
The Logics of Consistent Query Answers
in Databases

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

bertossi@scs.carleton.ca
www.scs.carleton.ca/∼bertossi

Advanced course at ESSLLI 2005, Edimburgh, August 2005.

2

The Context

There are situations when we want/need to live with inconsis-
tent information in a database

With information that contradicts given integrity constraints

The DBMS does not fully support data maintenance or
integrity checking/enforcing

The consistency of the database will be restored by exe-
cuting further compensating transactions or future trans-
actions

Integration of heterogeneous databases without a cen-
tral/global maintenance mechanism

3

Inconsistency wrt “soft” or “informational” integrity con-
straints we hope or expect to see satisfied, but are not
maintained

User constraints than cannot be checked

Legacy data on which we want to impose (new) semantic
constraints

It may be impossible/undesirable to repair the database (to
restore consistency)

No permission

Inconsistent information can be useful

Restoring consistency can be a complex and non deter-
ministic process

4

The Problem

Not all data participate in the violation of the ICs

The inconsistent database can still give us “correct” or consis-
tent answers to queries!

We need:

A precise definition of consistent answer to a query in an
inconsistent database

Mechanisms for obtaining such consistent information from
the inconsistent database

Understanding of the computational complexity of the
problem

5

Understanding the “logics” of consistent query answering
in databases

So as (usual) query answering in databases follows a cer-
tain logics (under the assumption of consistency):

• Model- and proof-theoretic foundations

• Based on first-order logic semantics
(plus some non-monotonic assumptions)

• Relational algebra and calculus

• Compositional

• SQL

C.f. - Abiteboul, Hull, Vianu. “Foundations of Databases”,
Addison-Wesley, 1995.
- R. Reiter. “A Logical Reconstruction of Databases”, 1984.

6

Contents

0. Preliminaries

1. Basic Notions and Overview

2. A First Approach to CQA: FO Rewriting

3. Specifying Repairs in APC

4. Specifying Repairs with Logic Programs

5. Referential ICs and Incomplete Information

6. Aggregate Queries

7. Complexity of CQA

8. CQA in Virtual Data Integration

9. Query Answering in Peer-to-Peer Data Exchange

7

0. Preliminaries

8

Relational Databases

A relational schema is a set of relation names, each with a fixed
finite arity; equivalently, it is a first-order signature containing
only predicates

A relational database instance D is a structure compatible with
a relational schema, such that

It has a possibly infinite domain U

The extensions of each of the relations in it is finite

Example: Relational schema S = {R(·, ·), S(·, ·, ·)}

9

A possible instance D = 〈U,RD,SD〉, with

U = {0, 1, 2, 3, . . .}
RD = {(1, 2), (4, 3), (4, 7), (5, 8)},
SD = {(1, 1, 1), (2, 3, 4), (5, 5, 6), (5, 4, 4)}

The relational schema S determines a first-order language
L(S) based on the relation names

This language is usually extended with built-in predicates, that
have a fixed extension given by the logic, but may be infinite
in extension, e.g. equality (=), inequality (�=), <, ...

In the example, the extensions for these predicates are

=: {(0, 0), (1, 1), (2, 2), . . .}
�=: {(0, 1), (1, 0), (0, 2), (2, 0), . . .}
<: {(0, 1), (0, 2), (0, 3), . . .}

10

A relational database (instance) D can be identified with a
finite set of ground atoms of the form R(t̄), where R is a rela-
tion in S, and t̄ is a finite sequence of constants, i.e. elements
of the database domain U

Notice that we are extending the language L(S) with elements
from U

This is why sometimes the database domain is considered to
be a part of the schema

In the example:
D = {R(1, 2), R(4, 3), R(4, 7), R(5, 8), S(1, 1, 1), S(2, 3, 4),

S(5, 5, 6), S(5, 4, 4)}

A ground atom R(t̄) is also called a database tuple

11

In the (extended) language L(S), integrity constraints are sen-
tences ϕ that are expected to be satisfied by a database in-
stance D, denoted D |= ϕ

They capture (part of) the semantics of data, in order to keep
the correspondence between an outside reality and its model
(the database)

A database is consistent wrt to a given set of integrity con-
straints IC if the sentences in IC are all true inD, i.e.D |= IC

12

Query Languages

Queries are formulas in (the extended) L(S), usually with free
variables

An answer to a query Q(x̄) with free variables x̄ is a tuple of
constants t̄ that makes Q true in D when the variables x̄ are
interpreted trough t̄, denoted D |= Q(t̄)

FO logic, used as a query language, is essentially the relational
calculus

However more expressive extensions can be considered

Datalog is a query language for relational databases

13

The query takes the form of a Datalog program; consisting of
a set of logical formulas

Datalog is a natural extension of relational calculus (loosely
speaking for the moment)

The language can be used to query relational databases that
are extended with view definitions

... those view definitions are given in the Datalog query (pro-
gram) itself

Datalog allows defining recursive views

Based on predicate logic (predicate calculus) and its semantics,
plus recursion, and some particular evaluation methodologies

14

Except for recursion, syntax is more restricted that the one of
predicate logic

Example: Person(x) ← Parent(x, y)

Person(y) ← Parent(x, y)

Grandfather(x, z) ← Parent(x, y),Parent(y, z)

Ancestor(x, y) ← Parent(x, y)

Ancestor(x, z) ← Parent(x, y),Ancestor(y, z)

This could be a Datalog rule

S(x)← P (a, x), Q(y, a)

where a is a constant (an element of the domain of the database),
and x, y are variables, which are assumed to be universally
quantified (implicitly)

15

E.g. the first clause is a simplified expression for

∀x∀y (Person(x)← Parent(x, y))

If a universally quantified variable appears only in the body
(e.g. y above), it is interpreted as existentially quantified in
the body, i.e. it is logically equivalent to

Person(x)← ∃y Parent(x, y)

In other words, the original rule

Person(x)← Parent(x, y)

says that Person is the projection of Parent on x

Someone is person as long as there exists someone (no matter
who) who is his/her child

16

A rule is ground if it does not have any variables

P (a)← Q(c, a) is ground

P (x)← R(a, x) is not ground

The body of a clause may be empty, e.g.

P (a)← (written P (a))

E(x, x)← (written E(x, x))

Ground rules with empty bodies are called facts

Parent(juan, pablo)← (or simply Parent(juan, pablo))

Facts are usually in the underlying relational database, i.e. in
the extensional database

17

Almost every RA operation can be expressed by means of a
Datalog program; just a few examples ...

Selection

σX=a(R(X,Y)) �→ Ans(Y)← R(a, Y)

Intersection (conjunction)

R(X,Y)∩S(X,Y) �→ Ans(X,Y)← R(X,Y), S(X,Y)

Union (disjunction)

R(X,Y) ∪ S(X,Y) �→ Ans(X,Y)← R(X,Y)
Ans(X,Y)← S(X,Y)

Projection (existential quantification)

ΠX(R(X,Y)) �→ Ans(X)← R(X,Y)

18

Join

R(X,Y) �Y =Z S(Z, V) �→ Ans(X,Y, V)←
R(X,Y), S(Y, V)

Difference

R(X,Y) � S(X,Y) �→ ?????

No negation in Datalog!

But we do have recursion in Datalog!

And we can do things that are (provably) impossible in
RA, like defining the transitive closure of a relation

If we extend Datalog with negation we will have RA and more
...

19

Extensions of Datalog:

Built-in predicates: =, �=, <, +, ...

They can be used in conditions in the bodies, e.g.

SeniorParent(x)← Parent(x, y), Age(x, z), z > 65

Disjunction, e.g. P (x, y) ∨ T (x, y) ← R(x, y), S(x, y)

Disjunctive Datalog used to represent uncertain informa-
tion

A disjunctive Datalog program may have several intended
intentional databases!

20

Aggregate functions (so as for RA): SUM, MAX, AVG, ...

Ans(X, sum(Y))← R(X,Y)

Ans returns for every value a for X the sum of all values
b for Y such that (a, b) ∈ R

R X Y
a 2
a 4
b 7
b 2 Ans = {(a, 6), (b, 9)}

21

Negation, e.g. P (x, y)← R(x, y), not S(x, y)

With it we recover the “set difference” of RA we were
missing

R(X,Y) � S(X,Y) �→
Ans(X,Y)← R(X,Y), not S(X,Y)

What is the intended meaning (semantics) of negation in
Datalog programs?

In a Datalog program with negation, what is the intended
intentional database instance?

22

Semantics of negation is an extension of the Closed World
Assumption in relational databases:

• If a positive fact does not appear in the DB, then it
is assumed to be false

This is a weak negation, as opposed to the strong, clas-
sical negation

The combination of negation and recursion can be problematic

23Example: EDB = {P (a, b), P (a, a), P (c, b), Q(a, b), Q(c, c),
S(a, a), T (a, b)}

Intensional database using view definitions in Datalognot :

R(x, y)← P (x, y), not Q(x, y)
R(x, y)← T (x, y), R(x, z), not S(x, z)

Answer query Ans← R(x, y) by bottom-up evaluation (no-
tice both negation and recursion)

1. First propagate values into R using the first rule

That rule is used once (only extensional tables in body)

2. Use second rule with partial contents for R in body

3. Keep iterating with the second rule until nothing new ...

Here negation and recursion do not interact; negation is ap-
plied to predicates that have been completely computed at a
previous stage; the program is stratified

24

Example: Recursion via negation

EDB Q = {1, 2}, extended with view

P (x) ← Q(x), not P (x)

Bottom-up computation of P : steps ...

1. P = ∅
2. P = {1, 2}
3. P = ∅
4. etc., etc. (infinite computation)

P is defined by recursion via negation; the program is not strat-
ified

What is the semantics of negation here?

25

Talking about semantics ...

What is the intended semantics of a Datalog program?

What becomes true given a Datalog program and an underly-
ing extensional database?

What is the intended contents of the intentional relations?

Same questions for extensions of Datalog ...

The semantics for Datalog and its extensions can be presented
in a uniform manner in the context of logic programming

26

Semantics of Logic Programs

Definite Logic Programs (Datalog Programs)

Consist of positive Horn clauses, no negation

Example: Program P

path(x, z) ← arc(x, y), path(y, z)

path(x, x) ←
arc(b, c) ←

What is the semantics of P? What world is P describing?
Is there an intended model for P?

Since variables are universally quantified (universal formulas),
we can concentrate on the Herbrand models of P

27

Intuitively, P talks about the (syntactic) objects mentioned by
(or can be constructed from) P (like in RDBs), then no need
to consider models with other bizarre domains

A Herbrand structure for P :

Has the Herbrand Universe HP of P as its domain, in this
case HP = {b, c}
In terms of interpretation of predicates, can be identified
with a subset of the Herbrand Base HBP of P ; here

HBP = {arc(b, b), arc(c, c), arc(b, c), arc(c, b), path(b, b),
path(c, c), path(b, c), path(c, b)}

It contains all the possible ground atomic propositions
that can be potentially true; and in particular structures,
only some of them will be true (and the others, false)

28

A Herbrand model (H-model) for P is a Herbrand structure for
P that makes true all the clauses in P

A model of the program (a subset of HBP):

M1 = {arc(b, b), arc(c, c), arc(b, c), arc(c, b), path(b, b),
path(c, c), path(b, c), path(c, b)}

Another model

M2 = {arc(b, c), path(b, b), path(c, c), path(b, c)}

Yet another one

M3 = {arc(b, c), path(b, b), path(c, c), path(b, c), path(c, b)}

A Herbrand structure for P that is not a model of P

M4 = {arc(b, c), path(c, c), path(c, b)}

29

Since H-structures are (identified with) subsets of HBP , they
can be compared by set inclusion (⊆); a partial order in the
class of subsets of HBP

M2 is a minimal H-model: M2 is an H-model of P and no
proper subset of M2 is an H-model of P

Theorem: For a definite program P

P has exactly one minimal H-model M(P)

The semantics of P can be captured by M(P), i.e. for a
ground atom A:

P |= A ⇐⇒ A ∈M(P)

The ground atoms A ∈M(P) are exactly those that can
be proved by resolution-based refutations from P

30

Example: Program P r(x) ← p(x)

p(x) ← q(x, y)

q(a, a) ←
q(a, b) ←

Ground instantiation PH of P (on the H-universe):

r(a) ← p(a)

r(b) ← p(b)

p(a) ← q(a, a)

p(a) ← q(a, b)

p(b) ← q(b, b)

p(b) ← q(b, a)

q(a, a) ←
q(a, b) ←

31

M(P) can be obtained bottom-up, by propagating the facts
through the rules, from right to left, iteratively:

First step: q(a, a), q(a, b) ∈M(P)

Second step: p(a) ∈M(P)

Third step: r(a) ∈M(P)

M(P) = {q(a, a), q(a, b), p(a), r(a)}

Given an extensional database, a Datalog program defined on
it defines exactly one minimal intentional database!

32

Disjunctive Positive Programs

We now consider more expressive FO logic programs containing
(non-Horn) clauses of the form

A1 ∨ · · · ∨ An ← B1, . . . , Bm

where the Ai, Bj are atoms

Example: P (x) ∨Q(x) ← R(x), S(x, y).

R(x) ← U(x), V (x).

S(x, y) ← U(x), V (y).

U(a). U(c). V (b). V (a).

Herbrand Universe: HP = {a, b, c}
Herbrand Base: HBP = all possible ground atoms

33

Now, two minimal (Herbrand) models:

M1 = {U(a), U(c), V (b), V (a), S(a, a), S(a, b), S(c, a), S(c, b),
R(a), P (a)}

M2 = {U(a), U(c), V (b), V (a), S(a, a), S(a, b), S(c, a), S(c, b),
R(a), Q(a)}

Disjunctive programs may have more than one minimal model
(Minker et al.)

Cautious or skeptical semantics: What is true in all minimal
models

Brave or possible semantics: What is true in some minimal
model

34

Normal Programs

Now programs with one atom in the head, weak negation (not)
in the body

Rules may be of the form:

A← A1, . . . , Am, not Am+1, . . . , not An

where the A,Ai are atoms

We give a declarative semantics to normal programs, i.e. given
through a collection of intended models

It is the stable model semantics (or more generally, answer set
semantics) (Gelfond & Lifschitz, 1988)

35

Can be applied to any program with negation

Let P be a normal program, and S � HBP , i.e. a subset of
the Herbrand Base

S is a candidate to be a (stable) model of P ; a “guess” that
will be accepted if properly supported by P

S can be seen as a set of assumptions

S will be a stable model of P if it can be justified on the basis
P ; more precisely, if assuming S, we can recover S via P

Do the following:

Pass from P to PH , the ground instantiation of P

36

Construct a new ground program P S
H , depending on S as

follows:

1. Delete from PH every rule that has a subgoal not A
in the body, with A ∈ S
Intuitively: We are assuming A to be true, then
not A is false, then the whole body is false, and
nothing can be concluded with that rule, it is useless

2. From the remaining rules, delete all the negative sub-
goals

Intuitively: Those rules are left because the negative
subgoals are true, and since they are true, we can
eliminate them as conditions in the bodies (because
they hold)

37

We are left with a ground definite program P S
H (no nega-

tion)

Compute M(P S
H), the minimal model of the definite pro-

gram

If M(P S
H) = S, we say that S is a stable model of P

Intuitively, we started with S (as an assumption) and we re-
covered it, it was stable wrt to the P -guided process described
above; it is self-justified ...

38

Example: Program P p(a)← not p(b) (already ground)

Consider S = {p(a)}

Here: p(b) /∈ S, then not p(b) is satisfied in S and can be
eliminated from the body

We obtain P S : p(a)←, a definite program

Its minimal model is {p(a)}, that is equal to S

S is a stable model of the original program

Notice that P is a non-stratified (there is recursion via nega-
tion), but has a stable model, actually only one in this case

39

Example: Program P (non-stratified)

p(x)← q(x, y), not p(y)
q(a, b).

PH : (ground instantiation) Candidate S = {p(b)}
p(a)← q(a, a), not p(a)

p(a)← q(a, b), not p(b) ×

p(b)← q(b, a), not p(a)

p(b)← q(b, b), not p(b) ×

q(a, b).

40

P S
H :

p(a) ← q(a, a)

p(b) ← q(b, a)

q(a, b).

Minimal model of P S
H is {q(a, b)} �= S, then S is not a stable

model

The program is non-stratified, but it has the stable model
S = {q(a, b), p(a)} (check!)

41

Example: Program P

male(a) ← not female(a)

female(a) ← not male(a)

If S1 = {male(a)}, then P S1 is {male(a)}, and then S1 is a
stable model

S2 = {female(a)} is also a stable model of P

There may be more than one stable model for a program!

Again, P is non-stratified

42

Example : Program P
even(0).

even(x) ← not even(s(x))

PH : even(0).

even(0) ← not even(s(0))

even(s(0)) ← not even(s(s(0)))

· · · · · ·
S = {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .} is a
stable model

P S
H : even(0).

even(0).

even(s(s(0))). Etc.

M(P S
H) = {even(0), even(s(s(0))), even(s(s(s(s(0))))), . . .}

43

Some Results:

Every stable model of P is a Herbrand model in the usual
sense

In them, not is interpreted as “not belonging to the
model”

A stable model is always a minimal model (i.e. no proper
subset of it is a model of the program)

A normal program may have several stable models; so
several (stable) models determine the semantics of a pro-
gram

If there are several stable models for a program, it means
that some atoms are left undetermined (those that are
true in some of them, but false in others)

44

Now we are giving a declarative semantics to a wider
class of programs (with or without negation), even non-
stratified ones

The stable model semantics of a normal program?

• Skeptical or cautious semantics: What is true of a
program is what is true of all stable models of the
program

• Brave or possible semantics: What is true of a pro-
gram is what is true of some stable model of the
program

If P is definite or normal, but stratified, then it has a
unique stable model

45

This stable model coincides with the minimal model for
definite programs, and the “natural” one for normal strat-
ified programs

Then this semantics extends the ones we had for the
“good” cases before

In particular, the unique stable model can be computed
by means of an bottom-up iterative process

46

Example: Stratified normal program P

D(x) ← Q(x), not R(x)

R(x) ← S(x)

R(x) ← H(x), not S(x)

S(x) ← T (x, y), not U(y)

S(x) ← U(x)

Q(a). Q(b). Q(c). H(b). T (a, b).

In a stratified program there is natural hierarchy of predicates
wrt their definitions; they can be placed in strata

Each predicate can be completely computed without calling
via negation other predicates that are not in a lower stratum

47

Stratum 4 : D

↑
Stratum 3 : R

↑
Stratum 2 : S

↑
Stratum 1 : Q,H, T, U

Compute their extensions upwards: (poly-time computation)

1. M1 = {Q(a), Q(b), Q(c), H(b), T (a, b)}

2. M1 = {S(a)}

3. M2 = {R(a), R(b)}

4. M3 = {D(c)}
Unique stable model
M = M0 ∪M1 ∪M2 ∪M3

(check that this is a stable model of the program)

48

The problems of finding a stable model, determining whether
one exists, checking skeptical or brave consequences from
the program, etc. have all rather high complexity

However, with not-stratified programs with stable model
semantics we gain expressive power

And we can solve problems that are intrinsically complex
and require such an expressive power (and complexity of
program evaluation)

In particular, computational implementations for the sta-
ble model semantics are being used to find solutions to
combinatorial optimization and decision problems

NP-hard problems can be represented by logic programs
and the stable models correspond to their solutions; thus
in these applications finding one model is good enough

49

Disjunctive Normal Programs

Now we admit rules of the form

B1 ∨ · · · ∨Bk ← A1, · · · , Am, not Am+1, . . . , not An

with Bj, Ai are atoms and not is weak negation

E.g. P (x) ∨ T (x)← R(x), Q(y), not S(x), not Q(x)

We have a stable model semantics (Gelfond & Lifschitz, 1991)

Models are sets of ground atoms; and so are candidates S to
be answer sets, i.e. of the form S = {p, f, k, l, d}

The test for S is similar:

50

Fully instantiate the program

Pruning process as for ELPs

Now we get a ground disjunctive program without not ,
i.e. with clauses of the form

p ∨ q ← s, t, u, v, w

The resulting disjunctive program may have several min-
imal models

S is a stable model if it coincides with one of the minimal
models of the program in the previous step

51

A useful extension: program constraints of the form

← L1, . . . , Lm, not Lm+1, . . . , not Lk,

with Li atoms, can be added to a program P

Intuitively: It is not the case that the body becomes true (for
any values for the variables)

Has the effect of filtering the stable models of P where the
body becomes true

52

Example: Program P

ug(x) ← not grad(x), stud(x)

grad(x) ← not ug(x), stud(x)

stud(mary) ←
← ug(x)

Without the program denial, two stable models:

{stud(mary), ug(mary)} and {stud(mary), grad(mary)};

with the denial, only the second one

53

1. Basic Notions and Overview

54

A database instance D

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

FD : Name → Salary

D violates FD , by the tuples with J .Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

55
D1

Employee Name Salary
J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

D2

Employee Name Salary
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

(M .Stowe, 7, 000) persists in all repairs, and it does not par-
ticipate in the violation of FD ; it is invariant under minimal
forms of restoration of consisency

(J .Page, 8, 000) does not persist in all repairs, and it does
participate in the violation of FD

56

Repairs and Consistent Answers

Fixed: DB schema and (infinite) domain; a set of first order
integrity constraints IC

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A repair of a database instance D is a database instance D′

over the same schema and domain

satisfies IC

differs from D by a minimal set of changes (insertions or
deletions of tuples) wrt set inclusion

57

Given a query Q(x̄) to D, we want as answers all and only
those tuples obtained from D that are “consistent” wrt IC
(even when D globally violates IC)

Definition: (Arenas, Bertossi, Chomicki; PODS 99)

A tuple t̄ is a consistent answer to query Q(x̄) in D iff
t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |=
IC
Q[t̄] :⇐⇒ D′ |= Q[t̄] for every repair D′ of D

A model theoretic definition ...

58

Example

Inconsistent DB instance D wrt FD : Name → Salary

Employee Name Salary
J .Page 5,000
J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

Repairs D1, resp. D2

Employee Name Salary

J .Page 5,000
V .Smith 3,000
M .Stowe 7,000

Employee Name Salary

J .Page 8,000
V .Smith 3,000
M .Stowe 7,000

D |=
FD

Employee(M.Stowe, 7, 000)

59

D |=
FD

(Employee(J .Page, 5, 000) ∨Employee(J .Page, 8, 000))

D |=
FD
∃XEmployee(J .Page, X)

We can see this is not the same as getting rid of the tuples
that participates in the violation of the IC

More information is preserved than with (naive) data cleaning

60

Example

D = {P (a), P (b), Q(a), R(a)}

IC = {∀x(P (x)→ Q(x)),∀x(Q(x)→ R(x))}

Two repairs for D:

D1 = {P (a), Q(a), R(a)} with D∆D1 = {P (b)}

D2 = {P (a), P (b), Q(a), Q(b), R(a), R(b)} with
D∆D2 = {Q(b), R(b)}

They are minimal repairs, i.e. there is no consistent D3 with:

D∆D3 � D∆D1 or D∆D3 � D∆D2

61

Example

D = {P (a, b), Q(c, b)}

IC : ∀x∀y (P (x, y)→ Q(x, y))

The repairs are:

D1 = {Q(c, b)} with D∆D1 = {P (a, b)}

D2 = {P (a, b), Q(a, b), Q(c, b)} withD∆D2 = {Q(a, b)})

But not D3 = {P (a, b), Q(a, b)}, because

D∆D3 = {Q(a, b), Q(c, b)} � D∆D2

62

Computing Consistent Answers

We want to compute consistent answers, but not by comput-
ing all possible repairs and checking answers in common

Retrieving consistent answers via computation of all database
repairs is not possible/sensible/feasible

Example: An inconsistent instance wrt FD : X → Y

D X Y

1 0
1 1
2 0
2 1
· ·
n 0
n 1 It has 2n possible repairs!

63

Attacking the Problem (Overview)

Different alternatives for computing consistent answers

1. (Arenas, Bertossi, Chomicki; PODS 1999),
(Celle, Bertossi; DOOD 2000)

Transform the query into a new query

Do not compute the repairs

Pose the new query to the only available (inconsistent)
database instance (as usual)

64

2. Represent in a compact way the collection of all database
repairs and get information from the representation

2.1. (Arenas, Bertossi, Kifer; DOOD 2000)

• Repairs are some minimal models of a theory
written in annotated predicate logic

2.2. (Arenas, Bertossi, Chomicki; TPLP 2003),
(Barcelo, Bertossi; PADL 03),
(S.Greco et al.; TKDE 2003)

• Repairs are stable models of a logic program

• Repairs specified by means of a logic program

• To obtain consistent answers, run the program

65

2.3. (Arenas, Bertossi, Chomicki; ICDT 2001)

• Repairs are maximal independent sets in a graph
whose nodes are the DB tuples

• Arcs are drawn between two tuples participating
in the violation of an FD

2.4. (Bertossi, Schwind; AMAI 2004)

• Repairs are branches in a tableau

• Tableaux are developed and their branches closed
taking into account ICs

66

Related Work

We have used a particular notion of database repair:

Basically no restriction on them
(only minimality based on inclusion of sets of tuples)

No assumption about the DB

(Rest of this presentation refers to this notion)

However

There may be different assumptions about the DB
(in the presence of inclusion dependencies):

67

DB is possibly incorrect but complete:

Repair by deletion only
(Chomicki, Marcinkowski; Inf. and Comp. 2005)

DB is possibly incorrect and incomplete:

Fix FDs by deletion, referential ICs by insertion
(Cali, Lembo, Rosati; PODS 2003)

Referential ICs are repaired using null values that do not
propagate through other ICs
(Barcelo, Bertossi, Bravo; LNCS 2582, 2003)

68

Different notions of minimal repairs:

Minimal cardinality set of changes (c.f. page 14)
(Arenas, Bertossi, Chomicki; TPLP 2003)

Minimal cardinality set of updates, i.e. changes of at-
tribute values (and not whole tuples) (c.f. page 15)

(Wijsen; ICDT 2003)
(Franconi, Laureti, Leone, Perri, Scarcello; LPAR 2001)
(Bertossi, Bravo, Lopatenko, Franconi; LAAIC 2005)
(Bohannon, Flaster,Fan, Rastogi; SIGMOD 2005)

Idea: In example on page 61, maybe there was a mis-
take, and the value c in the first attribute of Q should be
changed to a

69

2. A First Approach to CQA:
FO Rewriting

70

Query Transformation

First-Order queries and constraints

Approach: Transform the query and keep the database in-
stance!

Given a query Q to the inconsistent DB D, qualify Q with
appropriate information derived from the interaction between
Q and the ICs

To locally satisfy the ICs

To discriminate between tuples in the answer set

Inspired by “Semantic Query Optimization” techniques

71

Consistent answers to Q(x̄) in D??

Rewrite query: Q(x̄) �−→ Q′(x̄)

Q′(x̄) is a new first order query

Retrieve from D the (ordinary) answers to Q′(x̄)

72

DBMS

New Query (enh'd SQL):

 SELECT ...
 FROM ...
 WHERE ...

CONSIS WITH ICs

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...
 ICs

?????Query
Preprocessor

73

Example

IC : ∀x(P (x)→ Q(x)) D = {P (a), P (b), Q(b), Q(c)}

1. Query to D: Q(x)?

If Q(x) holds in D, then P (x)→ Q(x) holds in D

Elements in Q do not participate in a violation of IC

2. Query: P (x)?

If P (x) holds in D, then Q(x) must hold in D in order to
satisfy P (x)→ Q(x)

74

An answer x to “P (x)?” is consistent if x is also in table Q

Transform query 2. into: P (x) ∧Q(x)?

Pose this query instead

Q(x) is a residue of P (x) wrt ∀x(P (x)→ Q(x))

Residue can be obtained by resolution between the query literal
and IC

Posing new query to D we get only answer {b}

For query Q(x)? there is no residue, i.e. every answer to query
Q(x)? is also a consistent answer, i.e. we get {b, c}

75

3. Query ¬Q(x)? (not safe, just for illustration)

Residue wrt ∀x(P (x)→ Q(x)) is ¬P (x)

New query: ¬Q(x) ∧ ¬P (x)?

Answers to this new query (in the active domain): ∅

No consistent answers ...

76

Example

FD : ∀XY Z (¬Employee(X,Y) ∨ ¬Employee(X,Z) ∨
Y = Z)

Query: Employee(X,Y)?

Consistent answers: (V .Smith, 3,000), (M .Stowe, 7,000)
(but not (J .Page, 5,000), (J .Page, 8,000))

Can be obtained by means of the transformed query

T (Q(X,Y)) := Employee(X,Y) ∧
∀Z (¬Employee(X,Z) ∨ Y = Z)

... those tuples (X,Y) in the relation for which X does not
have and associated Z different from Y ...

77

SELECT Name, Salary

FROM Employee

CONSISTENT WITH

 FD(Name;Salary) r

SELECT Name, Salary

FROM Employee E

WHERE Not exists (

 SELECT E.Salary

 FROM E

 WHERE E.Name = Name

 AND E.Salary <> Salary)

r

Again, the residue ∀Z (¬Employee(X,Z) ∨ Y = Z) can be
automatically obtained by applying resolution to the query and
FD

In general, T is an iterative operator

78

Example

Relations: Supply(x,y,z): “x supplies item z to y”

Class(z,w): “item z belongs to class w”

IC: C is the only supplier of items of class K

∀x, y, z(Supply(x, y, z) ∧ Class(z,K)→ x = C)

An instance D that violates IC

Supply Class
C D1 I1 I1 K
D D2 I2 I2 K

79

Query for items of class K : Class(z ,K)?

Answer: I1, I2

However, IC has not been considered, and I2 is not a consis-
tent answer

Instead, we query with

T (Class(z , K)) ≡
Class(z , K) ∧ ∀(x , y)(Supply(x , y , z)→ x = C)

Only consistent answer: I1

80

Example

IC : {R(x) ∨ ¬P (x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}

Query: Q(x)?

T 1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P (x)) ∧ P (x)

Apply T again, now to the appended residues

T 2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P (x))) ∧ T (P (x))

T 2(ϕ(x)) = Q(x) ∧ (R(x) ∨ (¬P (x) ∧ ¬Q(x))) ∧ P (x)∧
(R(x) ∨ ¬Q(x))

And again:

81

T 3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P (x) ∧ T (¬Q(x)))) ∧
P (x) ∧ (T (R(x)) ∨ T (¬Q(x)))

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain

T 3(Q(x)) = T 2(Q(x))

A finite fixed point! Does it always exist?

In general, an infinitary query: T ω(ϕ(x)) :=
⋃

n<ω

{Tn(ϕ(x))}

In the example, T ω(Q(x)) = {T1(Q(x)), T2(Q(x))}

Always finite?

82

Some Results

There are sufficient conditions on queries and ICs for soundness
and completeness of operator T (ABC; PODS 99)

Soundness: every tuple computed via T is consistent in
the semantic sense

D |= T ω(ϕ)[t̄] =⇒ D |=
IC
ϕ[t̄]

Completeness: every semantically consistent tuple can be
obtained via T

D |=
IC
ϕ[t̄] =⇒ D |= T ω(ϕ)[t̄]

Natural and useful syntactical classes satisfy the conditions

83

There are necessary and sufficient conditions for syntactic
termination

In the iteration process to determine T ω(Q) nothing
syntactically new is obtained beyond some finite step

There are sufficient conditions for semantic termination

From some finite step on, only logically equivalent formu-
las are obtained

In these favorable cases, a FO SQL query can be translated in-
to a new FO SQL query that is posed as usual to the database

In these cases CQA can be computed in polynomial time in
data complexity

84

Soundness

Sufficient conditions: Universal ICs

ICs and queries equivalent to formulas with universal quanti-
fiers in prenex normal form

E.g. ICs that are functional dependencies, some inclusion
dependencies, like ∀x(P (x)→ Q(x)), ∀x∀y(R(x, y)→ P (x))

AND

Universal queries; or

Domain independent, but possibly non-universal queries

E.g. ∃xP (x, y)

∃x∀y(R(x, y)→ S(x, y))

85

Completeness

Sufficient conditions: Queries that are conjunctions of literals
plus

Sets of ICs IC for which both 1. and 2. hold:

1. Binary integrity constraints, i.e. each of them men-
tions only two database relations

2. Generic integrity constraints that do not determine
the truth for particular tuples

I.e. for every ground database tuple P (ā):

Neither IC |= P (ā) nor IC |= ¬P (ā) hold

86

Example:

Queries: P (u, v) and R(u, v) ∧ ¬P (u, v)

IC = {∀x, y(P (x, y)→ R(x, y)),
∀x, y, z(P (x, y) ∧ P (x, z)→ y = z)}

(FDs, full inclusion dependencies, ...)

Or

Any set of integrity constraints, under a condition that is
similar to 2., but stronger

87

Syntactic Finite Termination

T ω(Q(x̄)) is syntactically finite if there is n ∈ N such that
T n(Q(x̄)) and T n+1(Q(x̄)) are syntactically the same

It holds for any kind of queries iff IC is acyclic

I.e. there is f : {P1, . . . , Pn,¬P1, . . . ,¬Pn} −→ N,
a level mapping on database “literal” predicates, such that
for every IC

∀(
k∨

i=1

li(x̄i) ∨ ψ(x̄)) ∈ IC

and every 1 ≤ i, j ≤ k, if i �= j then f(¬li) > f(lj)

Like hierarchical logic programs, but complementary literals get
values independently from each other

88

Intuitively, given IC ∀(l1(x̄1)∨ · · · ∨ lk(x̄k)∨ψ(x̄)), and want
to find consistent answers to ¬li(x̄i), then

l1(x̄1), . . . , li−1(x̄i−1), li+1(x̄i+1), . . . , lk(x̄k), ψ(x̄)

have to be evaluated; we expect them to have a lower level
than ¬li

Example: Query R(u, v) ∧ P (u, v)

IC = {∀x, y(P (x, y)→ R(x, y)),

∀x, y, z(P (x, y) ∧ P (x, z)→ y = z)}

To compute P , from the first IC we get residue R: it
should be f(P) > f(R)

For P , from the second IC we get (as a part of) the
residue ¬P : it should be f(P) > f(¬P)

89

To compute ¬P : no residue

To compute R: no residue

To compute ¬R, from the first IC we get residue ¬P : it
should be f(¬R) > f(¬P)

The level mapping f : P �→ 2, R �→ 1, ¬P �→ 1, ¬R �→ 2
satisfies de constraints; and IC is acyclic

FDs are always acyclic ...

With some inclusion dependencies, acyclicity may be lost

Checking acyclicity is obviously decidable

90

Semantic Finite Termination

T ω(Q(x̄)) is semantically finite if there is an n ∈ N, such that
for all m ≥ n, ∀x̄(T n(Q(x̄) ≡ Tm(Q(x̄)) is valid

Sufficient conditions: Queries that are (conjunctions of) liter-
als l(x̄) plus

Uniform constraints, i.e. same variables in all literals

Or

Any set of ICs such that for some n ∈ N:

∀x̄ T n(l(x̄))→ T n+1(l(x̄))

is logically true (good enough to check base literals)

91

Example: IC = {∀xy(P (x, y)→ R(x, y)),
∀xy(R(x, y)→ P (x, y)),
∀xyz(P (x, y) ∧ P (x, z)→ y = z)}

For queries P (u, v) and R(u, v), it holds T 2 → T 3

Example: Multivalued dependencies, of the form

P (x, y, z) ∧ P (x, u, v)→ P (x, y, v)

It holds T 3 → T 4

In this case, automated theorem proving (Otter) has been
successfully used to check the implication

92

Implementation

Semantic termination is difficult to detect and implement

A new algorithm, QUECA, inspired by T was introduced
(Celle, Bertossi; DOOD 00)

It syntactically terminates for a wider class of ICs

Based on a careful syntactical analysis and memorization
of residues and subsumptions between them

Implemented on XSB
About XSB: (Sagonas, Swift, Warren; SIGMOD 94)

93

Implementation in XSB makes it possible:

Trying direct unification between residues

Using tabling to avoid redundant computation of residues

Interaction with DBMSs; in our case, IBM DB2

Methodology works for universal binary constraints, i.e. con-
taining at most two database literals plus built-ins, e.g.

FDs: P (u, x, y) ∧ P (v, x, z) → y = z

Full inclusion dependencies: P (x̄)→ Q(x̄)

Range constraints: P (x, y)→ y < 100

94

DBMS

New Query:

 SELECT ...
 FROM ...
 WHERE ...

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

ICs
XSB

Consistent
 Answers

XSB
Environment

95

Some Limitations

First-order query rewriting based approaches to CQA provably
have intrinsic limitations (see later)

They are incomplete for full FO queries and ICs, which applies
in particular to T

T is defined and works for some special classes of queries
and integrity constraints

ICs are universal, which excludes referential ICs; and queries
are quantifier-free conjunctions of literals

T does not work for disjunctive or existential queries, e.g.
∃Y Employee(J .Page, Y)?

96

FO query reformulation has been slightly extended using other
methods; still keeping polynomial time data complexity

Hypergraph representation: Vertices are the DB tuples,
and their simultaneous semantic conflicts under denial ICs
are the hyperedges
(Chomicki, Marcinkowski; Inf. and Comp. 2005)

Graph based algorithms on original query can be trans-
lated into SQL queries
(Chomicki, Marcinkowski, Staworko; demos at EDBT 2004)

97

Specific methods for conjunctive queries containing re-
stricted projections (existential quantifiers) and FDs
(Fuxman, Miller; ICDT 2005)

For general FO ICs and queries, rewriting based approaches to
CQA must appeal to languages that are much more expressive
than FO logic (see later)

98

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)

• Derive algorithms for consistent query answering

Consistent query answering is non-monotonic; then a non-
monotonic semantics for Spec is expected

99

Example: Database D:

Employee Name Salary
J .Page 5000
V .Smith 3000
M .Stowe 7000

and FD : Name → Salary , it holds

D |=
FD

Employee(J .Page, 5000)
However

D ∪ {Employee(J .Page, 8000)}�|=
FD

Employee(J .Page, 5000)

100

3. Specifying Repairs in APC

101

Annotated Logic

We want to specify database repairs, by means of a consistent
theory

The database instance D (seen as a set of ground atomic for-
mulas) and the set of integrity constraints IC are mutually
inconsistent

Use a different logic, that allows generating a consistent theory!

Use annotated predicate calculus (APC)
(Kifer, Lozinskii; J. Aut. Reas. 92)

Inconsistent classical theories can be translated into consistent
annotated theories

102

Usual annotations: true (t), false (f), contradictory (�),
unknown (⊥)

Atoms in an APC theory are annotated with truth values, at
the object level, e.g.
Employee(V .Smith, 3000):t, Employee(V .Smith, X):f ,
Employee(V .Smith, X):�

Embed both D and IC into a single consistent APC theory
(Arenas, Bertossi, Kifer; DOOD 00)

ICs are hard, not to be given up

Data is flexible, subject to repairs

In case of conflict between the constraint and the database
the advise is to change the truth value to the value pre-
scribed by the constraint

103

Choose an appropriate truth values lattice Lat:

Database values: td, fd

Constraint values: tc, fc

Advisory values: ta, fa

They advise to solve conflicts between d-values and
c-values in favor of c-values

104

⊥

fc td fd tc

fa f t ta

�

Intuitively, ground atoms A for which A:ta or A:fa become
true are to be inserted into, resp. deleted from D

105

Navigation in the lattice plus an adequate definition of APC
formula satisfaction help solve the conflicts between database
facts and constraint facts

For every s ∈ Lat: ⊥ ≤ s ≤ �
lub(t, f) = �, lub(tc, fd) = ta, etc.

Use Herbrand structures, i.e sets of ground annotated
atoms, with the DB domain as the universe

Formula satisfaction: I a structure, s ∈ Lat, A a clas-
sical atomic formula

I |= A:s iff there exists s′ ∈ Lat such that A:s′ ∈ I
and s ≤ s′

For other formulas, as usual in FO logic

106

Generate an APC theory Spec embeddingD and IC into APC:

Translate the constraint:

¬Employee(X,Y) ∨ ¬Employee(X,Z) ∨ Y = Z

into

Employee(X,Y):fc ∨ Employee(X,Z):fc ∨ Y = Z:t

Translate database facts, e.g. Employee(J .Page, 5, 000)
into Employee(J .Page, 5, 000):td

Plus axioms for unique names assumption, closed world
assumption, ...

Due to the notion of satisfaction, we concentrate on models
that have their atoms annotated with ta, fa, t or f only

(It can be proved that an atom in a model of the theory is never annotated

with �, that is, our theory is epistemologically consistent)

107

It can be proved that the database repairs correspond to the
models of Spec that make true a minimal set of atoms anno-
tated with ta, fa

Change a minimal set of database atoms!!!

Reasoning with the minimal models of Spec makes reasoning
non-monotonic, as expected

From the specification Spec algorithmic and complexity results
for consistent query answering can be obtained

Most importantly, this approach motivated a more general and
practical approach to specification of database repairs based on
logic programs

108

Example

D:

Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,000
Irwin Pearson Salesman 2,500
John Miller Salesman 1,600

Integrity constraints IC : Universally quantified disjunction of
DB literals plus built-ins

Employee(x, y, z) ∧ Employee(x, u, v)→ y = u

Employee(x, y, z) ∧ Employee(x, u, v)→ z = v

109

D has two repairs:

Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,000
John Miller Salesman 1,600

Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,500
John Miller Salesman 1,600

110

The APC theory Spec:

¬Employee(x, y, z) ∨ ¬Employee(x, u, v) ∨ y = u

¬Employee(x, y, z) ∨ ¬Employee(x, u, v) ∨ z = v

are transformed into

Employee(x, y, z) : fc ∨ Employee(x, u, v) : fc ∨ y = u : tc

Employee(x, y, z) : fc ∨ Employee(x, u, v) : fc ∨ z = v : tc

We also add for every predicate two rules:

Employee(x, y, z) : tc ∨ Employee(x, y, z) : fc

¬(Employee(x, y, z) : tc) ∨ ¬(Employee(x, y, z) : fc)

A unique constraint truth value!

111

Transforming Database Instance:

Employee(Steven Lerman,CEO , 4,000) : td

Employee(Irwin Pearson, Salesman, 2,000) : td

Employee(Irwin Pearson, Salesman, 2,500) : td

Employee(John Miller, Salesman, 1,600) : td

Closed World Assumption:

Employee(x, y, z) : fd
∨

x = Steven Lerman : td ∧ y = CEO : td ∧ z = 4,000 : td
∨

x = Irwin Pearson : td ∧ y = Salesman : td ∧ z = 2,000 : td
∨

x = Irwin Pearson : td ∧ y = Salesman : td ∧ z = 2,500 : td
∨

x = John Miller : td ∧ y = Salesman : td ∧ z = 1,600 : td

112

Equality theory plus Unique Names Assumption

True built-in atoms:

Steven Lerman = Steven Lerman : t
CEO = CEO : t
2,000 = 2,000 : t, etc.

False built-in atoms:

Steve Lerman = Irwin Pearson : f
Irwin Pearson = Steve Lerman : f
CEO = Salesman : f
Salesman = CEO : f , etc.

Finally,the axiom:

¬(x = y : �) (a unique truth value)

113

Every model of T (D, IC) assigns values t, f , ta, fa (only)
to atoms

The minimal models of Spec with respect to ∆ = {ta, fa}
correspond to the repairs of the database:

• Comparison wrt to inclusion of the sets of atoms an-
notated with ta, fa in each model

• For a ∆-minimal modelM,

DM = {p(ā) | M |= p(ā) : t ∨ p(ā) : ta}

is a repair of D

And every repair can be obtained in this way

114

The minimal models areM1:

Employee(Steven Lerman,CEO , 4,000) : t

Employee(Irwin Pearson, Salesman, 2,000) : t

Employee(Irwin Pearson, Salesman, 2,500) : fa ⇐
Employee(John Miller, Salesman, 1,600) : t

andM2:

Employee(Steven Lerman,CEO , 4,000) : t

Employee(Irwin Pearson, Salesman, 2,000) : fa ⇐
Employee(Irwin Pearson, Salesman, 2,500) : t

Employee(John Miller, Salesman, 1,600) : t

115

Then, DM1 :

Employee(Steven Lerman,CEO , 4,000)

Employee(Irwin Pearson, Salesman, 2,000)

Employee(John Miller, Salesman, 1,600)

and DM2 :

Employee(Steven Lerman,CEO , 4,000)

Employee(Irwin Pearson, Salesman, 2,500)

Employee(John Miller, Salesman, 1,600)

116

Consistent Query Answering

We have embedded D, IC and built-in atoms into a consistent
APC theory

FO queries waiting for consistent answers can be transformed
into APC queries

- FO query Q(x̄)

- compute Qan(x̄) simultaneously replacing

• negative DB literals

¬p(s̄) �→ p(s̄):f ∨ p(s̄):fa

• positive DB literals

p(s̄) �→ p(s̄):t ∨ p(s̄):ta

• Built-in literals: p(s̄) �→ p(s̄):t

117

(logically equivalent FO queries produce annotated queries with
the same consistent answers)

Example: Want the consistent answers to the query

Q(x): ∃y∃z∃w∃t(Book(x , y , z) ∧ Book(x ,w , t) ∧ y �= w)

Generate Qan(x̄):

∃y∃z∃w∃t(Book(x , y , z):t ∨ Book(x , y , z):ta) ∧
(Book(x ,w , t):t ∨ Book(x ,w , t):ta) ∧ (y �= w):t)

118

Theorem: Given D, IC , FO query Q(x̄):

D |=IC Q(t̄) iff T (D, IC) |=∆ Qan(t̄)

RHS means true wrt ∆-minimal models of the APC theory

Consistent query answering is reduced to non-monotonic en-
tailment in APC

What about answer computation on the RHS?

119

4. Specifying Repairs with Logic
Programs

120

Stable Model Semantics for Repairs

The collection of all database repairs can be represented in a
compact form

Use disjunctive logic programs with stable model semantics
(Barcelo, Bertossi; PADL 03)

Repairs correspond to distinguished models of the program,
namely to its stable models

The programs use annotation constants in an extra attribute
in the database relations

121

To keep track of the atomic repair actions (ta, fa), use them
to give feedback to the program in case additional changes be-
come necessary (t�, f�); and to collect the tuples in the final,
repaired instances (t��, f��)

Annotation Atom The tuple P (ā) is ...
td P (ā, td) a fact of the database
fd P (ā, fd) not a fact in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false
t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

122

Example: Full inclusion dependency IC : ∀x̄(P (x̄)→ Q(x̄))

D = {P (c, l), P (d,m), Q(d,m), Q(e, k)}

Repair program Π(D, IC):

1. Original data facts: P (c, l, td), P (d,m, td), Q(d,m, td), ...

2. Whatever was true (false) or becomes true (false), gets
annotated with t� (f�):

P (x̄, t�)← P (x̄, td)

P (x̄, t�)← P (x̄, ta)

P (x̄, f�)← not P (x̄, td)

P (x̄, f�)← P (x̄, fa)

... the same for Q ...

123

3. There may be interacting ICs (not here), and the repair
process may take several steps, changes could trigger oth-
er changes

We need annotation constants for the local changes (ta, fa),
but also annotations (t�, f�) to provide feedback to the
rules that produce local repair steps

P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t�), Q(x̄, f�)

One rule per IC; that says how to repair the IC (c.f. the
head) in case of a violation (c.f. the body)

Passing to annotations t� and f� allows to keep repairing
the DB wrt to all the ICs until the process stabilizes

124

4. Repairs must be coherent: Use denial constraints at the
program level to prune undesirable models

← P (x̄, ta), P (x̄, fa)

← Q(x̄, ta), Q(x̄, fa)

5. Annotations constants t�� and f�� are used to read off
the literals that are inside (outside) a repair

P (x̄, t��)← P (x̄, ta)

P (x̄, t��)← P (x̄, td), not P (x̄, fa)

P (x̄, f��)← P (x̄, fa)

P (x̄, f��)← not P (x̄, td), not P (x̄, ta) ... etc.

125

The program has two stable models (and two repairs):

M1 =
{P (c, l, td), ..., P (c, l, t�), Q(c, l, f�), Q(c, l, ta), P (c, l, t��),
Q(c, l, t�),P (d,m, t��), Q(d,m, t��), . . . , Q(c, l, t��), ...}
≡ {P (c, l), Q(c, l), P (d,m), Q(d,m), Q(e, k)}

... insert Q(c, l)!!

M2 =
{P (c, l, td), ..., P (c, l, t�), P (c, l, f�), Q(c, l, f�), P (c, l, f��),
Q(c, l, f��),P (d,m, t��), Q(d,m, t��), . . . , P (c, l, fa), ...}

≡ {P (d,m), Q(d,m), Q(e, k)}

... delete P (c, l)!!

126

To obtain consistent answers to a FO query:

1. Transform or provide the query as a logic program
(a standard process)

2. Run the query program together with the specification
program

... under the skeptical or cautious stable model semantics
that sanctions as true of a program what is true of all its
stable models

127

Methodology:

1. Q(· · ·P (ū) · · ·) �−→ Q′ := Q(· · ·P (ū, t��) · · ·)

2. Q′(x̄) �−→ (Π(Q′), Ans(X̄))
(Lloyd-Topor transformation)

Π(Q′) is a query program (a third layer, on top
of the DB and the repair program)

Ans(X̄) is a query atom defined in Π(Q′)

3. “Run” Π := Π(Q′) ∪ Π(D, IC)

4. Collect ground atoms

Ans(t̄) ∈
⋂
{S | S is a stable model of Π}

128

Example: (continued)

• Consistent answers to query P (x, y)?

Run repair program Π(D, IC) together with query program

Ans(x̄)← P (x̄, t��)

The two previous stable models become extended with ground
Ans atoms

M′
1 = M1 ∪ {Ans(c, l), Ans(d,m)}

M′
2 = M2 ∪ {Ans(d,m)}

Then the only answer is tuple (d,m)

129

• Consistent answers to query ∃yQ(x, y)?

Run repair program with query Ans(x)← Q(x, y, t��)

Obtain answer values d, e

• Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program with either of the queries

Ans(x̄)← P (x̄, t��), Q(x̄, f��)

Ans(x̄)← P (x̄, t��), not Q(x̄, t��)

No ground Ans atoms can be found in the intersection of the
two (extended) models

In consequence, under the skeptical stable model semantics,
Ans = ∅, i.e. no consistent answers, as expected ...

130

Remarks:

The same repair program can be used for all the queries,
the same applies to the computed stable models

The query at hand adds a final layer on top (obtaining a
split program)

Related methodologies:
(Arenas, Bertossi, Chomicki; TPLP 03)
(Greco, Greco, Zumpano; IEEE TKDE 03)

We have successfully experimented with the DLV system
for computing the stable models semantics
(N. Leone et al.; ACM Transactions on Comp. Logic)

131

DBMS

Query (Logic) Program:

Ans (x) :-
.... :-
.... :-

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DLV

ICs

Specification of Repairs:

.... :-

.... :-

.... :-

Consistent Answers

132

Use of DLP is a general methodology that works for gen-
eral FO queries, universal ICs and referential ICs

One to one correspondence between repairs and stable
models of the program

Existential ICs, like referential ICs, are handled with in-
troduction of null values or cascaded deletions (see later)
(Barcelo,Bertossi,Bravo; LNCS 2582)
(Bravo,Bertossi; CASCON 04)

The program can be optimized in several ways; e.g. elimi-
nating: materialization of CWA, annotations of DB facts,
some annotation constants, coherence program denials
(sometimes), etc.
(Barcelo,Bertossi,Bravo; LNCS 2582),
(Caniupan, Bertossi; 2005)

133

Example: IC : ∀x∀y(P (x, y)→ P (y, x))

Facts of the program are the atoms P (c̄) in the database,
without annotation

P ′(X,Y, td) ← P (X,Y)

P ′(X,Y, t�) ← P ′(X,Y, td)

P ′(X,Y, t�) ← P ′(X,Y, ta)

P ′(X,Y, fa) ∨ P ′(Y,X, ta) ← P ′(X,Y, t�),

not P ′(Y,X, td)

P ′(X,Y, fa) ∨ P ′(Y,X, ta) ← P ′(X,Y, t�), P ′(Y,X, fa)
P ′(X,Y, t��) ← P ′(X,Y, ta)

P ′(X,Y, t��) ← P ′(X,Y, td), not P ′(X,Y, fa)
← P ′(X,Y, ta), P

′(X,Y, fa)

134

Open problems and ongoing research:

Several implementation issues, in particular in the case of
most common SQL queries and constraints

Specially for ICs that are not maintained by commercial
DBMSs

Research on many issues related to the evaluation of logic
programs for consistent query answering (CQA) in the
context of databases

• Existing implementations of stable models semantics
are based on grounding the rules

In database applications, this may lead to huge ground
programs

135

• Implementations are geared to computing (some) sta-
ble model(s) and answering ground queries

For database applications, posing and answering open
queries is more natural

• Computing all the stable models completely is unde-
sirable

Better try generation of “partial” repairs, relative to
the ICs and the data that is relevant to them; and
efficient and compact encoding of the collection of
stable models

Optimization of the access to the DB, to the relevant
portions of it
(Eiter, Fink, G.Greco, Lembo; ICLP 03)

136

• Query evaluation based on skeptical stable model se-
mantics should be guided by the query and its rele-
vant information in the database

Magic sets (or similar query-directed methodologies)
for evaluating logic programs could be used for CQA
(Greco et al.; TPLP 2005?),
(Faber et al.; ICDT 2005)

• Efficient integration of relational databases and an-
swer set programming environments

137

5. Referential ICs and Incomplete
Information

138

Inconsistent Databases

DBMSs should provide more flexible, powerful, and user
friendly mechanisms for dealing with semantic constraints

ICs could be another input to query answering process, and
be taken into account as answers are computed

A query expressed in a possible enhanced version of SQL

SELECT Name, Salary

FROM Employee

WHERE Position = ’manager’

CONSIST/W FD: Name -> Salary;

Where the FD may not be maintained by the DBMS

139

Consistent answers to queries are true in every possible repair;
and a repair is minimally repaired version of the original in-
stance; in particular, a repair satisfies the ICs

So, in order to characterize and compute CQAs we have to
agree on the semantics of IC satisfaction

But, what is the right semantics of IC satisfaction in the pres-
ence of NULL values?

Little agreement in the literature on the semantics of incom-
plete information

In particular, different DBMSs, like IBM DB2, have different
semantics implemented (if they can be called “semantics”)

140

We want a suitable NULL value semantics that:

Generalizes the semantic used by IBM DB2

Is uniform for a wider class of ICs

This semantics would allow as to integrate our results on CQA
in a compatible way with current commercial implementations

NULL values are not only important because the DB may con-
tain them, but also because they can be used in a natural way
to repair an inconsistent database

141

Integrity Constraints

(1) Universal Integrity Constraints (UIC)

∀̄(
m∧

i=1

Pi(x̄i) →
n∨

j=1

Qj(ȳj) ∨ ϕ)

where ϕ contains only built-in atoms, e.g. X = Y, X = a

For example:
Full inclusion dependencies, like P [X,Y] ⊆ R[X,Y]:

∀xyz(P (x, y, z)→ R(x, y))

Functional dependencies, like T : X → Y :

∀xy1y2(T (x, y1) ∧ T (x, y2) → y1 = y2)

142

(2) Referential Integrity Constraints (RICs)

∀x̄ (P (x̄)→ ∃ȳ Q(x̄′, ȳ)), with x̄ ⊆ x̄′

For example, the non-full inclusion dependency
S[X] ⊆ V [X]:

∀x∀y(S(x, y)→ ∃uV (x, u))

We basically know how to repair universal ICs, c.f. chapter 4

What about referential ICs?

In the example above, if we want to repair by inserting tuples
(x, u), what value does u should take?

Most naturally, a NULL value ...

143

Example

RIC: Course[StdID] ⊆ Student[StdID]

DB:

Course StdID Code
21 COMP1512
34 COMP1805

Student StdID Name
21 Ann
45 Paul

Repairs?
- Delete tuple (34, COMP1805), or

- Add a tuple to table Student

144One repair:

Course StdID Code
21 COMP1512

Student StdID Name
21 Ann
45 Paul

The other(s):

Course StdID Code
21 COMP1502
34 COMP1805

Student StdID Name
21 Ann
45 Paul
34 ???

What value for attribute Name?

We can get a specific repair by giving to Name an arbitrary
value taken from the data base domain

An infinite number of repairs; not very appealing ...

145

The decision problem of CQA wrt universal and referential
ICs is undecidable under this repair semantics
(Cali, Lembo, Rosati; PODS 03)

A better alternative seems to be inserting NULL values to re-
pair RICs instead

However, no agreement in literature on the notion of satisfac-
tion of ICs in DBs with NULL values

NULL values can be interpreted as Unknown, Not applicable

146

We can propose a (repair) semantics for (with) NULL values:

Only one type of NULL value (no multi-NULL values)

Staying close to the semantics of integrity satisfaction as
implemented in DBMS like DB2 (no explicit formal se-
mantics has been defined)

First let’s see the issues ...

147

DB2 NULL Value Semantics (examples)

DB2 is compatible with the SQL:1999 standard

But not all of the SQL standard is implemented in DB2,1

in particular, not all the ICs in the standard are supported

DB2 enforces primary keys, unique constraints, foreign key con-
straints, NOT NULL, and check constraints

NULL accepted unless the column is restricted to NOT NULL

Primary keys and UNIQUEs have to be set to NOT NULL

1Same claim applies to the other well-known commercial DBMSs

148

CREATE TABLE EMPLOYEE (

ID INTEGER NOT NULL,

NAME VARCHAR(15) NOT NULL,

SALARY INTEGER CHECK(SALARY >0),

POSITION VARCHAR(10),

MANAGER INTEGER,

PRIMARY KEY (ID),

UNIQUE (NAME),

FOREIGN KEY (MANAGER) REFERENCES EMPLOYEE,

CHECK (POSITION =’MANAGER’ OR SALARY < 60500),

CHECK (POSITION =’MANAGER’ OR MANAGER IS NOT NULL));

NULL in column Manager can be read as Not Applicable

149

SQL standard proposes a 3-valued logic, i.e. statements can
be TRUE, FALSE or UNKNOWN

For example, all the following are UNKNOWN:

NULL = NULL
NULL <> NULL

NULL = ’A’
NULL <> ’A’

In SQL queries only tuples whose WHERE statement evaluates
to TRUE are selected

A check constraint is accepted if the condition is TRUE or
UNKNOWN for every row

150

Primary Key(StdID):

∀xy(Student(x, y1) ∧ Student(x, y1)→ y1 = y2)

DB:
Student StdID Name

21 Ann
45 NULL

DB is accepted as a consistent state in DB2

The following SQL statements are rejected by DB2:

INSERT INTO STUDENT VALUES (21,Ann);

... because the DBMS only checks that the primary key is
unique, and 21 is already in the table

INSERT INTO STUDENT VALUES (21,NULL);

151

Foreign key constraint:

∀xyz(Course(x, y, z)→ ∃wProf(z, w))

DB:

Course Code Term ID
COMP2702 W04 21
COMP1805 NULL 34
COMP5073 W05 NULL

Prof ID Name
21 Ann
34 NULL
45 Paul

DB is accepted as a consistent state in DB2

152

NULL values in columns Term and Name are relevant to check
satisfaction

If a NULL value is in the relevant attribute ID of table Course,
the tuple is considered to be consistent without checking table
Prof

The following SQL statement is rejected by DB2:

INSERT INTO COURSE VALUES (COMP4132, NULL,18);

The attribute ID is relevant to the constraint and is different
from NULL, but there is no tuple in table Prof with ID=18

If the non-relevant attribute Term in Course takes a NULL,
the condition in the IC will be checked, and there might be a
violation, as with the last insertion

153

Check constraint:

∀ID∀Name∀Salary (Emp(ID ,Name,Salary)→ Salary > 0)

DB:

Emp ID Name Salary
32 NULL 1000
41 Paul NULL

DB is accepted as a consistent state in DB2

NULL does not compare with any value

The following SQL statement is rejected by DB2:

INSERT INTO Emp VALUES (64, John, -2500);

154

After these considerations, we see that there are several related
challenges:

Give a precise semantics for IC satisfaction in DBs

One that is logically sound, and hopefully compositional

One that extends or is compatible with practice in DBMSs

Use NULL values to repair IC violations, considering that
the DB may already contain them

Be careful when repairing not to introduce new violations;
or solve them before the repair process stabilizes

Keep in mind that the goal is the right characterization
and computation of consistent query answers

155

Repairs for DBs with NULL values

Tuples with NULL values can be inserted into DBs to
solve inconsistencies

In principle, one could introduce new inconsistencies; how-
ever

NULL values in relevant attributes are not propagated
when repairing, because the ICs are satisfied (unless it is
NOT NULL)

Tuples with NULL values in non-relevant attributes can
generate inconsistencies (they are treated as any usual
value), but since the NULL values are in non-relevant
attributes they will not propagate

156

Example: IC: ∀xyz(Course(x, y, z) → ∃wProf(z, w)) and
DB:

Course Code Term ID
CS27 W04 21
CS18 NULL 34
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul

ID is the only relevant attribute since it is the only one needed
to check the satisfaction of the constraint

Since tuple Course(CS50, W05,NULL) has a NULL in the rel-
evant attribute ID, it cannot create an inconsistency, and so it
is not propagated to table Prof in order to restore consistency

However, tuple Course(CS18, NULL,34) has a NULL value in a
non-relevant attribute, therefore we need to check if the value
of attribute ID, i.e 34, is in ID of table Prof

157
The value is not there, so we have an inconsistency, but the
NULL does not propagate to Prof either

Now in order to repair we have two alternatives:

-Delete the tuple from Course, or

-Add tuple (34,NULL) to Student

Repair 1:
Course Code Term ID

CS27 W04 21
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul

Repair 2:
Course Code Term ID

CS27 W04 21
CS18 NULL 34
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul
34 NULL

NULL values do not propagate in the repair process!

158

As for universal ICs, and now with both universal and RICs,
the repairs of database instances with NULL values and using
NULL values can be specified by means of disjunctive programs
with stable model semantics

The relevant new program rules are the following:

• dom(a) for each constant a ∈ U � {NULL}

• For every universal IC : (replace the old ones)

∨n
i=1 Pi(x̄i, fa) ∨

∨m
j=1Qj(ȳj, ta) ←

∧n
i=1 Pi(x̄i, t

�),∧
Qj∈Q′ Qj(ȳj, fa),

∧
Qk∈Q′′ not Qk(ȳk, td),

dom(x̄R).

for every sets Q′ and Q′′ such that Q′ ∪Q′′ =
⋃m

i=1Qi

and Q′ ∩Q′′ = ∅, where x̄R are the relevant attributes

159

• For every referential IC :

P (x̄, fa)∨Q(x̄′, null , ta)← P (x̄, t�), not aux(x̄′), dom(x̄R).
aux(x̄′)← Q(x̄′, y, td), not Q(x̄′, y, fa), dom(x̄′).
aux(x̄′)← Q(x̄′, y, ta), dom(x̄′).

where x̄R are the relevant attributes (notice that x̄′ ⊆ x̄R)
In the repair program the non propagation of NULL values is
based on the use in te rules of predicate dom(x̄), which does
not contain NULL

160

Example: IC: Course[StdID] ⊆ ID [StdID]

Course StdID Code
18 NULL

NULL CS25

ID StdID

The relevant attribute is StdID

Course(18, NULL) is involved in an inconsistency because 18
is in the relevant attribute of Course but not in the relevant
attribute of ID

Course(NULL,CS25) is not involved in an inconsistency be-
cause there is a NULL value in the relevant attribute

161

The principal rule in the repair program is:

Course(x, y, fa)∨ ID(x, ta)← Course(x, y, t�), ID(x, y, f�),
dom(x).

Predicate dom restricts the values in the relevant attribute
StdID to be different from NULL

The repairs are the following:

Course StdID Code
NULL CS25

ID StdID

Course StdID Code
18 NULL

NULL CS25

ID StdID
18

162

Example: IC: ∀xyz(Course(x, y, z) → ∃wProf(z, w)) and
DB:

Course Code Term ID
CS27 W04 21
CS18 NULL 34
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul

The main rules are:

Course(x, y, z, fa) ∨ Prof (z, null , ta)← Course(x, y, z, t�),
not aux(z), dom(z).

aux(z)← Prof (z, w, td), not Prof (z, w, fa),
dom(z).

aux(z)← Prof (z, w, ta), dom(z).

aux (z) says that there is something in Prof, and predicate dom
restricts the values in the relevant attribute ID to non NULL

163

The repairs are:

Course Code Term ID
CS27 W04 21
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul

Course Code Term ID
CS27 W04 21
CS18 NULL 34
CS50 W05 NULL

Prof ID Name
21 Ann
45 Paul
34 NULL

164

Example: Inconsistent DB

P X Y
a b
g NULL

T X
c

R X Y
a NULL
e f

IC: P [x, y] ⊆ R[x, y] T [x] ⊆ P [x]

Main repair rule:

P (x, y, fa) ∨R(x, y, ta)← P (x, y, t�), R(x, y, f�), dom(x),
dom(y).

Relevant attributes are X,Y , so their are restricted to be non
NULL (for NULL values in them the IC is satisfied)

165

T (x, fa) ∨ P(x, null , ta)← T (x, t�), not aux(x), dom(x).
aux(x)← P(x, y, td), not P(x, y, fa), dom(x).
aux(x)← P(x, y, ta), dom(x).

Here the relevant attribute is X. If there is a NULL in Y , it
is necessary to check if the tuple is involved in an inconsistency

The four repairs are obtained by the following changes (red
means delete, blue means add):

∆(D,D1) = {P (c,NULL), R(a, b)}
∆(D,D2) = {R(a, b), T (c)}
∆(D,D3) = {P (a, b), P (c,NULL)}
∆(D,D4) = {P (a, b), T (c)}

We can see how NULL are not propagated by looking at repair
D3

166

P X Y
g NULL
c NULL

T X
c

R X Y
a NULL
e f

(c,NULL) was inserted into P , but it does not propagate to
table R (for the same reason that P (g, null) in P , but not in
R is not an inconsistency)

167

Final Remarks

The programs just given are complete in the sense that
every repair appears as a stable model

When the set of RICs is cyclic (and only in this case),
the program may have stable models that are not repairs;
but it can be refined to obtain exactly repairs as stable
models (a bit more involved)

Since cycles are avoided and NULL is used to repair, with
this semantics of satisfaction of ICs in DBs with NULL
values and repairs with non propagated NULL values,
CQA becomes decidable

The programs just given have to be refined to deal with
built-ins in ICs (comparisons with NULL values are prob-
lematic)

168

6. Aggregate Queries

169

So far only first order queries

What about aggregate queries?

They are natural and usual in DBs, and part of SQL

They are crucial in scenarios where inconsistencies are
likely to occur, e.g. data integration, in particular, dataware-
housing

We will see:

Semantics may need revision

Aggregation is challenging for CQA

Some graph theoretic techniques can be developed

170

A restricted scenario:

Functional dependencies

Standard set of SQL-2 scalar aggregation operators:
MIN, MAX, COUNT(*), COUNT(A), SUM, and AVG

No GROUP BY

Atomic queries applying just one of these operators

171

Redefining Consistent Anwers

Example: A database instance and a FD : Name → Amount

Salary Name Amount
V .Smith 5000
V .Smith 8000
P .Jones 3000
M .Stone 7000

The repairs:

Salary Name Amount Salary Name Amount

V .Smith 5000 V .Smith 8000
P .Jones 3000 P .Jones 3000
M .Stone 7000 M .Stone 7000

Query: MIN(Amount)?

172

We should get 3000 as a consistent answer: MIN(Amount)

returns 3000 in every repair

Query: MAX(Amount)?

The maximum, 8000, comes from a tuple that participates in
the violation of FD

MAX(Amount) returns a different value in each repair: 7000 or
8000

There is no consistent answer as previously defined

Modify the definition of consistent answer:

173

Definition: The consistent answer to an aggregate query Q in
the database instance D is the shortest numerical interval that
contains all the answers to Q obtained from the repairs of D

In the example [7000, 8000] is the consistent answer to query
MAX(Amount)

This is the range semantics for CQA (numerical queries)
(Arenas, Bertossi, Chomicki; ICDT 01)

min answers to Q Q(D′) max answers to Q
−−−−

a

| − − −−−−−−
b

| − − −−
for all repairs D′

a: the max-min answer

b: the min-max answer

174

Problem: Develop algorithms for computing the optimal bounds: the
max-min answer a, and the min-max answer b, by querying D
only!

Sometimes we are interested in one of the two only

In the example, in min-max for MIN(Amount), and max-min
for MAX(Amount)

Problem: Determine the computational complexity of finding
the min-max and max-min answers

We need the right tools to attack these problems ...

175

Graph Representation of Repairs

Given a set of FDs FD and an instance D, the conflict graph
CGFD(D) is an undirected graph:

Vertices are the tuples t̄ in D

Edges are of the form {t̄1, t̄2} for which there is a depen-
dency in FD that is simultaneously violated by t̄1, t̄2

176

Example: Schema R(A,B) FDs : A→ B and B → A

Instance D = {(a1, b1), (a1, b2), (a2, b2), (a2, b1)}

(a1, b1) (a1,b2)

(a2, b1) (a2, b2)

Repairs: D1 = {(a1, b1), (a2, b2)} and D2 = {(a1, b2), (a2, b1)}

Each repair of D corresponds to a maximal independent set in
CGFD(D)

Each repair of D corresponds to a maximal clique in the com-
plement of CGFD(D)

177

Some Complexity Results

MAX(A) can be different in every repair

Maximum of the MAX(A)’s is MAX(A) in D

Then computing the min-max answer to MAX(A) from D

is direct −−−−−−−
b

| −−
Computing directly fromD the minimum of the MAX(A)’s,
i.e. the max-min answer to MAX(A), is not that direct

−−
a

| − − −−−−

But still, computing the max-min answer to MAX(A) for
one FD F is in PTIME (in data complexity)

178

Algorithm: For computing max-min answer to MAX(A) for
the FD R : X → Y

Actually a sequence of SQL queries to the inconsistent
database: query rewriting

For each group of (X, Y)-values, store the maximum of A:

CREATE VIEW S(X,Y,C) AS

SELECT X,Y,MAX(A) FROM R

GROUP BY X,Y;

For each value of X, store the minimum of the maximums:

CREATE VIEW T(X,C) AS

SELECT X, MIN(C) FROM S

GROUP BY X;

Output the maximum of the minimums:

SELECT MAX(C) FROM T;

179

For more than one FD, the problem of deciding whether
the max-min answer to MAX(A) ≤ k is NP -complete

NP -hardness: By reduction from SAT

Propositional formula ϕ in CNF C1∧· · ·∧Cn with propo-
sitional variables p1, . . . pm

Build database D with attributes X,Y, Z,W and tuples

1. (pi, 1, Cj, 1) if making pi true makes Cj true

2. (pi, 0, Cj, 1) if making pi false makes Cj true

3. (w,w,Cj, 2), 1 ≤ j ≤ n, with w a new symbol

Consider FD : X → Y (each propositional variable can-
not have more than one truth value) and Z → W

ϕ is satisfiable iff for D,FD , and k = 1, the answer to
our problem is Yes

180

Membership to NP : Take D′ ⊆ D, a possible certificate

It is feasible to check whether D′ is a repair of D (for
functional dependencies) and MAX(A) ≤ k in D′

If max-min answer to MAX(A) ≤ k, there is a (short)
repair certificate D′ that gives answer Yes to the question
MAX(A) ≤ k in D′

Even for one FD, the problem of deciding if the maximal
min-answer to COUNT(A) ≤ k is NP -complete

(reduction from HITTING SET)

181

In general:

maximal min-answer minimal max-answer

|FD | = 1 |FD | ≥ 2 |FD | = 1 |FD | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A) PTIME NP-complete PTIME NP-complete

AVG(A) PTIME NP-complete PTIME NP-complete

(Arenas,Bertossi,Chomicki,He,Raghavan,Spinrad; Theoretical Computer Science

2003)

These are results in data complexity, i.e. for fixed queries and
FDs, and changing database instances (sizes)

Then, in most of the cases, query rewriting as on page 178 for
CQA is bound to fail (unless P = NP)

182

We have identified normalization conditions, e.g. BCNF, (and
other conditions) on the DB under which more efficient algo-
rithms can be designed

However, improvements are not impressive

CQA for aggregate queries is an intrinsically complex problem

It seems necessary to approximate optimal consistent answers
to aggregate queries, but “maximal independent set” seems to
have bad approximation properties (see later ...)

Complexity analysis of aggregate queries opened the ground
for more general study of complexity of CQA

183

7. Complexity of CQA

184

When the first order query rewriting approach works (correct
and terminating), consistent answers to FO queries can be ob-
tained in PTIME in data complexity

That is, for fixed queries and ICs, but varying database in-
stances (and their sizes)

Graph theoretic techniques for CQA for aggregate queries were
extended to:

Extend the PTIME computation to other classes of FO
queries, e.g. with very restricted forms of projection (ex-
istential quantifiers), but denial constraints

E.g. of the form

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z �= y),

i.e. a forbidden conjunction of DB atoms plus built-ins

185

R(7,1)

S(1,3)

T(7,3)

A hyper-edge connecting three
simultaneously conflicting tuples

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z �= y)

Now hyper-graphs ...

Study the complexity of CQA for FO queries for wider
classes of integrity constraints, e.g. including referential
ICs (but only deletions for repair)

(Chomicki, Marcinkowski; Information and Computation 2005)

For FDs, conflict graphs are still good enough

186

Some Complexity Results

CQA is a decision problem:

CQA(Q(x̄), IC) := {(D, t̄) | D |=IC Q(t̄)}

In those cases where CQA can be solved in PTIME, the problem
of repair checking can be solved in PTIME

RCh(IC) := {(D,D′) | D′ is a repair of D wrt IC}

Repair checking is also PTIME for arbitrary FDs and acyclic
inclusion dependencies (deletions only)

However: (deletions only)

For arbitrary FDs and inclusion dependencies, repair check-
ing becomes coNP-complete

187

P

NPco-NP

II2
P

PSPACE
.
.
. second level of the

polynomial hierarchy

NP complete
co-NP complete

For FDs and some rather sharp syntactic classes of ex-
istentially quantified conjunctive queries, CQA becomes
PTIME (Chomicki, Marcinkowski; op. cit.)

(Fuxman, Miller; ICDT 05)

188

For arbitrary FDs and inclusion dependencies, CQA, i.e.
deciding if a tuple is CA, becomes ΠP

2 -complete

Then, forget about first-order query rewriting for CQA in
the general case (unless the polynomial hierarchy collaps-
es)!

But query answering from disjunctive logic programs un-
der skeptical stable models semantics is ΠP

2 -complete!!
(Dantsin, Eiter, Gottlob, Voronkov; ACM Computer Surveys 01)

These logic programs with this semantics provide the right
expressive and computational power

189

More complexity theoretic results:
(Cali, Lembo, Rosati; PODS 03)

Among others:

For arbitrary FDs and inclusion dependencies (in particu-
lar, referential ICs), CQA becomes undecidable

Issues?

Inclusion dependencies repaired through insertions

Cycles in the set of inclusion dependencies

Infinite underlying domain that can be used for insertions

190

Remarks:

Complexity of query evaluation from disjunctive logic pro-
grams (DLPs) coincides with the complexity of CQA

From this point of view the problem of CQA is not being
overkilled by the use of the DLP approach

However, it is known that for wide classes of queries and
ICs, CQA has a lower complexity, e.g. in P time

It becomes relevant to identify classes of ICs and queries
for which the DLP can be automatically “simplified”into,
e.g. a FO query

Upper bounds can be obtained from complexity theoretic
results in the area of belief revision
(Eiter, Gottlob; AIJ 92)

191

Comparison with Belief Revision/Update

There are several similarities

Here we have an empty domain theory, one model –the database
instance, an a revision by a set of ICs

The revision of the database instance by IC produces new
database instances, the repairs of the original database

The database repairs coincide with the revised models defined
by Winslett in her “Possible Models Approach”:

They are the models that are closer to the original database
instance wrt sets of changes and set inclusion

192

Our implicit notion of revision, satisfies then the postulates
(R1) – (R5), (R7), (R8) introduced by Katsuno & Mendelzon

Winslett concentrates on the computation of the models of the
revised theory, i.e. the repairs in our case

Instead

Our motivation and starting point is different from belief
revision

We do not compute repairs (whenever possible), but keep
querying the original database, posing a modified query

We provide a methodology for representing and query-
ing simultaneously and implicitly all the repairs of the
database

193

We deal with the first-order case wrt the original DB and
ICs, and DB queries

We take direct advantage of the semantic information
contained in the ICs in order to answer queries, rather
than revising the database

Revising the database means repairing all the inconsisten-
cies in it, instead we may be interested in some consistent
information, the one related to particular queries

In particular, a query referring only to the consistent por-
tion of the database can be answered without repairing
the database

194

There has also been some research on repairs that minimize
the number of changes (still insertion/deletion of whole tuples)
(Arenas,Bertossi,Chomicki;TPLP 03)
(Lopatenko, Bertossi; submitted 2005)

In the belief revision/update they are usually called Dalal’s
models

195

8. CQA in Virtual Data Integration

196

Virtual Data Integration

Number of available on-line information sources has increased
dramatically

How can users confront such a large and increasing number of
information sources?

In particular, when information has to be integrated?

DB2

DB3DB1

DB4

?

197

Interacting with each of the sources independently?

Considering all available sources?

Selecting only those to be queried?

Querying the relevant sources on an individual basis?

Handcraft the combination of results from different sources?

A long, tedious, complex and error prone process

198

An approach: Virtual integration of sources via a mediator

DB3DB1 DB2

MEDIATOR

DBn

A software system that offers a common user interface to query
a set of heterogeneous and independent data sources

System offers a single integrated, global schema

User feels like interacting with a single database

199

Sources are mutually independent and non cooperative

Data kept in sources, and extracted at mediator’s request

Interaction from the system to the sources via queries

Mediator composes query results for the user

Update operations are not supported via the mediator

System should allow sources to get in and out

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

200

User poses queries in terms of global schema

Relationship between global schema and local, source
schemas specified in the mediator, as source descriptions

Mediator is responsible of solving problems of data:

• redundancy: to avoid unnecessary computations

• complementarity: data of the same kind may be spread
through different sources

• inconsistency: sources, independently, may be consis-
tent, but together, possibly not

E.g. Same ID card number may be assigned to dif-
ferent people in different sources

201

Description of the Sources:

Mediator needs to know what data is in the sources and
how it relates to the global schema

Sources are described by means of logical formulas; like
those used to express queries and define views

Those formulas define the mappings between the global
schema and the local schemas

There are two main approaches (and combinations of
them):

202

• Global-as-View (GAV): Relations in the global schema
are described as views over the tables in the local
schemas

• Local-as-View (LAV): Relations in the local schemas
(at the source level) are described as views over the
global schema

• Mixed approaches (GLAV): Mappings between views
at the source and global levels
c.f. survey in (Lenzerini; PODS 2002)

203

S

P Q
R

T

mediator

GAV LAV

204

Plan Generator:

Gets a user query in terms of global relations

Uses the source descriptions and rewrites the query as a
query plan

Which involves a set of queries expressed in terms of local
relations

Rewriting process depends on LAV or GAV approach

Query plan includes a specification of how to combine the
results from the local sources

205

LAV

LAV is more flexible wrt participation of sources; but more
complex for query answering

A global data schema is designed, and contributors of data
(sources) describe how their data fits into the integration sys-
tem

Example: Definition of tables at the sources:

S1(Title, Year ,Director)←
Movie(Title,Year ,Director ,Genre),

American(Director),Genre = comedy ,

Year ≥ 1960.

S1: comedies, after 1960, with American directors and years

206

S2(Title, Review)←
Movie(Title,Year ,Director ,Genre),

Review(Title,Review),Year ≥ 1990.

S2: movies after 1990 with their reviews, but no directors

Here, sources defined as conjunctive queries (views) with built-
ins

Definition of each source does not depend on other sources

From the perspective of S2, there could be other sources con-
taining information about comedies after 1990 with their re-
views, i.e. data in the sources could be “incomplete”

207

Query posed to G: “Comedies with their reviews produced
since 1950?”

Ans(Title, Review)←
Movie(Title,Year ,Director , comedy),

Review(Title,Review),Year ≥ 1950.

Query expressed in terms of relations in global schema only

Not possible to obtain answers by a simple and direct compu-
tation of the RHS of the query: Information is in the sources,
now views ...

A plan is a rewriting of the query as a set of queries to the
sources and a prescription on how to combine their answers

208

A possible query plan for our query:

Ans ′(Title,Review) ← S1(Title,Year ,Director),

S2(Title,Review).

Query was rewritten in terms of the views; and now can be
easily computed

Due to the limited contents of the sources, we obtain comedies
by American directors with their reviews filmed after 1990

We get correct answers; and also the most we can get ...

Meaning?

209

Semantics of a LAV Data Integration System

We assume source relations are open or incomplete

Example: Global system G1 with source definitions and sources
extensions

S1(X,Y)← R(X,Y) with s1 = {(a, b), (c, d)}
S2(X,Y)← R(Y,X) with s2 = {(c, a), (e, d)}

The global relations can be materialized in different ways, still
satisfying the source descriptions, so different global instances
are possible

A global (material) instance D is legal if the view defini-
tions applied to it compute extensions S1(D), S2(D) such that
s1 ⊆ S1(D) and s2 ⊆ S2(D)

210

That is, each source relation contains a subset of the data of
its kind in the global system

D = {R(a, b), R(c, d), R(a, c), R(d, e)} and its supersets are
the legal instances

Global query Q: R(X,Y)?

What is a correct answer to the query, considering that there
are many possible legal global instances?

The intended answers to a global query are the certain answers,
those that can be obtained from all the legal instances

CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}
Certain answers to a query are true in all the legal instances

211

Consistency in Virtual Data Integration

Usually one assumes that certain ICs hold at the global level;
and they are used in the generation of query plans

How can we be sure that those global ICs hold?

They are not maintained at the global level

Most likely they are not fully satisfied

The goal is to retrieve answers to global queries from the vir-
tual integration system that are “consistent with the ICs”

We need a characterization of consistent answers and a mech-
anism to obtain them ... at query time ...

212

Example: (continued) Global system G1

What if we had a global functional dependency R : X → Y ?

(local FDs S1 : X → Y , S2 : Y → X satisfied in the sources)

Global FD not satisfied by D = {(a, b), (c, d), (a, c), (d, e)}
(nor by its supersets)

From the certain answers to the query Q: R(X,Y)?, i.e. from

CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}

only (c, d), (d, e) should be consistent answers

213

Minimal Legal Instances and Consistent Answers

There are algorithms for generating plans to obtain the certain
answers (with some limitations)

Not much for obtaining consistent answers

Here we do both, in stages ...

First concentrating on the minimal legal instances of a virtual
systems, i.e. those that do not properly contain any other legal
instance

Minimal legal instances do not contain unnecessary infor-
mation; that could, unnecessarily, violate global ICs

214

In the example, D = {R(a, b), R(c, d), R(a, c), R(d, e)} is the
only minimal instance

The minimal answers to a query are those that can be obtained
from every minimal legal instance:

CertainG(Q) � MinimalG(Q)

For monotone queries they coincide

By definition, consistent answers to a global query wrt IC are
those obtained from all the repairs of all the minimal legal in-
stances wrt IC

(Bertossi, Chomicki, Cortes, Gutierrez; FQAS 02)

215

In the example:

The only minimal legal instance

D = {R(a, b), R(c, d), R(a, c), R(d, e)}

violates the FD R : X → Y

Its repairs wrt FD are

D1 = {R(a, b), R(c, d), R(d, e)} and

D2 = {R(c, d), R(a, c), R(d, e)}
A repair of an instance D wrt a set of ICs is an instance
D′ that satisfies the ICs and minimally differs from D
(under set inclusion, considering a DB as a set of facts)

Consistent answers to query Q: R(X,Y)?

Only {(c, d), (d, e)}

216

Computing consistent answers? (Idea)

(Bravo, Bertossi; IJCAI 03)

Answer set programming (ASP) (stable model semantics)
gives a semantics to Datalog (logic) programs with nega-
tion (and possibly disjunction in the heads)

ASP based specification of minimal instances of a virtual
data integration system

ASP based specification of repairs of minimal instances

Global query in Datalog (or its extensions) to be answered
consistently

Run the three combined programs above under skeptical
answer set semantics (skeptical stable model semantics)

217

Methodology works for first-order queries (and Datalog
extensions), and universal ICs combined with referential
ICs

Important subproduct: A methodology to compute cer-
tain answers to monotone queries

218

Specifying Minimal Instances

Example: Domain: D = {a, b, c, . . . } Global system G2

S1(X,Y)← P (X,Z), R(Z, Y) s1 = {(a, b)} open
S2(X,Y) ← P (X,Y) s2 = {(a, c)} open

MinInst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ D}
Specification of minimal instances: Π(G2)

P (X,Z)← S1(X,Y), F ((X,Y), Z)

P (X,Y)← S2(X,Y)

R(Z, Y)← S1(X,Y), F ((X,Y), Z)

The first and third rules come from the first mapping; the Z in the head is

“shared” and must be bounded in value; this is captured through the “functional

predicate” F that has to be specified now as (a) picking up values for Z for

tuples (X, Y), and (b) satisfying the functional requirement X, Y → Z

219

F ((X,Y), Z)← S1(X,Y), dom(Z), choice((X,Y), (Z))

dom(a)., dom(b)., dom(c)., . . . , S1(a, b)., S2(a, c).

Inspired by inverse rules algorithm for computing certain an-
swers (Duschka, Genesereth, Levy; JLP 00)

Now global relations are defined in terms of the local relations

F is a functional predicate, whose functionality on the second
argument is imposed by the choice operator

choice((X,Y)), (Z)): non-deterministically chooses a unique
value for Z for each combination of values for X,Y
(Giannotti, Pedreschi, Sacca, Zaniolo; DOOD 91)

Models of Π(G2) are the choice models, but the program can
be transformed into one with stable models semantics

220

That is, the “operational”semantics of choice can be replaced
by a declarative semantics by using “standard”program rules
(c.f. page 226)

Mb = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice((a, b), b),

F (a, b, b), R(b, b), P (a, b)}

Ma = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice(a, b, a),

F ((a, b), a), R(a, b), P (a, a)}

Mc = {dom(a), . . . , S1(a, b), S2(a, c), P (a, c), choice((a, b), c),

F (a, b, c), R(c, b)}

· · ·

Here: 1-1 correspondence between stable models and minimal
instances of G2

221

In general:

The minimal instances are all among the stable models
of the program

All the models of the program are (determine) legal in-
stances

In consequence, the program can be used to compute all
the certain answers to monotone queries

The program can be refined to compute all and only the
minimal legal instances (c.f. example on page 226; also
appendix 1)

The program can also be used to compute certain an-
swers to monotone queries; more general than any other
algorithm for LAV

Specification programs can be produced when there are
also closed or clopen sources (appendix 2)

222

Repairs and Consistent Answers

Intuitively, consistent answers are invariant under minimal restora-
tions of consistency

Definition based on notion of repair
(Arenas, Bertossi, Chomicki; PODS 99)

A repair is a global instance that minimally differs from a min-
imal legal instance

Example: Global system G1 (extended)

S1(X,Y)← R(X,Y) with s1 = {(a, b), (c, d)} open

S2(X,Y)← R(Y,X) with s2 = {(c, a), (e, d)} open

S3(X) ← P (X) with s3 = {(a), (d)} open

223

MiniInst(G1) = {{R(a, b), R(c, d), R(a, c), R(d, e), P (a), P (d)}}

G1 is inconsistent wrt FD : X → Y

RepairsFD(G1):

D1 = {R(a, b), R(c, d), R(d, e), P (a), P (d)}
D2 = {R(c, d), R(a, c), R(d, e), P (a), P (d)}

(we relax legality for repairs)
Queries:

Q(X,Y) : R(X,Y)?

(c, d), (d, e) are the consistent answers

Q1(X) : ∃Y R(X,Y)?

a is a consistent answer, together with c, d

224

Specification of Repairs

So far: specification of minimal instances of an integration
system; they can be inconsistent

Now: Specify their repairs

Idea: Combine the program that specifies the minimal instances
with the “repair program” that specifies the repairs of each
minimal instance

Repairs of single databases are specified using disjunctive logic
programs with stable model semantics and are used to compute
consistent answers to queries (Barcelo, Bertossi; PADL03)

225

Example: G3 S1(X) ← P (X,Y) {s1(a)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} open

IC : ∀x∀y(P (x, y)→ P (y, x))

MinInst(G3) = {{P (a, c)}} ... inconsistent system

In the program, the P (·, ·, td) are the output of the first layer,
that specifies the minimal instances

They are taken by the second layer specifying the repairs, whose
output are the P (·, ·, t��)

A third layer can be the query program, that uses the P (·, ·, t��)

226

Repair Program:

First Layer is refined program for minimal instances (with stan-
dard version of choice, as used by DLV)

dom(a). dom(c). S1(a). S2(a, c).

P (X, Y, td) ← P (X, Y, s1)

P (X, Y, td) ← P (X, Y, to)

P (X, Y,ns1) ← P (X, Y, to)

addS1(X) ← S1(X), not auxS1(X)

auxS1(X) ← P (X, Z,ns1)

fz (X, Z) ← addS1(X), dom(Z), chosens1z (X, Z)

chosens1z (X, Z) ← addS1(X), dom(Z), not diffchoices1z (X, Z)

diffchoices1z (X, Z) ← chosens1z (X, U), dom(Z), U
= Z

P (X, Z, s1) ← addS1(X), fz (X, Z)

P (X, Y, to) ← S2(X, Y)

227

Second Layer computes the repairs

P (X,Y, t�) ← P (X,Y, td)

P (X,Y, t�) ← P (X,Y, ta)

P (X,Y, fa) ∨ P (Y,X, ta) ← P (X,Y, t�),

not P (Y,X, td)

P (X,Y, fa) ∨ P (Y,X, ta) ← P (X,Y, t�), P (Y,X, fa)

P (X,Y, t��) ← P (X,Y, ta)

P (X,Y, t��) ← P (X,Y, td), not P (X,Y, fa)

← P (X,Y, ta), P (X,Y, fa).

Disjunctive rules are crucial; they repair: If a violation of IC
occurs (c.f. body), then either delete or insert tuples (c.f. head)

228

Stable models obtained with DLV: (parts of them)

Mr
1 = {dom(a), dom(c), S1(a), S2(a,c), P(a,c,ns1),

P(a,c,s2), P(a,c,td), P(a,c,t*), auxS1(a),
P(c,a,ta), P(a,c,t**), P(c,a,t*), P(c,a,t**)}
≡ {P (a, c), P (c, a)}

Mr
2 = {dom(a),dom(c), S1(a), S2(a,c), P(a,c,ns1),

P(a,c,s2), P(a,c,td), P(a,c,t*), auxS1(a),
P(a,c,fa)} ≡ ∅

Repair programs specify exactly the repairs of an integration
system for universal and simple (non cyclic) referential ICs

229

Computing Consistent Answers

Computing consistent answers t̄ to a query Q(x̄) posed to
a VDIS? (Bravo, Bertossi; IJCAI 03)

RepairsIC (G) := set of repairs of G wrt IC

A tuple t̄ is a consistent answer to query Q wrt IC if for
every D ∈ RepairsIC (G): D |= Q(t̄)

Methodology: (we already know how to do first two items)

Logic programming specification of minimal instances of
a virtual data integration system Π(G)
Logic programming specification of repairs of minimal in-
stances (we saw how to do this, e.g. programs with an-
notation constants) Π(G, IC)

230

Global query in Datalog (or its extensions) to be answered
consistently Π(Q)

Run combined program Π(G, IC) ∪ Π(Q) above under
skeptical stable model semantics

Methodology works for first-order queries (and Datalog
extensions), and universal ICs combined with referential
ICs

Important subproduct: A methodology to compute cer-
tain answers to monotone queries

231

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

232

Example: G3 Query Q : P (x, y)

1. Q′ : P (x, y, t��)

2. Π(Q′) : Ans(X,Y)← P (X,Y, t��)

3. Π(G3, IC) as before; form Π = Π(G3, IC) ∪ Π(Q′)

4. Repairs corresponding to the stable models of the pro-
gram Π become extended with query atoms

Mr

1 =Mr
1 ∪ {Ans(a, c), Ans(c, a)};

Mr

2 =Mr
2

5. No Ans atoms in common, then query has no consistent
answers (as expected)

233

Example: Repair program for G1 with the FD

domd(a). domd(b). domd(c). %begin subprogram for minimal instances

domd(d). domd(e). v1(a,b).

v1(c,d). v2(c,a). v2(e,d).

R(X,Y,td) :- v1(X,Y).

R(Y,X,td) :- v2(X,Y).

R(X,Y,ts) :- R(X,Y,ta), domd(X), domd(Y). %begin repair subprogram

R(X,Y,ts) :- R(X,Y,td), domd(X), domd(Y).

R(X,Y,fs) :- domd(X), domd(Y), not R(X,Y,td).

R(X,Y,fs) :- R(X,Y,fa), domd(X), domd(Y).

R(X,Y,fa) v R(X,Z,fa) :- R(X,Y,ts), R(X,Z,ts), Y!=Z, domd(X),domd(Y),domd(Z).

R(X,Y,tss) :- R(X,Y,ta), domd(X), domd(Y).

R(X,Y,tss) :- R(X,Y,td), domd(X), domd(Y), not R(X,Y,fa).

:- R(X,Y,fa), R(X,Y,ta).

Ans(X,Y) :- R(X,Y,tss). %query subprogram

The consistent answers obtained for the query Q: R(X,Y),
correspond to the expected ones, i.e., {(c, d), (d, e)}

234

Appendix 1: The Refined Program

Example: G3

S1(X) ← P (X,Y) {s1(a)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} open

MinInst(G3) = {{P (a, c)}}

However, the legal global instances corresponding to stable
models of Π(G3) are of the form {{P (a, c), P (a, z)} | z ∈ D}

More legal instances (or stable models) than minimal instances

As S2 is open, it forces P (a, c) to be in all legal instances,
which makes the same condition on S1 automatically satisfied
(no other values for Y needed)

235

Choice operator, as used above, may still choose other values
z ∈ D

We want Π(G) to capture only the minimal instances

A refined version of Π(G) detects in which cases it is necessary
to use the function predicates

F (X,Y)← add S1(X), dom(X), choice((X), Y)

where add S1(X) is true only when the openness of S1 is not
satisfied through other views (which has to be specified)

stable models of Π(G) ≡ MinInst(G)

236

This program not only specifies the minimal instances, but can
be also used to compute certain answers to monotone queries

More general than any other algorithm for LAV ...

Specification programs can be produced for case where sources
may be closed or clopen

237

Appendix 2: Minimal Instances for Mixed Sources

Mixed means that some sources may be open (sound, incom-
plete), others closed (complete), and others clopen (closed and
open, exact)

Definitions are similar ...

Example: Global system G with source definitions and sources
extensions with labels

S1(X,Y)← R(X,Y) with s1 = {(a, b)} open

S2(X,Y)← R(Y,X) with s2 = {(a, b), (e, d)} closed

The global relations can be materialized in different ways, still
satisfying the source descriptions, so different global instances
are possible

238

A global (material) instance D is legal if the view defini-
tions applied to it compute extensions S1(D), S2(D) such that
s1 ⊆ S1(D) and s2 ⊇ S2(D)

(For exact, it would be required s3 = S3)

D = {R(a, b), R(e, d)} is the only legal instance

The repair programs can be extended with program denial con-
strains to specify the minimal instances of the integration sys-
tem with mixed sources

239

Example: D = {a, b, c, . . . } G4

S1(X,Z)← P (X,Y), R(Y, Z) {s1(a, b)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} clopen

Like G2, that had the same sources but open; before:

MinInst(G2) = {{P (a, c), P (a, z), R(z, b)} | z ∈ {a, b, c, ...}}

Now second source restricts P to (a, c), so in this case:

MinInst(G4) = {{P (a, c), R(c, b)}}

Closure condition restricts the tuples in the legal instances, but
does not add new tuples

240

In general, Π(G)mix built as follows:

The same clauses as Π(G) considering the open and clopen
sources as only open

For every source (view) predicate S of a clopen or closed
source with description S(X̄) ← P1(X̄1), . . . , Pn(X̄n),
add the program denial constraint:

← P1(X̄1), . . . , Pn(X̄n), not S(X̄).

It says it is not possible for a model to satisfy the conjunc-
tion at the RHS of the arrow; then it filters out models
of the program

It captures closure condition on the source that for legal
D: S(D) = PD

1 (X̄1), . . . , P
D
n (X̄n) ⊆ s= set of facts

for S in Π(G)

241

If the simple version of Π(G) is considered, it holds:

MinInst(G) ⊆ stable models of Π(G)mix ⊆ LegInst(G)

If the refined version of Π(G) is used we have:

stable models of Π(G)mix ≡ MinInst(G)

242

Example: (continued) D = {a, b, c, . . . } G4

S1(X,Z)← P (X,Y), R(Y, Z) {s1(a, b)} open
S2(X,Y) ← P (X,Y) {s2(a, c)} clopen

Π(G4)
mix : (simple version, refined not needed here)

dom(a)., dom(b)., dom(c)., . . . , S1(a, b)., S2(a, c).
P (X,Z)← S1(X,Y), F ((X,Y), Z)
R(Z, Y)← S1(X,Y), F ((X,Y), Z)
P (X,Y)← S2(X,Y)
F ((X,Y), Z)← S1(X,Y), dom(Z), choice((X,Y), (Z))
← P (X,Y), not S2(X,Y)

(S2 stores the source contents, and P is used to compute the
view extension, so we are requiring that P ⊆ S2)

243

The only stable model of Π(G4)
mix is:

{domd(a), . . . , s1(a, b), s2(a, c), P (a, c), diffchoice(a, b, a),

diffchoice(a, b, b), chosen(a, b, c), f(a, b, c), R(c, b)}

Corresponding, as expected, to the fact that

MinInst(G4) = {{P (a, c), R(c, b)}}

244

Relation between answers obtained from different types of queries
and programs (the same applies to the mixed case):

Π(G) Query CertainG(Q) MinimalG(Q)

Refined Monotone = =
General �= =

Simple Monotone = =
General �= �=

245

Conclusions

Alternative semantics for query answering in GAV virtual
data integration systems under ICs have been introduced
and studied (Cali, Calvanese, De Giacomo, Lenzerini; CAISE02)

(Lembo, Lenzerini, Rosati; KRDB02), (Cali, Lembo,Rosati; IJCAI 03)

Recent experiments with consistent query answering in
virtual data integration systems are encouraging

• INFOMIX Project

Much more experimentation with and implementation of
query answering in virtual data integration under ICs is
necessary

246

Many extensions are still necessary on semantics and me-
thodology

There are clear connections between query answering in
VDISs and query answering in peer-to-peer data exchange
systems

• Peers exchange data at query answering time accord-
ing to certain data exchange constraints or data ex-
change mappings

• No central data repository; no centralized manage-
ment; data resides at peers’ sites ...

◦ (Halevy, Ives, Suciu, Tatarinov; ICDE 03)
◦ (Bertossi, Bravo; P2P&DB 04)
◦ (Calvanese, De Giacomo, Lenzerini, Rosati; PODS

04)

247

9. Query Answering in Peer-to-Peer
Data Exchange

248

The Context

Consider a system consisting of peers who exchange data when
they answer local queries

Each peer has a local and autonomous database

Different peer’s databases may have a different (relational)
schemas

Data at two different peers’ sites may be related by data ex-
change constraints (DECs)

Each peer has a set of DECs expressed as first order formulas
that relate its schema with those of some other peers

249

Each peer does not update its instance according to its DECs
and other peers’ instances

However, if a peer P is answering a (local) query QP, it may,
at query time

Import data from other peers to complement its data

Ignore part of its own data

All this depending upon its own DECs and the peers’ instances

But also upon the trust relationships that P has with other
peers

An additional element to consider is P’s local semantic con-
straints

250

Example 1: Peers, their schemas, instances, DECs, trust rela-
tionships:

P1, R1 = {R1}, r(P1) = {R1(a, b), R1(s, t)}

Σ(P1, P2) : ∀x∀y(R2(x, y)→ R1(x, y))

Σ(P1, P3) : ∀x∀y∀z(R1(x, y) ∧R3(x, z) → y = z)

P1 trusts P2 more than itself

P1 trusts P3 the same as itself

(also some local ICs IC (P1))

251

Those answers returned by P to QP that give an account of all
these extra elements are P’s peer consistent answers (PCAs)
to QP

In this presentation:

We make these intuitions precise

We give a semantics to PCAs

Specification can be used as the basis for computing them

We establish connections to virtual data integration

252

The Solutions for a Peer

Assume the peers’s schemas are disjoint, with the possible ex-
ception of a shared domain

The union of all peers’ instances r(P) can be seen as a single
global instance r̄

A solution for a peer P is a global instance that respects P’s
DECs and trust relationships with its immediate neighbors and
stays “as close as possible” to r̄

P’s peer consistent answers (PCA) are those answers that can
be retrieved from P’s portion of data in every solution for P

253

The notion of solution can be captured by means of the notion
of repair used to characterize the notion of consistent answer
to a query in a database r that fails to satisfy given ICs
(Arenas, Bertossi, Chomicki; PODS’99)

A repair satisfies the originally violated ICs and minimizes the
sets of tuples by which it departs from r

A solution may virtually change P’s data

Solutions -as repairs in consistent query answering (CQA)- are
virtual and used as an auxiliary tool to semantically character-
ize the notion of PCA

254

Then correct, intended answer to queries posed to a peer are
captured by appealing to alternative models

Emphasis is not on computing repairs, but on defining and
computing PCAs

Ideally, P should be able to obtain its PCAs just by querying
its and its neighbors’ instances

We are first dealing with the direct case, that considers the
immediate neighbors; the transitive case is examined later

255

Example 1: (cont.)

P1, R1 = {R1}, r(P1) = {R1(a, b), R1(s, t)}

Σ(P1, P2) : ∀x∀y(R2(x, y)→ R1(x, y))

Σ(P1, P3) : ∀x∀y∀z(R1(x, y) ∧R3(x, z) → y = z)

P1 trusts P2 more than itself

P1 trusts P3 the same as itself

P2, R2 = {R2}, r(P2) = {R2(c, d), R2(a, e)}
P3, R3 = {R3}, r(P3) = {R3(a, f), R3(s, u)}

Global instance does not satisfy the DECs

r̄ = {R1(a, b), R1(s, t), R2(c, d), R2(a, e), R3(a, f), R3(s, u)}

256

P does not change its or other peers’ data

Rather P solves its conflicts at query time, when it queries its
own and other peers’ databases

Obtained answers should be sanctioned as correct wrt to the
“solution based semantics”

The solutions for P1 are obtained by:

1. First repairing r̄ wrt Σ(P1, P2)

Changing P1’s data only (less trustable that P2)

Only one repair is obtained:

r̄1 = {R1(a, b), R1(s, t), R1(c, d), R1(a, e), R2(c, d), R2(a, e),
R3(a, f), R3(s, u)}

257

2. This repair has to be repaired on its own wrt Σ(P1, P3)

Keeping Σ(P1, P2) satisfied

Now, data in P1 or P3 can change (equally trustable)

Two repairs are obtained; and then solutions:

r̄′ = {R1(a, b), R1(s, t), R1(c, d), R1(a, e), R2(c, d), R2(a, e)}

r̄′′ = {R1(a, b), R1(c, d), R1(a, e), R2(c, d), R2(a, e), R3(s, u)}
There is a precise model theoretic definition of solution that
corresponds to this process

It involves a minimization with fixed predicates as found in
non-monotonic reasoning

258

Actually these two layered process can be merged into a single
one

Definition: Given a FO query Q(x̄) ∈ L(P), posed to peer P, a
ground tuple t̄ is a peer consistent answer for P iff r̄′|P |= Q(t̄)
for every solution r̄′ for P

Example 1: (cont.) The query Q : R1(x, y) posed to P1 (in
the language of P1) has the PCAs: (a, b), (c, d), (a, e)

This answer has values that did not exists in P1’s instance

Data originally in P1 is now missing in the set of PCAs

259

Computation of PCAs

In example 1, the PCAs can be obtained by a FO rewriting of
Q using first Σ(P1, P2) and then Σ(P1, P3)

Q′′ : [R1(x, y) ∧ ∀z1((R
3(x, z1) ∧ ¬∃z2R

2(x, z2)) →
z1 = y)] ∨ R2(x, y)

I.e. P1 first issues a query to P2 to retrieve the tuples in R2

Next, a query is sent to P3 to discard tuples from R1 with the
same first but not the same second argument in R3

(as long as there does not exist a tuple in R2 that “pro-
tects” the tuple in R1)

260

Rewritten query gives exactly the PCAs to Q

This FO query rewriting approach cannot be extended much

It inherits the limitations of FO query rewriting for CQA

Better look for alternative methodologies

A general approach: answer set programming based specifica-
tion of a peer’s solutions ...

261

Mixed Referential DECs

In most applications we may expect the DECs Σ(P, Q) for peer
P to consist of formulas of the form

∀x̄∃ȳ(RQ(x̄) ∧ ϕ → RP(z̄, ȳ) ∧ ψ)

with RQ, RP relations for peers Q and P, resp., ϕ, ψ formulas in
terms of built-ins, z̄ ⊆ x̄

Peer P wants to import data from the more trusted peer Q

The same kind of formula could belong to Q, if Q wants to
validate its own data against P’s data

262

We may have even more involved cases of referential DECs

Mixing tables from the two peers on each side of the implica-
tion

Example 2: Peers: P with schema {R1(·, ·), R2(·, ·)}
Q with schema {S1(·, ·), S2(·, ·)}

P’s DEC:

∀x∀y∀z∃w(R1(x, y) ∧ S1(z, y) → R2(x,w) ∧ S2(z, w))

Assume P considers Q’s data more reliable than its own

(the case where P and Q are equally trustable according to P

can be handled similarly)

263

If P’s DEC is not satisfied by the combination of the data in
P and Q, alternative solutions for P have to be found, keeping
Q’s data fixed in the process

This is the case, when it holds: R1(d,m), S1(a,m), but for no
t both R2(d, t) and S2(a, t)

Obtaining PCAs for P amounts to virtually restoring the satis-
faction of P’s DEC by virtually modifying P’s data

In order to specify P’s (virtually) modified relations, introduce
virtual versions R′

1, R
′
2 of R1, R2

P’s queries will be expressed in terms of relations R′
1, R

′
2 only

(plus built-ins)

264

Contents for R′
1, R

′
2 are obtained from the material sources

R1, R2, S1, S2

Since S1, S2 are fixed, the satisfaction of P’s DEC requires R′
1

to be a subset of R1, and R′
2, a superset of R2

Specification of R′
1, R

′
2 is done by means of a disjunctive ex-

tended logic program Π with answer set semantics

First rules:
R′

1(x, y) ← R1(x, y), not ¬R′
1(x, y) (1)

R′
2(x, y) ← R2(x, y), not ¬R′

2(x, y) (2)

i.e. by default, the tuples in the sources are copied into the
virtual versions, with some exceptions ...

265

Some of the exceptions for R′
1:

¬R′
1(x, y) ← R1(x, y), S1(z, y), not aux 1(x, z), not aux2(z) (3)

aux 1(x, z) ← R2(x,w), S2(z, w) (4)

aux 2(z) ← S2(z, w) (5)

I.e. R1(x, y) is deleted if simultaneously:

It participates in a violation of DEC

(captured by the first three literals in (3) plus rule (4))

There is no way to restore consistency by inserting a tuple
into R2, because there is no possible matching tuple in
S2 for the possibly new tuple in R2

(captured by last literal in (3) plus rule (5))

266

In case there is such a tuple in S2, we can either delete a tuple
from R1 or insert a tuple into R2:

¬R′
1(x, y) ∨R′

2(x,w) ← R1(x, y), S1(z, y), not aux 1(x, z),

S2(z, w), choice((x, z), w) (6)

I.e. in case of a violation of DEC, when there is tuple of the
form (a, t) in S2 for the combination of values (d, a), then the
choice operator non-deterministically chooses a unique value
for t, so that the tuple (d, t) is inserted into R2

(to minimize differences between material and virtual versions)

(as an alternative to deleting (d,m) from R1)

267

choice predicate can be replaced by a standard predicate plus
extra rules

Modified program has a usual answer set semantics

No exceptions are specified for R′
2, which makes sense since

R′
2 is a superset of R2

Then, the negative literal in the body of (2) can be eliminated

However, new tuples can be inserted into R′
2 (captured by rule

(6)

Finally, the program contains as facts the tuples in the material
relations R1, R2, S1, S2

268

If P equally trusts itself and Q, both P and Qs’ relations are
flexible when searching for a solution

Since S1, S2 may also change, virtual versions for them must
be introduced and specified, and the program becomes more
involved

Program Π represents in a compact form all the solutions for
a peer

PCAs for a peer can be obtained by running a query program
expressed in terms of the virtually repaired tables, in combina-
tion with program Π

The combined program is run under the skeptical answer set
semantics

269

E.g. the query Q(x, z) : ∃y(R1(x, y) ∧ R2(z, y)) to P

is peer consistently answered by running program Π together
with

AnsQ(x, z)← R′
1(x, y), R

′
2(x, y)

Only the virtual versions of P’s relations appear in the query,
but the program will make P import Q’s data

270

Other Considerations

(A) With referential DECs, the choice operator may have to
choose values from the infinite domain

Several alternatives considered in the literature

The notion of solution in this regard and the class of refer-
ential DECs to deal with will have an impact on decidability,
complexity, ...

1. Open infinite domain, repairing picking up elements from
it

PCA becomes undecidable with cyclic referential DECs
(Cali, Lembo, Rosati; PODS’03)

271

2. Repair assigning null values which do not propagate through
DECs
(Barcelo, Bertossi, Bravo; 2003)

It becomes decidable even with cyclic referential DECs

3. Consider an appropriate finite and closed proper superset
of the active domains
(Bravo, Bertossi; IJCAI’03)

4. Introduce fresh constants whenever needed from a sepa-
rate domain
(Calvanese, Damaggio,DeGiacomo,Lenzerini,Rosati; DBISP2P’03)

272

(B) A peer may have local ICs, e.g. a FD

∀x∀y∀z(R1(x, y) ∧R1(x, z)→ y = z)

The peer’s program that specifies its solutions should take care
of them, at query time

They can be integrated in our framework by treating them as
DECs Σ(P, P) with (P, P, same) in the trust relationship

273

Interaction of Peers’ DECs

Peers may be indirectly related by “composition” of DECs, by
transitivity ...

Peer A gets a query, then gets data from peer B, who requests
data from peer C, ...

A may not even know about C’s existence ...

There won’t be any explicit DECs from A to C; and we do not
want to derive them

We propose that the semantics for such a global exchange
system should be given by the “stabilized interaction” of the
pair-based solutions

274

More precisely, by those global instances that correspond to
the stable models of the program that combines the specifica-
tion programs we had for one peer and its direct neighbors

In particular, the absence of solutions is reflected in the absence
of stable models for the program

275

Example 2: (cont.)

P: schema {R1(·, ·), R2(·, ·)}
instance r(P) with r1 = {(a, b)}, r2 = {}

Σ(P, Q):

∀x∀y∀z∃w(R1(x, y)∧S1(z, y) → R2(x,w)∧S2(z, w))

P trusts Q more than itself

Q: schema {S1(·, ·), S2(·, ·)}
instance r(Q) with s1 = {}, s2 = {(c, e), (c, f)}

Σ(Q, C): ∀x∀y(U(x, y)→ S1(x, y))

Q trusts C more than itself

C: schema {U(·, ·)}
instance r(C) with u = {(c, b)}

276

Now Q’s relations may also change, actually in this case only
S1, so we also need a virtual version S ′

1

Rules (3), (6) are replaced by (7) and (8), resp.

¬R′
1(x, y) ← R1(x, y), S

′
1(z, y), not aux 1(x, z),

not aux2 (z) (7)

¬R′
1(x, y) ∨R′

2(x,w) ← R1(x, y), S
′
1(z, y), not aux 1(x, z),

S2(z, w), choice((x, z), w) (8)

Combination program consists of (1), (2),(4), (5), (7), (8) plus

S ′
1(x, y) ← S1(x, y), not ¬S ′

1(x, y) (9)

S ′
1(x, y) ← U(x, y), not S1(x, y). (10)

(9) is a persistence rule for S1, and (10) enforces Σ(Q, C)

277

The solutions obtained from the stable models of the combined
program (plus the material sources) are the expected ones:

r̄′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b), R

′
2(a, f), R′

1(a, b)},

r̄′′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b)}

r̄′′′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b), R

′
2(a, e), R

′
1(a, b)}

278

P2P Data Exchange and Data Integration

There are clear connections between PCAs and querying virtu-
al data integration systems

The logic programming-based apprach can be seen as global-
as-view (GAV) approach: relations in the solutions are specified
as views over the peers’ original schemas

We explore the connection to the local-as-view (LAV) ap-
proach, where relations in the (local) data sources are ex-
pressed as views of virtual global relations

In example 2, we introduce virtual, global versions S ′
1, S

′
2 of

S1, S2

279

We propose the following specification:

View definitions label source

R1(x, y)← R′
1(x, y) closed r1

R2(x, y)← R′
2(x, y) open r2

S1(x, y)← S ′
1(x, y) clopen s1

S2(x, y)← S ′
2(x, y) clopen s2

Labels (for the sources) in the second column depend on the
kind of DECs & the trust relationships

They indicate that S1, S2 do not change; R1, R2 do change,
by deletion or insertion of tuples, resp.

A query posed to P has to be first reformulated in terms of
R′

1, R
′
2

280

Its PCAs can be obtained by querying the integration system
subject to the global IC:

∀xyz∃w(R′
1(x, y) ∧ S ′

1(z, y)→ R′
2(x,w) ∧ S ′

2(z, w))

There are methodologies for obtaining consistent answers to
queries posed to virtual data integration systems with open
sources

Also for the LAV approach with mixed sources
(Bertossi & Bravo, to appear)

Again this is a specification based on answer set programming
of repairs of the virtual system

Some small adjustments required in the P2P scenario

281

Final Remarks

(A) What we have presented provides semantics and specifi-
cations for peer consistent aswers

In principle it is possible to compute answers from those spec-
ifications (and the data available)

As ongoing work, most urgent future work on peer consistent
query answering (PCQA):

“Translate” the specifications into concrete algorithms to query
the peers’ databases and integrate their answers

282

(B) At the answer set programming level:

It becomes necessary to derive specialized specifications,
that are easier to handle and compute for particular class-
es of DECs and queries

And from them also specialized algorithms for PCQA
(c.f. (A))

The specifications themselves have to be optimized (as
logic programs)

283

Computations of/under the answer set semantics have to
be optimized

Avoid extra complexity in cases where complexity of PC-
QA is lower that general data complexity of disjunctive
answer set programming

(The latter is not higher that the general data complexity
of peer consistent query answering)

The interaction between the logic programming system
and the data sources has to be optimized
(Eiter, Fink, G.Greco, Lembo; ICLP’03)

284

Appendix I: Definition of solution

Definition: (direct case) Given a peer P in a P2P data exchange
system and an instance r̄ on R, an instance r̄′ on R is a solu-
tion for P if r̄′ is a repair of r̄ wrt to Σ(P) ∪ IC (P) that does
not change the more trusted relations

More precisely:
(a) r̄′ |=

⋃
{Σ(P, Q) | (P, less , Q) or (P, same, Q) ∈ trust} ∪

IC (P)
(b) r̄′|P = r̄|P for every predicate P ∈ R(Q), where Q is a
peer with (P, less , Q) ∈ trust
(c) r̄′ minimally differs from r̄ in the sense that (r̄′ � r̄)∪ (r̄�
r̄′) is minimal under set inclusion among those instances that
satisfy (a) and (b)

285

Intuitively, a solution for P repairs the global instance wrt the
DECs with peers that P trusts more than or the same as itself,
but leaving unchanged the tables that belong to more trusted
peers

As a consequence of the definition, tables belonging to peers
that are not related to P or are less trustable are not changed

That is, P tries to change its own tables according to what the
dependencies to more or equally trusted peers prescribe

286

Appendix II: Program with three peers, direct case

Example 1: (cont.) R1, R3 have to be flexible in the repair pro-
cess, and we get interacting rules for R1

The logic program should have the effect of repairing the
database

The repair process may need to execute several steps until it
stabilizes

We use program rules with annotations as introduced for CQA
in the presence of interacting ICs

Annotations are constants that are used in an extra argument
introduced in each database relation

287

td: used to annotate the atoms that are in the original database
instance

Single repair steps are obtained by deriving the annotations ta

or fa (atoms getting them are advised to be made true, resp.
false)

This when each IC is considered in isolation, but there may be
interacting ICs, which requires an iterative process; for this we
use annotations t�, f�

E.g. td groups together the annotations td and ta for the
same atom

288

Derived annotations are used to propagate changes through
several ICs

Annotations t�� and f�� are just used to read off the literals
that are inside (resp. outside) a repair

Generic rules; to be found in any repair program with annota-
tions

R1(X,Y, t
�) ← R1(X,Y, td).

R1(X,Y, t
�) ← R1(X,Y, ta).

R1(X,Y, f
�) ← R1(X,Y, fa).

R1(X,Y, f
�) ← dom(X), dom(Y), not R1(X,Y, td).

R1(X,Y, t
��) ← R1(X,Y, td), not R1(X,Y, fa).

289

R1(X,Y, t
��) ← R1(X,Y, ta).

← R1(X,Y, ta), R1(X,Y, fa).

R2(X,Y, t
�) ← R2(X,Y, td).

R2(X,Y, t
�) ← R2(X,Y, ta).

R2(X,Y, f
�) ← R2(X,Y, fa).

R2(X,Y, f
�) ← dom(X), dom(Y), not R2(X,Y, td).

R2(X,Y, t
��) ← R2(X,Y, td), not R2(X,Y, fa).

R2(X,Y, t
��) ← R2(X,Y, ta).

← R2(X,Y, ta), R2(X,Y, fa).

R3(X,Y, t
�) ← R3(X,Y, td).

R3(X,Y, t
�) ← R3(X,Y, ta).

R3(X,Y, f
�) ← R3(X,Y, fa).

290

R3(X,Y, f
�) ← dom(X), dom(Y), not R3(X,Y, td).

R3(X,Y, t
��) ← R3(X,Y, td), not R3(X,Y, fa).

R3(X,Y, t
��) ← R3(X,Y, ta).

← R3(X,Y, ta), R3(X,Y, fa).

Now we have only two specific rules, they express how to repair
the databases when a violation of the DECs occurs:

R1(X,Y, ta) ← R2(X,Y, t
�), R1(X,Y, f

�).

R1(X,Y, fa) ∨R3(X,Z, fa) ← R1(X,Y, t
�), R3(X,Z, t

�), Y �= Z.

The first one corresponds to a violation of Σ(P1, P2); the sec-
ond one, to a violation of Σ(P1, P3)

291

The facts of the program:

R1(a, b, td). R1(s, t, td). R2(c, d, td). R2(a, e, td).R2(t, h, td).
R3(a, f, td). R3(s, u, td). R3(t, u, td). dom(a). dom(b).
dom(s). dom(t). dom(c). dom(d). dom(e). dom(f). dom(u).
dom(h).

The non domain atoms say that originally
R1 = {(a, b), (s, t)}
R2 = {(c, d), (a, e), (t, h)}
R3 = {(a, f), (s, u), (t, u)}

Here we do not need virtual versions R′
1, R

′
3 forR1, R2, because

their final contents will be read off from atoms annotated with
t��

292

Appendix III: Comparison with data integration

Methodology for CQA under LAV and mixed sources is based
on a three-layered specification of the repairs:

A first layer specifies the contents of the global relations
in the minimal legal instances (to this layer only open and
clopen sources contribute)

A second layer consisting of program denial constraints
that prunes the models that violate the closure condition
for the closed sources

A third layer specifying the minimal repairs of the legal in-
stances left by the other layers wrt the global ICs (repairs
may violate the source labels)

In the P2P scenario we consider only legal instances that:

Satisfy the mapping in the table

293

In the case of closed sources, include the maximum amount
of tuples from them (virtual relations must be kept as
close as possible to their original, material versions)

This can be achieved using the same specifications as for the
mixed case, but considering the closed sources as clopen

They contribute with rules that import their contents into the
system (maximizing tuples in the global relation) and denial
program constraints

Trust relation also makes a difference: virtual relations must
satisfy the original labels (which capture the trust relation-
ships)

Then repairs of legal instances are based only on tuple dele-
tions (insertions) for global relations corresponding to closed

294

(resp. open) sources

For clopen sources the rules can neither add nor delete tuples

This preference criterion on repairs is similar to the loosely-
sound semantic for integration of open sources under GAV
(Lembo, Lenzerini, Rosati; KRDB’02)

Methodology handles universal and acyclic referential DECs

This is when arbitrary elements from the infinite underlying
domain can be picked up to satisfy the DECs

When repairs are done using null values that do not propagate
through ICs, then cycles are allowed

295

The DEC in example 2 is not a typical referential IC, but the
repair layer can be adjusted in order to generate the solutions
for P

296

Assume the peers have the following instances:

r1 = {(a, b)}, s1 = {(c, b)}, r2 = {} and s2 = {(c, e), (c, f)}

The layer that specifies the preferred legal instances:

R′
1(X,Y, td) ← R1(X,Y).

S ′
1(X,Y, td) ← S1(X,Y).

R′
2(X,Y, td) ← R2(X,Y).

S ′
2(X,Y, td) ← S2(X,Y).

← R′
1(X,Y, td), R1(X,Y).

← S ′
1(X,Y, td), S1(X,Y).

← S ′
2(X,Y, td), S2(X,Y).

297

The layer that specifies the repairs of the legal instances:

(The annotation constants are used as auxiliary elements in
the repairs process)

R′
1(X,Y, t

��) ← R′
1(X,Y, td), not R′

1(X,Y, fa).

R′
1(X,Y, t

��) ← R′
1(X,Y, ta).

← R′
1(X,Y, ta), R

′
1(X,Y, fa).

S ′
1(X,Y, t

��) ← S ′
1(X,Y, td), not S ′

1(X,Y, fa).

S ′
1(X,Y, t

��) ← S ′
1(X,Y, ta).

← S ′
1(X,Y, ta), S

′
1(X,Y, fa).

R′
2(X,Y, t

��) ← R′
2(X,Y, td), not R′

2(X,Y, fa).

298

R′
2(X,Y, t

��) ← R′
2(X,Y, ta).

← R′
2(X,Y, ta), R

′
2(X,Y, fa).

S ′
2(X,Y, t

��) ← S ′
2(X,Y, td), not S ′

2(X,Y, fa).

S ′
2(X,Y, t

��) ← S ′
2(X,Y, ta).

← S ′
2(X,Y, ta), S

′
2(X,Y, fa).

R′
1(X,X, fa) ← R′

1(X,Y, td), S ′
1(Z, Y, td),

not aux1 (X ,Z), not aux2 (Z).

aux1(X,Z) ← R′
2(X,U, td), S ′

2(Z,U, td).

aux2(Z) ← S ′
2(Z,W, td).

R′
1(X,Y, fa) ∨R′

2(X,W, ta) ← R′
1(X,Y, td), S ′

1(Z, Y, td),

not aux1 (X ,Z), S ′
2 (Z ,W , td),

choice((X,Z),W).

299

Running this program with DLV, we obtain the following solu-
tions (they can be obtained by selecting only the tuples with
annotation t�� from a stable model):

r̄1 = {S ′
1(c, b), S

′
2(c, e), S

′
2(c, f), R′

1(a, b), R
′
2(a, f)}

r̄2 = {S ′
1(c, b), S

′
2(c, e), S

′
2(c, f)}

r̄3 = {S ′
1(c, b), S

′
2(c, e), S

′
2(c, f), R′

1(a, b), R
′
2(a, e)}

r̄4 = {S ′
1(c, b), S

′
2(c, e), S

′
2(c, f)}

300

THE END

Acknowledgments: This presentation is based on original re-
search produced with several coauthors, as reflected in the list
of references that follows

301

References (to own work)

1. Arenas, M., Bertossi, L. and Chomicki, J. “Consistent Query Answers in
Inconsistent Databases”. In Proc. 18th ACM Symposium on Principles
of Database Systems (PODS 99), 1999, pp. 68–79.

2. Arenas, M., Bertossi, L. and Kifer, M. “Applications of Annotated Pred-
icate Calculus to Querying Inconsistent Databases”. In Computational
Logic - CL 2000, Springer LNAI 1861, Springer, 2000, pp. 926 – 941.

3. Celle, A. and Bertossi, L. “Querying Inconsistent Databases: Algorithms
and Implementation”. In Computational Logic - CL 2000, Springer LNCS
1861, 2000, pp. 942 – 956.

4. Barcelo, P. and Bertossi, L. “Repairing Databases with Annotated Pred-
icate Logic”. Proc. NMR’02, 2002.

5. Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. “Consistent An-
swers from Integrated Data Sources”. In Flexible Query Answering Sys-
tems, Springer LNAI 2522, 2002, pp. 71–85.

6. Barcelo, P. and Bertossi, L. “Logic Programs for Querying Inconsistent
Databases”. Proc. Practical Aspects of Declarative Languages (PADL
2003), Springer LNCS 2562, 2003, pp. 208-222.

302

7. Arenas, M., Bertossi, L., Chomicki,J., He, X., Raghavan, V. and Spinrad,
J. “Scalar Aggregation in Inconsistent Databases”. Theoretical Computer
Science, Volume 296, Issue 3, 2003, pp. 405-434.

8. Bertossi, L. and Chomicki, J. “Query Answering in Inconsistent Databas-
es”. Chapter in book Logics for Emerging Applications of Databases, J.
Chomicki, G. Saake and R. van der Meyden (eds.), Springer, 2003.

9. Arenas, M., Bertossi, L. and Chomicki, L. “Answer Sets for Consistent
Query Answering in Inconsistent Databases”. Theory and Practice of
Logic Programming, 2003, 3(4-5): 393-424.

10. Barcelo, P., Bertossi, L. and Bravo, L. “Characterizing and Computing
Semantically Correct Answers from Databases with Annotated Logic and
Answer Sets. In Semantics of Databases, Springer LNCS 2582, 2003, pp.
1–27.

11. Bravo, L., Bertossi, L. “Consistent Query Answering under Inclusion De-
pendencies”. Proc. 14th CASCON Conference, IBM, Toronto Lab., 2004.

12. Bertossi, L. and Bravo, L. “Consistent Query Answers in Virtual Data
Integration Systems”. In Inconsistency Tolerance, Springer LNCS 3300,
2004, pp. 42-83.

303

13. Bravo, L. and Bertossi, L. “Disjunctive Deductive Databases for Com-
puting Certain and Consistent Answers to Queries from Mediated Data
Integration Systems”. Journal of Applied Logic, 2005, 3(2):329-367.

14. Bravo, L. and Bertossi, L. “Logic Programs for Consistently Querying
Data Integration Systems”. In Proc. International Joint Conference on
Artificial Intelligence (IJCAI 03), Morgan Kaufmann, 2003, pp. 10–15.

15. Bertossi, L. and Bravo, L. “Query Answering in Peer-to-Peer Data Ex-
change Systems”. In Current Trends in Database Technology. Springer
LNCS 3268, 2004, pp. 478-485.

16. Bertossi, L., Bravo, L., Franconi, E. and Lopatenko, A. “Complexity and
Approximation of Fixing Numerical Attributes in Data-bases Under In-
tegrity Constraints”. In Proc. of the Databases Programming Languages
conference (DBPL 2005), Springer LNCS, 2005.

17. Caniupan, M. and Bertossi, L. “Optimizing Repair Programs for Consis-
tent Query Answering”. To appear in Proc. International Conference of
the Chilean Computer Science Society (SCCC 05). IEEE Press.

