the same first but not the
same second argument in R, as long as there does not exist a tuple in R? that
“protects” the tuple in R'. The tuple R'(a, b) is protected by R?*(a,€) because,
as R'(a,e) belongs to all the solutions, the only way to repair a violation of
mapping X(P1,P3) is by deleting the tuple of R?, and therefore the tuple R'
will be in the answer. The answers to (1) are (a,b),(c,d),(a,€), precisely the
peer consistent answers from P1 to query Q according to Definition 5. o

Notice that a query () may have peer consistent answers for a peer which are
not answers to @ when the peer is considered in isolation, which makes sense,
because the peer may import data from other peers.?

This query rewriting approach differs from the one used for CQA. In the
latter case, literals in a query are resolved (by resolution) against ICs in order
to generate residues that are iteratively appended as extra conditions to the
query. In the case of P2P data systems, the query may have to be modified in
order to include new data that is located at a different peer’s site. This cannot
be achieved by imposing extra conditions alone, but instead, by relaxing the
query in some sense. Since query answering in P2P systems includes sufficiently
complex cases of CQA, a FO query rewriting approach to P2P query answering is
bound to have limitati in terms of 1 [6]. Instead, we will propose
(see Section 3) a more general methodology based on answer set programming.

? Another difference with CQA, where all consistent answers are answers to the original
query; at least for conjunctive queries and generic ICs [6], i.e. those that do not
require the presence/absence of any particular ground tuple in/from the database.

which specify that, by default, the tuples in the source relations are copied into
the new virtual versions, but with the exception of those that may have to be
removed in order to satisfy (3) (with Ry, R, replaced by R}, RL). Some of the
exceptions for R} are specified by

—Ri(z,y) + Ri(z,),51(z,y), not auz: (z,z), not auzy(z) (6)
auz: (2, 2) + Ra(z,w), Sz (2, w) ()
auzy(z) + Sa(z,w). (8)

That is, R (z,y) is deleted if it participates in a violation of (3) (what is captured

by the first three literals in the body of (6) plus rule (7)), and there is no way

to restore consistency by inserting a tuple into Ra, because there is no possible

matching tuple in S, for the possibly new tuple in Ry (what is captured by the

last literal in the body of (6) plus rule (8)). In case there is such a tuple in Sy,

we can either delete a tuple from R; or insert a tuple into Ry:

=R} (z,y) V By(z,w) « Ra(z,y),81(2,y), not auz: (z,2), Sa(z,w),

choice((z,2),w). 9)

That is, in case of a violation of (3), when there is tuple of the form (a,t)
in S; for the combination of values (d,a), then the choice operator [18] non
deterministically chooses a unique value for ¢, so that the tuple (d,t) is inserted
into Ry as an alternative to deleting (d,m) from R;. The choice predicate can be
replaced by a standard predicate plus extra rules that choose a unique value for ¢
[18]. No exceptions are specified for R}, which makes sense since R}, is a superset
of Ry. Then, the negative literal in the body of (5) can be eliminated. However,
new tuples can be inserted into R, what is captured by rule (9). Finally, the
program must contain as facts the tuples in the original relations R;, Rz, S1,S2.

If P equally trusts itself and Q, both P and Qs’ relations are flexible when
searching for a solution. The program becomes more involved, because now Si, Sz
may also change; and virtual versions for them must be introduced and specified.

3.2 Consi ions on specifications of peers’ sol

The example in Section 3.1 shows the main issues in the specification of a peer’s
solutions under referential DECs. The program with choice operator can be
translated into one with standard answer set (or stable model) semantics [18];
and the solutions are in one to one correspondence with the answer sets of the
program. Actually, each answer set S corresponds to a solution r'(S) for peer P
which coincides with the original, material, global instance on the tables other
than Ry, R;, whereas for the latter the contents are of the form {f | Rj(f) €
S},i = 1,2, resp. The absence of solutions for a peer is captured through the
non existence of answer sets for program II.

Since program II represents in a compact form all the solutions for a peer,
the peer consistent answers from a peer can be obtained by running a query
program expressed in terms of the virtually repaired tables, in combination with
the specification program II. For this the combined program is run under the
skeptical answer set semantics, for which a system like DLV [14] can be used.

3 Referential Data Exchange Constraints
In most applications we may expect the DECs to be, as £(P1,P2) in Example

1), incl or ial constraints, i.e. formulas of the form
vzg(RYE@)A - - RP(Z,g)A--), @

where RQ,HP are relations for peers Q and P, resp., the dots indicate some
possible additional conditions, most likely expressed in terms of built-ins, z .

An exchange constraint of the form (2) will most likely belong to (P, @), i.e.
to peer P, who wants to import data from the more trusted peer Q. It could also
belong to Q, if this peer wants to validate its own data against P’s data.

An answer set i h to the ification of solutions for a
peer can be developed. Those specifications will be similar to those of repairs of
single relational databases under referential integrity constraints [2]. However,
as we have seen, there are important differences with CQA. In Section 3.1 we
give an example of an even more more involved referential constraint that shows
the main issues around this kind of specifications.

3.1 An extended example

Consider a P2P system with peers P and Q, with schemas {R;(-, -), R2(-,-)},
{S1(-,-), S2(--)}, resp.; and assume that P is querying its database subject to
its DEC that mixes tables of the two peers on each side of the implication:

VavyVz3w(R(z,y) A Si(z,y) = Ra(z,w) A Sa(z,w)), (3)
‘We consider the case where (P,less,Q) € trust, i.e. P considers Q’s data more
reliable than its own. If (3) is satisfied by the combination of the data in P and
Q, then the current global instance constitutes P’s solution. Otherwise, alternative
solutions for P have to be found, keeping Q's data fixed in the process. This is
the case, when there are ground tuples R;(d,m) € r(P), S1(a,m) € r(Q), such
that for no ¢ it holds both Ry(d,t) € r(P) and S(a,t) € r(Q)-

Obtaining peer consistent answers for peer P amounts to virtually restoring
the satisfaction of (3), by virtually modifying P’s data. In order to specify P’s
modified relations, we introduce virtual versions R}, Rj of Ry, R, containing
the data in peer P’s solutions. In consequence, at the solution level, we have the
relations R}, R3, S, S;. Since P is querying its database, its original queries will
be expressed in terms of relations R, R} only (plus, possibly, built-ins).

The contents of the virtual relations Rj, Rj are obtained from the material
sources Ry, Ry, S1,5,.% Since Si,S, are fixed, the satisfaction of (3) requires
Rj to be a subset of Ry, and Rj, a superset of Ry. The specification of these
relations is done in extended disjunctive logic programs with answer set (stable
model) semantics [17]. The first rules for the specification program IT are:

Ri(z,y) « Ri(z,y), not ~Ry(z,y) [©)
Ry(w,y) « Ra(z,y), not ~Ra(z,y), (5)

3 We can observe that the virtual relations can be seen as virtual global relations in a
virtual data integration system [25,22].

For example, the query Q(z, z) : 3y(Ri(z,y) A Ra(z,y)) issued to peer P, would
be peer consistently answered by running the query program Ansg(z,z)
R\ (z,y), R,(z,y) together with program IT. Although only (the new versions
of) P’s relations appear in the query, the program may make P import Q’s data.

In the presence of referential DECs, the choice operator may have to choose
values from the infinite underlying domain, but outside the active domains.
There are several options, some of them already considered for CQA: (a) Live
with an open infinite domain; repairing existential DECs by picking up elements
from it. This, in the presence of cycles, lead to the undecidability of peer consis-
tent query answering (PCQA) [10]. (b) Assign null values without propagation
through DECs [2]. In this case, even in the presence of cycles, it is possible to
prove that PCQA becomes decidable. (c) Consider an appropriate finite and
closed proper superset of the active domains [9]. (d) Introduce fresh constants
whenever needed from a separate domain [11]. We do not commit to any of
these options here, but this choice and the class of referential ECs (e.g. presence
cycles) may d ine, e.g. decidability of peer consi answering [12, 10,20,
11].

If a peer has local ICs IC(P) to be satisfied, also at query time, then the pro-
gram that specifies its solutions should take care of its ICs. A simple but radical
way of doing this consists in using program denial constraints. If in Section
3.1 we had for peer P the local functional dependency (FD) VzVyVz(Ri(z,y) A
Ry(z,z) = y = z), then program would include the program constraint ¢
Ry(z,y),Ri(z,2),y # z, having the effect of pruning those solutions that do
not satisfy the FD. However, a more flexible (and “robust” [15]) alternative
for keeping the local ICs satisfied, consists in having the specification program
split in two layers, where the first one builds the solutions, without considering
the local ICs, and the second one, repairs the solutions wrt the local ICs, as
done with single inconsistent relational databases [2]. A more uniform approach
consists in identifying IC(P) with X'(P,P) and considering (P, same,P) € trust.

Finally, we should notice that obtaining peer consistent answers has at least
the data complexity of consistent query answering, for which some results are
known [12, 16, 10]. In the latter case, for common database queries and ICs, IT4-
completeness is easily achieved. On the other side, the problem of skeptical query
evaluation from the disjunctive programs we are using for P2P systems is also
II7-complete in data complexity [13]. In this sense, the logic programs are not
contributing with additional complexity to our problem.

Ezample 4. (example 1 continued) The answer set programming approach to
peer consistent query answering in this case requires the predicates R1, R3 to be
flexible in the repair process, so their contents have to be specified, however in
contrast to the situation in Section 3.1, we get, interacting rules for R;. For this
reason the repair process may need to execute several steps until it stabilizes.
This requires the use of program rules with annotations as introduced for CQA
in the presence of interacting ICs [2].

The annotations are constants that are used in an extra argument introduced
in each database relation. The ion tq is used to the atoms that
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are in the original database instance. The logic program should have the effect.
of repairing the database. Single, local repair steps are obtained by deriving the
annotations ta or fa, with the intended meaning that the atom getting them is
advised to be made true, resp. false, in order to restore consistency. This is done
when each IC is considered in isolation, but there may be interacting ICs, and we
may require an iterative process. In order to achieve this, we use annotations t*,
£*. The former, for example, groups together the annotations tq and ta for the
same atom. These derived annotations are used to give a feedback to the bodies
of the rules that produce the local, single repair steps, so that a propagation
of changes is triggered. The annotations t** and f** are just used to read off
the literals that are inside (resp. outside) a repair. All the rules in the program
below express these relationships, and in this sense are generic; similar rules will
be found in any repair program with annotations. The only specific rules are the
last two, that express how to repair the database when a violation of the DECs
occurs. The first of the two corresponds to a violation of X'(P1,P2); and the last
one, to a violation of ¥(P1,P3).

Ri(X,Y,t") ¢« Ri(X,Y, ta).

Ri(X,Y,t%) & Ri(X,Y, tn).

Ri(X,Y,F) « Ry (X,Y,5).

Ri(X,Y,f*) « dom(X),dom(Y), not Ry(X,Y,ta).
Ri(X,Y,t**) « Ry (X,Y,ta), notRy (X,Y,fa).
Ri(X,Y,t*) « Ri(X,Y,ta).

— Ri(X,Y,ta), R1(X,Y, fa).

Ba(X,Y,t%) & Ry (X, Y ta).

Ry(X,Y,t*) « Ry(X,Y,ta).

Ry(X,Y,f*) « Ry(X,Y,f).

Ro(X,Y,f*) « dom(X),dom(Y), not Ra(X,Y, ta).
Ry(X,Y,t**) « Ry(X,Y,tq), not Ry(X,Y,f,).
Ry(X,Y,t**) « Ry(X,Y, ta).

By (X, Y, ta), B2 (X, Y, £).

R3(X,Y,t*) ¢ R3(X,Y, ta).

R3(X,Y,t*) « Ry(X,Y,ta).

R3(X,Y,f*) « Ry(X,Y,fa).

R3(X,Y,f*) « dom(X),dom(Y), not R3(X,Y,tq).
R3(X,Y,t*) « R3(X,Y, ta), not R3(X,Y,fa).
R3(X,Y,t*) « R3(X,Y,ta).

+— R3(X,Y,ta), R3(X,Y, fa).

Ri(X,Y, ta) ¢ Ra(X,Y, %), Ry (X, Y, £¥).

Ry (X,Y,£.) V R3(X, Z,f,) « R (X,Y,t*), R3(X, Z,t*),Y # Z.

LAV is simpler to deal with when sources leave and enter the integration system.
GLAV is a mixture of the two approaches (see [22] for a survey).

The logic programming-based approach proposed in Section 3.1 can be as-
similated to the GAV approach, because tables in the solutions are specified as
views over peer’s schemas. However, a LAV approach could also be attempted. In
this case, we also introduce virtual, global versions of S1, Sa. The relations in the
sources have to be defined as views of the virtual relations in a solution, actually,
through the following specification of a virtual integration system [19]:

Here the r;, 5; are the original material ex-
tensions of relations R;, S;. Labels are as-
Ry(z,y) & R:‘ (z,y)|closed| 1 signed to the sources on Jt]le basis of the
Ra(z,y) & ng(z,y) open | T2 view definiti in the first column, the
S1(z,y) & S3(x,y) |clopen] 51 IC (3) and the trust relationships; in the
Sa(z,y) « Sj(@,y) [clopen| 53 | jater case, by the fact that Ry, R, can

change, but not 81, S2. More precisely, the
label in the first row corresponds to the fact that (3) can be satisfied by deleting
tuples from Ry, then the contents of the view defined in there must be contained
in the original relation r; (the material source). The label in the second row
indicates that we can insert tuples into R, to satisfy the constraint, and then,
the extension of the solution contains the original source rs. Since, S1, S2 do not
change, they are declared as both closed and open, i.e. clopen.

If a query is posed to peer P, it has to be first formulated in terms of R{, R},
and then it can be peer consistently answered by querying the integration system
subject to the global IC: Vayz3w(R; (z,y) ASi(z,y) = Ry(z,w) A Sj(z,w)). A
methodology that is similar to the one applied for consistently querying virtual
data integration systems under LAV can be used. In [5,8] methodologies for
open sources are presented, and in [4] the mixed case with both open, closed and
clopen sources is treated. However, there are differences with the P2P scenario;
and the methodologies need to be adjusted as discussed below.

The methodology presented in [4] for CQA in virtual data integration is
based on a three-layered answer set programming specification of the repairs
of the system: a first layer specifies the contents of the global relations in the
minimal legal instances (to this layer only open and clopen sources contribute), a
second layer consisting of program denial constraints that prunes the models that
violate the closure condition for the closed sources; and a third layer specifying
the minimal repairs of the legal instances [5] left by the other layers wrt the
global ICs. For CQA, repairs are allowed to violate the original labels.

In our P2P scenario, we want, first of all, to consider only the legal instances
that satisfy the mapping in the table and that, in the case of closed sources,
include the maximum amount of tuples from the sources (the virtual relations
must be kept as close as possible to their original, material versions). For the kind
of mappings that we have in the table, this can be achieved by using exactly the
same kind of specifications presented in in [4] for the mixed case, but considering
the closed sources as clopen. In doing so, they will contribute to the program
with both rules that import their contents into the system (maximizing the set

View definitions label |source

These are the facts of the program: Rj(a,b,ta). Ri(s,t,ta). Ra(c,d, ta).
Ry(a,e,ta).Ra(t, h,ta). Ra(a,f,ta). Ra(s,u,ta). Ra(t,u,ta). dom(a).
dom(b). dom(s). dom(t). dom(c). dom(d). dom(e). dom(f). dom(u). dom(h).
The non domain atoms say that the original tables Ry, Rz, R3 contain the
tuples {(a,b), (s,t)}, {(c,d), (a,e), (t,h)}, {(a, f), (s, u), (t,u)}. The use of anno-
tations allows us to give up using virtual versions Rj, Ry for Ry, Ry, because
the final contents for the latter will be read off from those atoms that become
annotated with t**. o

4 Extensions

4.1 Optimizations

It is possible to perform some optimizations on the solution specification pro-
gram, to make its evaluation simpler. Disjunctive programs under the stable
model semantics are more complex than non disjunctive programs [13]. How-
ever, it is known that a disjunctive program can be transformed into a non
disjunctive program if the program is head-cycle free (HCF) [3,23]. Intuitively
speaking, a disjunctive program is HCF if there are no cycles involving two lit-
erals in the head of a same rule, where a link is established from a literal to
another if the former appears positive in the body of a rule, and the latter ap-
pears in the head of the same rule. These considerations about HCF programs
hold for programs that do not contain the choice operator, i.e. they might not
automatically apply to our programs that specifies the solutions for a peer under
referential constraints. However, it is possible to prove that a disjunctive choice
program IT is HCF when the program obtained from IT by removing its choice
goals is HCF.

Ezample 5. Consider the choice program II presented in Section 3.1. If the choice
operator is eliminated from rule (9), we are left with the rule

~Ri(z,y) V By(z,w) « Ra(z,y), $1(z,9), not auz:(z,2),5s(z,w).

The resulting program is HCF and then rule (9) can be replaced by two rules:
—Ri(z,y)  Ri(z,y),51(2,9), not auz:(z,2),S2(z,w), not Ry(z,w),
choice((z, z), w).
Rj(z,w) + Ri(,1),51(2,9), not auz:(z,2), S2(z,w), not =R (z,y),

choice((x, z), w). o

4.2 A LAV approach

There are some clear connections between P2P query answering and virtual

integration of data sources by means of mediator based systems [20,27]. There

are basically two approaches to the latter problem. According to global-as-view

(GAV), each virtual table at the mediator (global) level is expressed as a view of

the collection of relations in the data sources. According to local-as-view (LAV),

relations in the (local) data sources as expressed as views of the virtual global

relations. GAV is more natural and simpler for query evaluation than LAV, but

of tuples in the global relation) and denial program constraints. Now, the trust
relation also makes a difference. In order for the virtual relations to satisfy the
original labels, that in their turn capture the trust relationships, the rules that
repair the chosen legal instances will consider only tuple deletions (insertions) for
the virtual global relations corresponding to the closed (resp. open) sources. For
clopen sources the rules can neither add nor delete tuples.* This methodology
can handle universal and simple referential DECs (no cycles and single atom
consequents, conditions that are imposed by the repair layer of the program),
which covers a broad class of DECs. The DEC in (3) does not fall in this class,
but the repair layer can be adjusted in order to generate the solutions for P. The
corresponding program is given in the appendix.

4.3 Beyond direct solutions

It is natural to consider transitive DECs when a peer A, that is being queried,
gets data from another peer B, who in its turn -and without A possibly knowing-
gets data from a third peer C to answer A’s request. Most likely there won’t be
any explicit DEC from A to C capturing this transitive exchange; and we do not
want to derive them (c.f. [20]).

In order to attack peer consistent query answering in this more complex sce-
nario, it becomes necessary to integrate the local solutions, what can be achieved
by integrating the “local” specification programs. In this case, we prefer to define
the global solutions directly from the the stable models of the combined program

btained from the i ion of direct i ions. This is more natural and
simpler than extending to the global case the definition of solution for the direct
case.” Of course, there might be no solutions, what is reflected in the absence
of stable models for the program. A problematic case appears when there are
implicit cyclic dependencies [20].

Ezample 6. (example in Section 3.1 continued) Let us consider another peer C
with a relation U(-, -). The following exchange constraint £(Q,C): VzVy(U(z,y) —
S1(z,y)) exists from Q to C and (Q, less, C) € trust, meaning that Q trusts C’s data
more than its own. When P requests data from Q, the latter will request data
from C’s relation U. Now, consider the peer instances: 11 = {(a,b)},s1 = {},
T2 ={}, s2 = {(c,e), (¢, f)} and u = {(c, b) }. If we analyze each peer locally, the
solution for Q would contain the tuple Si(c, b) added; and P would have only one
solution, corresponding to the original instances, because the DEC is satisfied
without making any changes. When considering them globally, the tuple that
is locally added into Q requires tuples to be added and/or deleted into/from P
in order to satisfy the DEC. The combined program that specifies the global
solutions consists of rules (4), (5),(7), (8) plus

R (z,y) + Ri(z,y),51(2,y), not auz1(z,z), not auzz(z) (10)

~Ri(z,y) V By(z,w) « Ra(z,y),S1(2,y), not auz:(z,2), S (z,w),

* This preference criterion for a subclass of the repairs is similar to the loosely-sound
semantic for integration of open sources under GAV [21].

® The approaches to P2P data exchange semantics in [11, 15] also appeal to this kind
of 2-step process, however in a framework based on epistemic logic.
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choice((z, 2), w) (1)
Si(z,y) « Si(x,y), not =Si(z,y) (12)
Si(z,y) « Ulz,y), not Si(z,y). (13)

Rules (10) and (11) replace (6), (9), resp. (12) is a persistence rule for Sy (so as
(4), (5) for Ry, Ry, resp.). (13) enforces the satisfaction of 3(Q,C). The solutions
obtained from the stable models of the program are the expected ones: 1’ =
{Sa(c,€), Sa(c, £), Ulc,b), Si(c, b), Ry(a, f), Ri(a,b)}, r' = {Sa(c,€), Sa(c, f),

Ule,),Si(c, b)}, " = {Sa(c,€), Sale, £), Ulc, ), Si (e, b), Ry(a,e), Ria,0)}. O

5 Discussion and Conclusions

‘We have presented a logical framework that provides semantics and specifica-
tions for peer consistent query answering (PCQA). In principle it is possible to
compute answers from those ifications (and the data avai ). However, as
future work, the most urgent line of research on PCQA consists in “translating”
the specifications into concrete algorithms to query the peers’ databases and
integrate their answers.

At the answer set programming level, it becomes necessary to derive special-
ized specifications, that are easier to handle and compute for particular classes
of DECs and queries; and from the latter also specialized algorithms for PCQA
as indicated above.

The ificati h have to be optimized (as logic programs); and
also the computations of/under the answer set semantics. In particular, it be-
comes necessary to avoid extra complexity in cases where complexity of PCQA
is lower that general data complexity of disjunctive answer set programming
[13] (although the latter is not higher that the general data complexity of peer
consistent, query answering [12,10]). Finally, the interaction between the logic
programming system and the data sources has to be optimized. Relevant research
in this direction has been reported in [?].

The solution-based ics we have d might be idered too
strict in the sense that peer i answers are ioned as such wrt all
the possible solutions. It is imaginable in this context that a brave or possible

ics could be ad d: an answer is as long as it is valid in
some solution. Adopting this approach would make computations easier; but
our general logical specifications would not change.

The logical specifications we provided can be easily changed to adopt other
preference criterion on forms of repair or on solutions. This can be achieved,
in general, by explicitly modifying the ) ion programns dingly. How-
ever, some it is thinkable that some general preference policies on answer sets
could be specified at a meta program level [?].
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6 Appendix

The following answer set program specifies the solutions for the example in
Section 3.1 following a LAV approach to P2P data exchange (see Section 4.2).
Assume that the peers have the following instances: r; = {(a,b)},s1 = {(c,b)},
r2 = {} and s3 = {(c,€), (c, f)}. Then, the facts of the program are: R (a,b),
S1(c,b), Sa(c,€), Sa(c, f). The layer that specifies the preferred legal instances
contains the following rules:

Ri(X,Y,ta
S1(X,Y, ta
Ry(X,Y, ta
Sy(X, Y, ta

+« Ri(X,Y).
« S1(X,Y).
« Ry(X,Y).
« 5(X,Y).
+ R(X,Y,ta), R1(X,Y).
« 81(X,Y, ta), S1(X,Y).
« S5(X,Y, ta), S2(X,Y).

The layer that specifies the repairs of the legal instances contains the following
rules. The annotation constants in the third arguments in the relations are used
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as auxiliary elements in the repairs process [2, 6]. The choice operator has been
unfolded, producing the stable version of the choice program.

Ri(X,Y,t*) « R{(X,Y,ta), not R{(X,Y,fa).
Ri(X,Y,67) ¢ Ri(X,Y, ta).
« Ry(X,Y,ta), By (X, Y, fa).
S1(X,Y,t*) + S|(X,Y,ta), not Sj(X,Y,f.).
S{X,Y, ) ¢ S{(X, Y, ta).
< Si(X, Y, ta), S1(X, Y, fa).
Ry(X,Y,t") « By(X,Y, ta), not Ry(X,Y, fa).
Ro(X, Y, %) ¢ RBy(X, Y, ta).
< By(X, Y, ta), B3(X, Y, fa).
SHX,Y,t**) « S(X,Y,ta), not Sy(X,Y,f.).
SH(X,Y,t*) + S3(X,Y, ta).
— S5(X,Y,ta), S5(X, Y, fa).
Ri(X,X,£)  Ri(X,Y,ta), S{(Z,Y, ta), not auz:(X,Z),
not auzz(Z).
auz (X, Z) + Ry(X,U,ta),55(Z,U, ta).
auzy(Z) « S4(Z, W, ta).
R(X,Y, ) V By (X, W, ta) « R.(X,Y,ta),S.(Z,Y, ta), not auz:(X,Z),
S4(Z, W, ta), chosen(X, Z,W).
chosen(X, Z,W) « R\(X,Y,ta), S} (Z Y, ta), not auz: (X, Z),
S4(Z, W, ta), not diffchoice(X, Z,W).
diffchoice(X,Z, W) «+ chosen(X, Z,U), Sy(Z, W, ta),U # W.

Running this program with DLV, we obtain the following stable models of the
program, where td, ta, fa, tss stand for ta, ta, fa, t**, resp.:

M= {Ri(a,b), S1(c,b), Sa(c,e), Sa(c, f), Ri(a,b,td), Si(c, b td), Sj(c,e,td),
Sy(c, f,td), auzs(c), Si(c,b,tss), Sy(c,e, tss), Sy(c, f, tss), Ri(a,b,tss),
diffchoice(a, ¢,€), chosen(a,c, f), Ry(a, f,ta), Ry(a, f, tss)}

My={Ry(a,b), Si(c,b), Sa(c,e), Salc, f), Ri(a,b,td), Si(c,b,td), Sj(c, e, td),
S5(c, f,td), auzy(c), Si(c,b,tss), Sy(c,e,tss), Sy(c, f,tss), Ri(a,b, fa),
diffchoice(a, c,e), chosen(a, c, f)}

M= {Ri(a,b), Si(c,b), Sa(c,e), Sa(c, f), Ri(a,b,td), Si(c,b,td), Sy(c,e,td),
S5(c, f,td), auza(c), Si(c,b,tss), Si(c,e,tss), Sy(c, f,tss), Ri(a,b, tss),
chosen(a,c,e), diffchoice(a,c, f), Ry(a,e,ta), R}(a,e,tss)}

M= {Ri(a,b), S1(c,b), Sa(c,e), Sa(e, f), Ri(a,b,td), Si(c,b,td), Si(c,e,td),
S3(c, f,td), aums(c), Si(e,b,tss), Sy(c,e,tss), Sple, f,tss), Ry(asb, fa),
chosen(a,c,€), diffchoice(a,c, f)},
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which correspond to the following solutions (they can be obtained by selecting

only the tuples with annotation t**):

' ={Si(c,b), Ss(c,e), Sh(c, f), Ri(a,b), Ri(a, f)},
= {Si(c,b), Sa(c,e), Sa(e, f)},
7 ={5i(c,b), S(c,e), Si(c, f), Ri(a,b), Ri(a,€)},
™ = {S(c,b), Sh(c,e), Sh(c, f)}-
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