
Evolution and Change in
Relational Databases
An Overview of Some Issues1

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

1Chapter 1 of PhD Course at U. Calabria, Arcavacata, 2013.

2

1. Databases and Integrity Constraints

A database instance D is a model of an outside reality

An integrity constraint on D is a condition that D is expected
to satisfy in order to capture the semantics of the application
domain

A set IC of integrity constraints (ICs) helps specify/maintain
the correspondence between D and that reality

3

Several applications: [Godfrey et al. 98]

By being satisfied, an IC imposes a restriction on the
evolution of the DB under updates

Most typical application ...

ICs properly represented become metadata, i.e. data about
the data

They help understand what the data are about, their
meaning, their semantics

Many uses, e.g. inter-operability

In particular, integration of data sources into a single data
repository

4

When guaranteed to be satisfied, ICs can be used for
semantic query optimization

Example: Schema: Employee(Name,Position,Salary)

IC: ∀xyEmployee(x, manager, y)→ y ≥ 100)

Equivalently: ∀xy¬(Employee(x, manager, y) ∧ y < 100)
(as a denial constraint)

Query: Q(x) : ∃yEmployee(x, manager, y) ∧ y < 80)

Immediately return ∅ without scanning the table!

More systematically?

There is a general methodology ...

5

The IC can be written in clausal form (with implicitly
universally quantified variables):

¬Employee(u, manager, v) ∨ v ≥ 100

Consider the query (about x, y):

Employee(x, manager, y) ∧ y < 80)

Resolve the two complementary literals above, obtaining
the resolvent, or residue (of the IC): y ≥ 100

When the DB D satisfies the IC and the query (for some
values x, y), the residue has to be satisfied by D too

So, it can appended to the original query keeping exactly
the same answers

That is, the original query has the same answers as the
rewritten query:

Employee(x, manager, y) ∧ y < 80 ∧ y ≥ 100
︸ ︷︷ ︸

unsatisfiable!

6

IC enforcement:

By the DBMS itself when ICs have been declared with the
schema

Commercial DBMSs provide limited support in this
direction

Through triggers (active, ECA rules) stored by user in DB

Reject/notify inadmissible updates or compensate updates

Can be derived from ICs [Widom et al. 95]

Through application/transaction programs

7

2. Logical Status of IC Satisfaction

A relational DB D can be seen as a set-theoretic structure

With a domain (or universe) and some (finite) relations defined
on it

Manager Boss Subordinate

ken john
john mary
peter joe

D = 〈Dom,ManagerD, . . .〉, with ManagerD ⊆ Dom × Dom,
...

An IC as a sentence ϕ in language of first-order (FO) predicate
logic associated to the DB schema

D |= ϕ: a well defined model-theoretic notion of satisfaction
in FO logic, of a sentence by a structure

8

Alternatively, D can be seen as a theory Th(D) written in FO
predicate logic

Reiter’s logical reconstruction of relational DBs [Reiter 84]

Manager Boss Subordinate

ken john
john mary
peter joe

�→ a theory

Predicate extensions plus closed-world assumption (CWA):

∀xy(Manager(x, y) ↔ x = ken ∧ y = john ∨ · · · ∨ x = peter ∧ y = joe)

Possibly domain-closure: ∀x(x = ken ∨ · · · ∨ x = mary ∨ x = sue)

Unique names assumption (UNA): john �= mary, etc.

Now D |= ϕ also makes sense as Th(D) ϕ

ICs have to be entailed by the DB (the latter as a theory) ...

9

Another way of looking at DBs:

The DB above can be seen as a set of ground atoms (or tuples):

D = {Manager(ken, john),Manager(john,mary),Manager(peter , joe)}
As such it can be seen as a structure or a set of logical formulas

Also possible to consider D to be complete (closed) or incom-
plete, the latter when D may contain more tuples than those on
the RHS (D � { ... })

As incomplete DB, D above can also be seen a representative
of a class of closed DBs, namely those that extend D

D

D’

D”

D”’

10

Incomplete DBs have been actively investigated in the last few
years (but at least since early 80s) [Imielinski et al. 84] [Greco et al. 12]

For D seen as a structure (or closed set of ground atoms),
maybe D �|= Σ

However, it is seen as an incomplete theory, it may be good
enough if D ∪ Σ is consistent

D is usually extended through Σ (chase, etc.)

Incarnation of older discussion: [Reiter 92]

Reiter: ICs are satisfied by the DB

Kowalski: ICs are to be consistent with DB

11

Example: D = {Manager(ken, john),Employee(ken, accounting)}
IC: ∀xy(Manager(x, y)→ ∃z(Employee(x, z) ∧ Employee(y, z)))

As a closed DB, D �|= IC

As an open DB (theory), D is consistent with IC

D can be extended to make it satisfy IC (as a closed DB): just
add the tuple Employee(john, accounting)

This can be seen as the process of chasing the DB via the IC ...

But also adding Employee(ken, λ1),Employee(john , λ1) would
do, with λ1 a labeled null, would do

But λ1 would become accounting in the additional presence of
the FD: Name → Department)

12

Example:

D = {Manager(ken, john),Manager(sue, john),Employee(ken, accounting)}

Is inconsistent as an open DB with the FD: Subordinate →
Boss

Because D ∪ {FD} is inconsistent

13

3. Database and View Maintenance

Database maintenance is about keeping the ICs satisfied when
the DB undergoes updates

View maintenance is about keeping materialized view extensions
synchronized with base tables

A view is just a (usually virtual) relation defined on top of base
(usually material) relations

A view defined on table Manager (cf. page 8):

∀x(TopBoss(x) ↔ ∃yManager (x, y) ∧ ¬∃zManager (z, x)) (*)

TopBoss(D) = {ken, peter} If Manager(sue, ken) �→ D?

The two problems are related ...

14

Associate a violation view Vϕ to IC ϕ

ϕ is satisfied by D iff Vϕ(D) = ∅
Example: FD : Subordinate → Boss on previous schema

VFD(x, y)↔ Manager(x, y) ∧ ∃z(Manager(z, y) ∧ x �= z)

To maintain the IC (satisfied), maintain the violation view
(empty)

BTW, a condition that is commonly used by ECA rules for
IC maintenance

A view definition, e.g. (*), can be seen as an IC expressed
in an expanded language (with view predicates)

The definition has to be kept satisfied (by the DB expanded
with extensions for view predicates)

15

Techniques for each of database and view maintenance can be
applied to the other problem

In both cases, incremental techniques are desirable

16

4. Incremental Maintenance

The issues:

• We do not want to check the full IC every time the DB is
updated

Maybe an update on base table is irrelevant to the IC

Maybe only “a portion” of the IC has to be rechecked

• We do not want to recompute the view from scratch using
the definition every time base tables are updated

Crucial for materialized views, as in DWHs [Gupta et al. 99]

Maybe the update is irrelevant to the view (definition)

Maybe it is a matter of computing a “delta”

Hopefully without using the whole DB

17

“Inductive” IC checking: [Nicolas 82]

1. Assume D |= ϕ

2. Update D into D′ by a set U of updates

3. What portion of ϕ (if any) has to be checked on D′

(or only D,U)?

Example: With FD : Subordinate → Boss above

Assume D |= FD Instead of checking on D′:
∀xyz(Manager(x, y) ∧Manager(z, y)→ x = z)

1. If U contains only deletions:

Do not check anything

2. If U is insertManager (a, b):

Check on D: ∃x(Manager(x, b) ∧ x �= a)?

General mechanism that relies on syntactic structure of ICs

18

View maintenance and relevant updates: [Blakeley et al. 89]

[Gupta et al. 95]

• Self-maintainable views: View update without accessing base
tables, but instead

current, material state of the view

view definition

the actual updates

possibly ICs on base tables

No need for the updated underlying base data ...

19

Example: (the gist) Schema R(A,B) with FD : B → A

Instance D = {R(a, b), R(c, d), R(e, f)}
View (projection of R on B):2 V (Y)← R(X,Y)

V (D) = {b, d, f}
With update deleteR(a, b), using

the update itself (knowing it has an effect on V)

the pre-update extension of the view

the FD (assumed to be satisfied so far)

we obtain right away the new extension: V (D′) = {d, f}
2On many occasions we use Datalog notation for queries and views

20

• Irrelevant Updates: Determine views that are not affected
by certain classes of updates on base tables

Ignore those updates for view maintenance

The “irrelevant update problem”

Example: (as above, cont.) For the view V (X)← R(X,Y)

Updates of the form changeR[Y](t̄; v) (in tuple t̄ in R change
value for Y into v) are always irrelevant

The irrelevant update problem also appears in IC maintenance:
some updates never lead to inconsistency

For example, for FDs tuple deletions are always irrelevant

21

5. ICs on Views

Having ICs on views could be useful for the tasks above, for
monitoring the DB behaviour through the views, query answe-
ring using views, metadata for interoperability in general ...

The classic problem of deriving ICs for views from view defini-
tions and ICs on base tables [Klug 80, 82]

Example:
Manager Boss Subordinate Salary

ken john 100
john mary 120
peter joe 150

FD : Subordinate → Boss

View V (x, y) : ∃zManager(x, y, z)

From V ’s definition and FD , an IC on V : FDV: Subordinate → Boss

A violation of FDV by view extension indicates a violation of
FD by underlying DB

22

S D ICh S)(IC fS D ICschema S)(ICs for

view V V(D) IC’ (ICs for V)
for all D

view V () ()

?

Problem: Compute the set IC ′ of non-trivial ICs on the view
predicate V such that: D |= IC ⇒ V (D) |= IC ′

There are syntactic techniques for deriving the ICs on views from
ICs on base tables plus view definitions

formal, deductive: For FDs [Klug 80]

tableaux (generic, tabular representations of queries or,
better, query answers) plus chase

For FDs and join constraints [Klug 82]

...

23

Example: (as above, continued)

FD R(A,B,C) : A→ B View: ∀xy(V (x, y)↔ ∃zR(x, y, z))

The FD and view definition produce three clauses:3

¬R(x, y, z) ∨ ¬R(x, v, u) ∨ y = v (1)

¬V (x, y) ∨ R(x, y, f(x, y)) (2)

((2) is one direction of the view definition)

Resolution of (1) and (2) produce

¬V (x, y) ∨ ¬R(x, u, v) ∨ y = u (3)

Now (2) and (3):

¬V (x, y) ∨ ¬V (x, u) ∨ y = u

... the expected FD on V : V (A,B) : A→ B
3(1) is clausal form of ∀xyzvu(R(x, y, z)∧R(x, v, u)→ y = v). In (2), that comes

from the view definition, f(x, y) is Skolem term for the existential quantifier

24

Related problems:

Virtual data integration,
under Global-As-View (GAV)
or Local-As-View (LAV)

Global ICs imposed directly on
the views (global relations)

No guarantee for their satisfac-
tion (data stay at the sources)

S

P Q
R

T

mediator

GAV LAV

What global ICs hold if certain source and inter-source ICs
hold?

What ICs should be imposed on the sources (or combina-
tions thereof) to enforce global ICs?

Main problem: Global ICs cannot be enforced, but are important
for the semantics of the VDIS �→ Deal with them at query time?

25

6. Updates through Views

Another related classic problem in relational DBs

Given:
Base schema S
View definition: ∀x̄(V (x̄) ↔ ϕS(x̄)) (*)

An instance D for S, and extension V (D) for the view

Apply update U on V (D), propagating updates on D, keeping
(*) satisfied

Example: V (x, y) ↔ ∃z(Manager(x, y, z) ∧ z = 100)

Manager Boss Subordinate Salary

ken john 100
john mary 120
peter joe 150

Easy!

Less easy with base ICs, e.g. Manager : Boss, Subordinate → Salary

26

However, for more complex views (defined by more complex
queries) ...

Example: D = {R(a, b), R(c, d), S(b, c)}
V2(x, y)← R(x, z), S(z, y)

U : insertV2(a, d)

D′ = {R(a, b), R(c, d), S(b, c), R(a,NULL), S(NULL, d)}?
Ordinary SQL Nulls? (in joins?)

Arbitrary values from the domain?

Conditional instances? (there could be additional conditions on X below)

D′ = {R(a, b), R(c, d), S(b, c), R(a,X), R(X, d)}
What if also base IC R : A→ B? Should X be b?

27

Disjunctive views?

V3(x, y) ← R(x, y)
V3(x, y) ← S(x, y) U : insertV3(e, d)

D′ = {R(a, b), R(c, d), S(b, c), R(e, d)}?
D′ = {R(a, b), R(c, d), S(b, c), S(e, d)}?
D′ = {R(a, b), R(c, d), S(b, c), R(e, d), S(e, d)}?

Several choices ... Which are the right ones?

It depends on the update semantics (of DBs through views)

It can be a “possible world semantics”

28

A class of intended (admissible, legal) instances D′ that
reproduce the view update U

D

V

V[D]

uV
S S

Preference criteria can be imposed on elements of the class

An old and difficult problem in relational databases

Semantics and algorithms based on assumption of availability of
a view complement [Bancil. et al. 81; Cosm. et al. 84; ...; Lecht. et al. 03]

No standard solution offered/implemented in commercial DBMS

29

In practice:

Some views are considered to be updatable

Restrictions on views make them updatable or not

INSTEAD-OF triggers

Instead of direct view update, update base tables (as in-
dicated by trigger), causing the intended change on the
view

30

Exercise: Read/understand this INSTEAD-OF trigger on a view

Suppose that dept and emp are tables that list departments and employees:

CREATE TABLE dept (

deptno INTEGER PRIMARY KEY,

deptname CHAR(20),

manager_num INT

);

CREATE TABLE emp (

empno INTEGER PRIMARY KEY,

empname CHAR(20),

deptno INTEGER REFERENCES dept(deptno),

startdate DATE

);

ALTER TABLE dept ADD CONSTRAINT(FOREIGN KEY (manager_num)

REFERENCES emp(empno));

The next statement defines manager_info, a view of columns in the dept

and emp tables that includes all the managers of each department:

CREATE VIEW manager_info AS

SELECT d.deptno, d.deptname, e.empno, e.empname

FROM emp e, dept d WHERE e.empno = d.manager_num;

31
The following CREATE TRIGGER statement creates manager_info_insert,

an INSTEAD OF trigger that is designed to insert rows into the dept

and emp tables through the manager_info view:

CREATE TRIGGER manager_info_insert

INSTEAD OF INSERT ON manager_info --defines trigger event

REFERENCING NEW AS n --new manager data

FOR EACH ROW --defines trigger action

(EXECUTE PROCEDURE instab(n.deptno, n.empno));

CREATE PROCEDURE instab (dno INT, eno INT)

INSERT INTO dept(deptno, manager_num) VALUES(dno, eno);

INSERT INTO emp (empno, deptno) VALUES (eno, dno);

END PROCEDURE;

After the tables, view, trigger, and SPL routine have been created,

the database server treats the following INSERT statement as a triggering

event:

INSERT INTO manager_info(deptno, empno) VALUES (08, 4232);

This triggering INSERT statement is not executed, but this event causes the

trigger action to be executed instead, invoking the instab() SPL routine.

The INSERT statements in the SPL routine insert new values into both the emp

and dept base tables of the manager_info view.

http://pic.dhe.ibm.com/infocenter/idshelp/v115/index.jsp?topic=%2Fcom.ibm.sqls.doc%2Fids_sqs_0641.htm

32

Vast literature on different approaches to update through views

Some use KR-based approaches:

• Abductive: Relationship between views V and base tables T
given by view definitions plus base ICs

Observations are the intended view updates (+
−atomV)

Abductibles are +
−atomT , those that explain (cause) the obser-

vations

After “abducing”the +
−atomT from the +

−atomV , execute the
former to give an account of the latter

Abductive logic programming, including ICs [Kakas et al. 90, 92]

• ASPs: Possible worlds as stable models of a disjunctive ASP
specifying how view and base updates are related [LB et al. 13]

33

Remark: In virtual data integration, the corresponding problem
would be updating the sources through the mediator (containing
views under GAV)

Not allowed in general, but see [De Giac. et al. 09]

34

8. Specifying DB Evolution

So far here, we have a logical specification of the DB, but ex-
ternal updates that change the DB

We can integrate everything into a single logical theory that
specifies the DB and its evolution

For that we need the right language

Situation Calculus

A family of languages of many-sorted first-order logic

Used in logic-based KR to describe evolving domains subject to
the execution of actions

Regained popularity in the 90’s due mainly to the work of Ray-
mond Reiter and collaborators [Reiter 01]

35

A simple solution to the frame problem in the SC

Given a specification of precondition and effects of actions,
how to obtain a compact, economical specification of the
many things that are not changed by the actions

Basis for cognitive robotics programs: GOLOG, CONGO-
LOG

36

The Languages

- Domain individual, situations (states), and actions at first-
order level

- First–order quantifications over sorts: ∀x̄, ∀s, ∀a
- S0, name for initial situation

- Function name do: do(a, s) is the successor state that results
from executing action a at state s

- Predicate Poss: Poss(a, s) says that action a is possible at
state s

- Parameterized action terms, e.g. promote(x, p)

- Predicates with situation argument, e.g. Enrolled(x, p, s)

- Static predicates

37

Foundational Axioms for the SC

Unique Names Axioms for Actions: ai(x̄) �= aj(ȳ), for all diffe-
rent action names ai, aj , e.g. delete(id) �= classifyBook(isbn, id ′)

Unique Names Axioms for States: S0 �= do(a, s)

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

For some reasoning tasks the Induction Axiom on States (IA):

∀P (P (S0) ∧ ∀s∀a (P (s)→ P (do(a, s))) → ∀s P (s))

restricts the domain of situations to S0 plus the situations ob-
tained by executing actions

We are usually interested in reasoning about states that are
accessible from S0 by executing a finite sequence of legal actions:

¬s < S0 s < do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′

38

Specifying DB Updates

Stock (isbn, copies)classify (isbn, id)

Classified (isbn, id)

BooksInPrint (isbn, author, title, year, edition)

order (isbn, copies)

Unclassified (isbn, copies)

Update actions: order(isbn, copies), classifyBook(isbn, id),
deleteBook(id)

39

Predicates: BooksInPrint(isbn, title, author , editor , year , edition),
Unclassified(isbn, copies , s), Classified(isbn, id , s),
Stock(isbn, copies , s)

Action Preconditions:

• Poss(order(isbn, copies), s) ≡
(∃ title, author , editor , year , edition)

BooksInPrint(isbn, title, author , editor , year , edition)

• Poss(classifyBook(isbn, id), s) ≡
¬(∃ isbn′) Classified(isbn ′, id , s) ∧

(∃ copies) Unclassified(isbn, copies, s)

40

Successor State Axioms

Solution to the frame problem is based on the use (generation)
of successor state axioms (Reiter 91)

Specify under what conditions each fluent becomes true at an
arbitrary successor state do(a, s)

∀a∀s Poss(a, s) → [R(do(a, s)) ≡ γ+
R (a, s) ∨ (R(s) ∧ ¬γ−

R (a, s))]

R is true at a successor state iff it is made true or it was already
true and it is not made false

This solution relies on the possibility of quantifying over deter-
ministic actions

Actions are syntactically atomic, but semantically complex

In DB applications (Reiter 95), individual actions may result in
several DB updates

41

A SSA

∀a Poss(a, s) −→
(Stock(isbn, j, do(a, s)) ≡

a = delete book(id) ∧
(Classified(isbn, id, s) ∧

∃i (Stock(isbn, i, s) ∧ i > 1 ∧ j = i− 1)) ∨
a = classify book(isbn, id) ∧

(∃i (Stock(isbn, i, s) ∧ j = i+ 1) ∨
¬∃i (Stock(isbn, i, s))∧

j = 1) ∨
Stock(isbn, j, s) ∧

¬(a = delete book(id) ∧
Classified(isbn, id, s) ∧

Stock(isbn, j, s) ∨
a = classify book(isbn, id) ∧

Stock(isbn, j, s)))

(can be constructed from positive and negative effect axioms)

42

Integrity Constraints

Static ICs, e.g. FDs, are sentences that must hold at every legal
state of the database:

DB spec. |= ∀s (S0 ≤ s → ϕ(s))

↑
Th(DB(S0)) ∪ Spec. of Dynamics

For example, for a FD it should hold

DB spec. |= ∀S0 ≤ s → (Classified(isbn1, id, s) ∧
Classified(isbn2, id, s) → isbn1 = isbn2)

Induction principle for proving static ICs can be derived:

∀P ([P (S0) ∧ ∀s∀a(P (s) ∧ Poss(a, s) → P (do(a, s))] →
∀s(S0 ≤ s → P (s)))

43

Similar treatment for dynamic ICs:

A person’s salary cannot decrease:

∀s, s′(S0 ≤ s ≤ s′ → (Salary(x, p, s) ∧ Salary(x, p′, s′) → p ≤ p′))

ICs proved by automated mathematical induction [LB et al. 96]

44
Specifying the Dynamics of Relational Views

Given a specification of DB dynamics in terms of SSAs

Automatically derive SSAs for (relational calculus) views

Applications to view and database maintenance [Arenas et al. 98]

Can be extended to aggregate views

Combination with hypothetical reasoning? “What if” queries?

Hypothetical Database Reasoning [Arenas et al. 02]

Queries in first-order past temporal logic about a whole evolution
of the database

Application to transformation of dynamic ICs into static ICs

Application to transformation of history dependent actions into
“Markovian” actions

45

Change and Ontologies

Complex actions can be constructed from basic actions (cf. GO-
LOG)

It is possible to derive SSAs from complex actions [Fritz et al. 08]

They and GOLOG used for composition of semantic web services
[McIlr. et al. 02]

Actually, generic ontologies (ontology languages) have been pro-
posed for specifying action and change

General ontologies Og for high-level descriptions of action pre-
conditions, actions effects, etc. (e.g. OWL-S, FLOWS)
[Martin et al. 07, Grün. et al. 08]

46

Specific theoriesOs of action and change (as in the library exam-
ple above) can feed Og

The combination can be applied to specify the evolution of an
initially static domain, e.g. a database D

A three-layered approach ...

47

7. Inconsistency Handling

What If the database is inconsistent?

Inconsistencies can be detected, and data can be changed to
reach a physical consistent state

This kind of data cleaning may be difficult, impossible, nonde-
terministic, undesirable, unmaintainable, etc.

We may have to live with inconsistent data ...

The database (the model) is departing from the outside reality
that is being modeled

However, the information is not all semantically incorrect

Most likely most of the data in the database are still “consistent”

48

Idea:

(a) Keep the database as it is

(b) Obtain semantically meaningful information at query time;
dealing with inconsistencies on-the-fly

Particularly appealing in virtual data integration ...
(no direct access to the data sources)

This requires: [LB 11]

(a) Logically characterizing consistent data within an inconsis-
tent database

Via database repairs: Consistent instances that minimally
depart from the original instance

Consistent data is invariant across the class of all repairs

(b) Developing algorithms for retrieving the consistent data:
Consistent query answering

49

Example: For the instance D that violates
FD : Name → Salary

Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of
whole tuples are allowed: D1, resp. D2

Employee Name Salary

page 5K
smith 3K
stowe 7K

Employee Name Salary

page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not; actually it participates in the violation of
FD

50

A consistent answer to a query Q from a database D is an
answer that can be obtained as a usual answer to Q from every
possible repair of D wrt IC (a given set of ICs)

Q1 : Employee(x, y)?

Consistent answers: (smith, 3K), (stowe, 7K)

Q2 : ∃yEmployee(x, y)?

Consistent answers: (page), (smith), (stowe)

CQA may be different from classical data cleaning!

However, CQA is relevant for data quality; an increasing need
in business intelligence

It also provides concepts and techniques for data cleaning

Paradigm shift: ICs are constraints on query answers, not on
database states!

51

Depending on the ICs and the queries, tractable and intractable
cases for CQA have been identified

That it may be intractable is not unthinkable: there could be
many repairs and we have to query each of them (at least con-
ceptually)

D

repairs of D

query Q

consistent answers?
usual answers?

For some tractable cases, query rewriting algorithms have been
developed

52

D

repairs of D

query Q

consistent answers?
usual answers?

X

rewritten query Q’

usual answers?

Q(x, y) : Employee(x, y) �→
Q′(x, y) : Employee(x, y) ∧ ¬∃z(Employee(x, z) ∧ z �= y)

Pose the second query to the inconsistent database to
obtain the consistent answers to the first query

Q is conjunctive query, but Q′ is not, but still evaluable in poly-
nomial time in the size of the DB

When the rewritten query Q′ is a relational calculus (i.e. FO)
query, CQA is tractable ...

53

For higher-complexity cases, specifications of repairs by means
of logic programs with stable model semantics can be used

CQA becomes querying (as usual) a logic program, say a Data-
log program with possible complex extensions

The boundary between tractable and intractable cases of CQA
has to be understood, in particular, to know the scope of
applicability of FO query rewriting

54

CM& Morgan Claypool Publishers&

SYNTHESIS LECTURES ON DATA MANAGEMENT

M. Tamer Özsu, Series Editor

Database Repairing
and Consistent Query
Answering

Leopoldo Bertossi

2011

55

References:

[Arenas et al. 98] Arenas, M., Bertossi, L. The Dynamics of Database Views. In
‘Transactions and Change in Logic Databases’, Springer LNCS 1472, (1998)

[Arenas et al. 02] Arenas, M., Bertossi, L. Hypothetical Temporal Queries in
Databases. Journal of Intelligent Information Systems, 2002, Volume 19, Number
2, pp. 231-259.

[Bancil. et al. 81] Francois Bancilhon, Nicolas Spyratos: Update Semantics of
Relational Views. ACM Trans. Database Syst. 6(4): 557-575 (1981)

[LB et al. 96] Bertossi, L., Pinto, J., Saez, P., Kapur, D., Subramaniam, S. Auto-
mating Proofs of Integrity Constraints in the Situation Calculus. In ‘Foundations
of Intelligent Systems’, Proc. ISMIS’96, Springer LNAI 1079 (1996)

[LB et al. 13] Leopoldo Bertossi, Lechen Li: Achieving Data Privacy through
Secrecy Views and Null-Based Virtual Updates. IEEE TKDE, 2013.

[LB 11] Leopoldo Bertossi: Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers (2011)

56

[Blakeley et al. 89] Jose Blakeley, Neil Coburn, Per-Ake Larson: Updating Derived
Relations: Detecting Irrelevant and Autonomously Computable Updates. ACM
Trans. Database Syst. 14(3): 369-400 (1989)

[Cosm. et al. 84] Stavros S. Cosmadakis, Christos H. Papadimitriou: Updates of
Relational Views. J. ACM 31(4): 742-760 (1984)

[De Giac. et al. 09] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Pog-
gi, Riccardo Rosati: On Instance-level Update and Erasure in Description Logic
Ontologies. J. Log. Comput. 19(5): 745-770 (2009)

[Fritz et al. 08] Fritz, C.; Baier, J. A.; and McIlraith, S. A. ConGolog, Sin
Trans: Compiling ConGolog into Basic Action Theories for Planning and Beyond.
Proceedings KR’08 (2008)

[Godfrey et al. 98] Parke Godfrey, John Grant, Jarek Gryz, Jack Minker: Integrity
Constraints: Semantics and Applications. In Logics for Databases and Information
Systems, 1998: 265-306

[Greco et al. 12] Sergio Greco, Cristian Molinaro, Francesca Spezzano: Incom-
plete Data and Data Dependencies in Relational Databases. Morgan & Claypool
Publishers (2012)

57

[Grün. et al. 08] Michael Grüninger, Richard Hull, Sheila A. McIlraith. Bull. IEEE
CS on Data Engineering (2008)

[Gupta et al. 95] Ashish Gupta, Inderpal Singh Mumick: Maintenance of Ma-
terialized Views: Problems, Techniques, and Applications. IEEE Data Eng. Bull.
18(2): 3-18 (1995)

[Gupta et al. 99] Ashish Gupta, Inderpal Singh Mumick (eds.): Materialized
Views. Morgan Kaufmann (1999)

[Imielinski et al. 84] Tomasz Imielinski, Witold Lipski Jr.: Incomplete Information
in Relational Databases. J. ACM 31(4): 761-791 (1984)

[Kakas et al. 90] Antonis C. Kakas, Paolo Mancarella: Database Updates through
Abduction. VLDB 1990: 650-661

[Kakas et al. 92] Antonis C. Kakas, Robert A. Kowalski, Francesca Toni: Ab-
ductive Logic Programming. J. Log. Comput. 2(6): 719-770 (1992)

[Klug 80] Anthony C. Klug: Calculating Constraints on Relational Expressions.
ACM Trans. Database Syst. 5(3): 260-290 (1980)

58

[Klug 82] Anthony C. Klug, Rod Price: Determining View Dependencies Using
Tableaux. ACM Trans. Database Syst. 7(3): 361-380 (1982)

[Lecht. et al. 03] Jens Lechtenboerger, Gottfried Vossen: On the computation of
relational view complements. ACM Trans. Database Syst. 28(2): 175-208 (2003)

[Martin eta al. 07] David Martin, Mark Burstein, Drew McDermott, Sheila McIl-
raith, Massimo Paolucci, Katia Sycara, Deborah L. McGuinness, Evren Sirin, Na-
veen Srinivasan: Bringing Semantics to Web Services with OWL-S. World Wide
Web 10:243-277 (2007)

[McIlr. et al. 02] McIlraith, S., and Son, T. Adapting Golog for Composition of
Semantic Web Services. 2002. Proc. KR’02 (2002)

[Reiter 84] Raymond Reiter: Towards a Logical Reconstruction of Relational
Database Theory. In “On Conceptual Modeling”, M. Brodie, J. Myolopoulos, J.
Schmidt (eds.), Springer (1984)

[Reiter 92] Raymond Reiter: What Should a Database Know? J. Log. Program.
14(1&2): 127-153 (1992)

59

[Reiter 01] Raymond Reiter: Knowledge in Action: Logical Foundations for Spe-
cifying and Implementing Dynamical Systems, MIT Press (2001)

[Widom et al. 95] J. Widom, S. Ceri. Active Database Systems: Triggers and
Rules for Advanced Database Processing. Morgan Kaufmann (1995)

Characterizing and
Computing Consistent

Information from Databases1

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

1Chapter 2 of PhD Course at U. Calabria, Arcavacata, 2013.

2

Why Consistent Query Answering?

A (relational) database instance D may be inconsistent

It does not satisfy a given set of integrity constraints IC : D �|= IC

D is a FO structure, that is identified with a finite set of ground
atoms of the FO language associated to the relational schema

However, we do not throw D away

Most of the data in it is still consistent, i.e. intuitively and in-
formally, it does not participate in the violation of IC

We can still obtain meaningful and correct answers from D

3

Initial motivation for the research in “Consistent Query
Answering” (CQA) was to:

Characterize in precise terms the data in D that is consis-
tent with IC

Develop mechanisms for computing/extracting the consis-
tent information from D

More specifically, obtain answers to queries from D that
are consistent with IC

This research program was explicitly started in this form in
(Arenas, Bertossi, Chomicki; Pods 1999)

4

Consistent Answers and Repairs: The Gist

Example: Database instance D and FD : Name → Salary

Employee Name Salary
Page 5K
Page 8K
Smith 3K
Stowe 7K

D violates FD through the tuples with Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

Repairs D1, resp. D2

5

Employee Name Salary

Page 5K
Smith 3K
Stowe 7K

Employee Name Salary

Page 8K
Smith 3K
Stowe 7K

(Stowe, 7K) persists in all repairs, and it does not participate
in the violation of FD ; it is invariant under these minimal ways
of restoring consistency

(Page, 8K) does not persist in all repairs, and it does participate
in the violation of FD

6

A Long and Fruitful Research Trajectory

Along the way and with collaborators and by other authors se-
veral problems were attacked and many research issues raised

Extensions of mechanisms proposed in (Arenas et al.; Pods 1999)

Computational complexity analysis of CQA

Alternative (but related) characterizations of consistent
answer

Other kinds of repairs, special kinds of ICs, special kinds
of data and data models

Implementations efforts

Conceptual/theoretical applications to data integration, peer
data exchange, etc.

7

Logical formalization of reasoning with consistent data wrt
inconsistent databases

Understanding the “logical laws” of consistent query ans-
wering in databases

Extension of notions and techniques to other kinds of
“databases”: DL ontologies, ...

8

Fixed: DB schema with (infinite) domain; and a set of FO ICs IC

Definition: A repair of instance D is an instance D′

over the same schema and domain

satisfies IC : D′ |= IC

Makes Δ(D,D′) := (D �D′) ∪ (D′ �D) minimal wrt
set inclusion

Definition: Tuple of constants t̄ is a consistent answer to query
Q(x̄) in D iff

t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |=
IC
Q(t̄) :⇐⇒ D′ |= Q(t̄) for every repair D′ of D

A model-theoretic definition ... (Arenas et al.; Pods 1999)

9

Example: (continued)

D |=
FD

Employee(Stowe, 7K)

D |=
FD

(Employee(Page, 5K) ∨ Employee(Page, 8K))

D |=
FD
∃xEmployee(Page , x)

Example: D = {P (a, b), Q(c, b)}, IC :∀x∀y(P (x, y)→ Q(x, y))

The repairs are:

D1 = {Q(c, b)} with Δ(D,D1) = {P (a, b)}
D2 = {P (a, b), Q(a, b), Q(c, b)} withΔ(D,D2) = {Q(a, b)}

But not D3 = {P (a, b), Q(a, b)}, because
Δ(D,D3) = {Q(a, b), Q(c, b)} � Δ(D,D2)

10

D
ICs

D4

D1
D3

D2

Repairs of D
A possible world semantics

What is consistently true is what is true in (the class of) all
repairs, simultaneously

A model-theoretic definition, in terms of intended models (ins-
tances in this case)

Can we specify this class and reason from the specification?

11

Computing Consistent Answers?

We want to compute consistent answers, but not by computing
all possible repairs and checking answers in common

Retrieving consistent answers via explicit and material compu-
tation of all database repairs may not be the right way to go

Example: An inconsistent instance wrt FD : X → Y

D X Y

1 0
1 1
2 0
2 1
· ·
n 0
n 1

It has 2n possible repairs!

Try to avoid or minimize computation of repairs ...

12

FO Query Rewriting (sometimes)

First-Order queries and constraints

Approach: Transform the query and keep the database instance!

Consistent answers to Q(x̄) in D?

Rewrite query: Q(x̄)
−→ Q′(x̄)
Q′(x̄) is a new FO query

Retrieve from D the (ordinary) answers to Q′(x̄)

13

Example: D = {P (a), P (b), Q(b), Q(c)}
IC : ∀x(P (x)→ Q(x))

Q(x): P (x)? (consistent answer should be (b))

If P (x) holds, then Q(x) must hold

An answer t to P (x) is consistent if t is also answer to Q(x)

Rewrite Q(x) into Q′(x) : P (x)∧Q(x) and pose it to D

Q(x) is a residue of P (x) wrt IC

Residue obtained by resolution between query literal and IC

Posing new query to D (as usual) we get only answer (b)

Appending the residue is like locally enforcing the IC!

14

Example: (continued) Same FD :

∀xyz (¬Employee(x, y) ∨ ¬Employee(x, z) ∨ y = z)

Q(x, y): Employee(x, y)

Consistent answers: (Smith, 3K), (Stowe, 7K)
(but not (Page, 5K), (Page, 8K))

Can be obtained via rewritten (FO but not conjunctive) query:

T (Q(x, y)) := Employee(x, y) ∧
∀z (¬Employee(x, z) ∨ y = z)

Equivalent to: Employee(x, y) ∧
¬∃z (Employee(x, z) ∧ y �= z)

... those tuples (x, y) in the relation for which x does not have
and associated z different from y ...

15

We have seen that already with simple FDs, we can have
exponentially many repairs

However, for some queries consistent answers wrt FDs can be
computed in polynomial time

Because the rewritten query is posed to the original database as
a usual query written in relational calculus

16

In general, T has to be applied iteratively

Example:

IC : {R(x) ∨ ¬P (x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}
Q(x): Q(x)

T 1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P (x)) ∧ P (x)
Apply T again, now to the appended residues

T 2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P (x))) ∧ T (P (x))
T 2(Q(x)) = Q(x) ∧ (R(x) ∨ (¬P (x) ∧ ¬Q(x))) ∧ P (x)∧

(R(x) ∨ ¬Q(x))
And again:

17

T 3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P (x) ∧ T (¬Q(x)))) ∧
P (x) ∧ (T (R(x)) ∨ T (¬Q(x)))

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain

T 3(Q(x)) = T 2(Q(x)) A finite fixed point!

Does it always exist?

In general, an infinitary query:

T ω(Q(x)) :=
⋃

n<ω

{T n(Q(x))}

Is T ω sound, complete, finitely terminating?

Several sufficient and necessary syntactic conditions on ICs and
queries have been identified for these properties to hold

(Arenas et al.; Pods 1999)

18

For the sake of this presentation, we can mention that iterative
application of T is correct and semantically finitely terminating
when (sufficient):

Each element of IC is simultaneously
• Universal: universal closure of disjunctions of literals

• Binary: at most two database literals plus built-ins

• Uniform: every variable in a literal appears in some
other literal

Queries are projection-free conjunctions of literals

Example:

IC = {∀xy(P (x, y)→ R(x, y)), ∀xy(R(x, y)→ P (x, y)),
∀xyz(P (x, y) ∧ P (x, z)→ y = z)}

Q(x, y) : R(x, y) ∧ ¬P (x, y)

19

Some Limitations:

T ω does not work for full FO queries and ICs

T is defined and works for some special classes of queries
and integrity constraints

ICs are universal, which excludes referential ICs

T does not work for disjunctive or existential queries, e.g.
∃y Employee(Page, y)?

T may not give us a FO rewriting, but other approaches to FO
query rewriting are in principle possible (cf. later)

20

What are the limitations of FO query rewriting for CQA?

Applicable to T and any other possible attempt?

CQA based on first-order query rewriting has provable intrinsic
limitations

This is because the complexity of CQA may be intrinsically
higher than polynomial (cf. later)

21

What Kind of Logic for CQA?

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)
• Derive algorithms for consistent query answering

Notice that consistent query answering is non-monotonic

A non-monotonic semantics for Spec and its logic is expected

22

Example: Database D and FD : Name → Salary

Employee Name Salary
Page 5K
Smith 3K
Stowe 7K

It holds: D |=
FD

Employee(Page, 5K)

However
D ∪ {Employee(Page, 8K)} �|=

FD
Employee(Page, 5K)

(What other logical properties of CQA reasoning/entailment?)

What kind of logic can be used to specify repairs?

Not classical logic, which is monotonic, i.e. for which it holds:

Σ |= ϕ ⇒ Σ ∪ {ψ} |= ϕ

23

It is possible to specify the repairs of a database wrt FO ICs
as the models of disjunctive logic programs with stable model
semantics, aka. disjunctive answer set programs (cf. later)

(DASP = disjunctive ASPs)

We can immediately obtain some complexity upper bounds from
general results for query answering from DASPs (cf. later)

24

Complexity of CQA

• When a FO query rewriting approach works (e.g. correct and
finitely terminating in case of T ω), consistent answers to FO
queries can be computed in PTIME in data

That is, for fixed queries and ICs, but varying database instances
(and their sizes)

• The problem of CQA is a decision problem:

CQA(Q(x̄), IC) := {(D, t̄) | D |=IC Q(t̄)}
(usually conjunctive queries)

The decision problem is parameterized by the ICs and the query

If the queries are boolean (i.e. yes/no, no free variables, senten-
ces) only D matters

25

• Query answering from DASPs under skeptical stable models
semantics is ΠP

2 -complete in data
(Dantsin, Eiter, Gottlob, Voronkov; ACM CSs 2001)

This provides an upper bound for data complexity of CQA

• The decision problem of repair checking is

RCh(IC) := {(D,D′) | D′ is a repair of D wrt IC}
Notice that the test involves checking minimality ...

• Complexity of checking if a set of database atoms (a subset
of the Herbrand base) is a stable model of a DASP is coNP-
complete in data

This provides an upper bound for repair checking

26

• There are classes of DASPs for which these decision problems
have lower complexity

The head-cycle free programs (HCF) are DASPs with special
syntactic properties

HCF DASPs can be transformed into a (non-disjunctive) normal
program with the same stable models (same repairs in our case)

For HCF programs, query answering under skeptical semantics
becomes coNP-complete; and stable model checking in PTIME

• For some classes of ICs, repair programs become HCF

For sets IC of denial constraints, the DASPs are HCF

This includes

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z �= y)

27

Also FDs ... ∀xy¬(R(x, y) ∧R(x, z) ∧ z �= y)

And we have better upper bounds for the two decision problems
above

For FDs and key-constraints CQA and repair checking have
upper-bounds coNP and PTIME in data

• Actually, it is easy to give a direct proof of tractability of
repair checking for FDs

For FDs (and denials in general), repairs are maximal subsets of
the original instance

28

To check if a subset D′ of original D:

1. Check if it is consistent (easy, just a query)

2. Check if can be extended with tuples in D�D′ while still
being consistent (easy)

These methodology also applies to denial constraints in general

29

Closing and Understanding the Gap

The complexity bounds above leave plenty of room for a
potentially lower data complexity

ΠP
0 := ΣP

0 := ΔP
0 := P

Δ
P
i+1 := P

ΣP
i

Σ
P
i+1 := NP

ΣP
i

ΠP
i+1 := coNPΣP

i

ΠP
2 = coNPNP

P

NPco-NP

2
P

PSPACE

.

.

. second level of the
polynomial hierarchy

NP complete

co-NP complete

Po
ly

no
m

ia
l

H
ie

ra
rc

hy

EXPTIME

NPcoNP

P
2

P
2

P

decidable

30

• First explicit analysis of complexity of CQA was done for ato-
mic scalar (no group-by) aggregate queries and FDs
(cf. later) (Arenas, Bertossi, Chomicki; ICDT 2001)

Graph-theoretic methods were applied

Given a set of FDs FD and an instance D, the conflict graph
CGFD(D) is an undirected graph:

Vertices are the tuples R(t̄) in D

Edges are of the form {R(t̄1), R(t̄2)} for which there is
a dependency in FD that is simultaneously violated by
R(t̄1), R(t̄2)

31

Example: Schema R(A,B) FDs: A→ B and B → A

Instance D = {R(a1, b1), R(a1, b2), R(a2, b2), R(a2, b1)}
(a1, b1) (a1,b2)

(a2, b1) (a2, b2)

Repairs: D1 = {(a1, b1), (a2, b2)} and D2 = {(a1, b2), (a2, b1)}
Each repair of D corresponds to a maximal independent set in
CGFD(D)

Each repair of D corresponds to a maximal clique in the
complement of CGFD(D)

This graph-theoretic analysis was applied to the complexity of
FO conjunctive queries and FDs

32

Also to denial constraints; actually using conflict hypergraphs
(Chomicki et al.; I&C 2005)

R(7,1)

S(1,3)

T(7,3)

A hyper-edge connecting three
simultaneously conflicting tuples

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z �= y)

Vertices are the DB tuples, and their “simultaneous semantic
conflicts” under denial ICs are the hyperedges

As before, repairs correspond to set-theoretically maximal
independent sets

33

• In a series of papers and using graph-theoretic methods,
PTIME algorithms for CQA were provided

Graph-theoretic methods applied to repairs (conflict graphs or
hypergraphs) or to syntactic structure of queries

(In those cases where CQA can be solved in PTIME, repair
checking can be solved in PTIME too)

1. FDs and projection-free conjunctive queries

Also some conjunctive queries with limited projection
(Chomicki et al., I&C 2005)

2. Key Constraints (KCs) and some syntactic classes of
conjunctive queries with restricted projection

(Fuxman, Miller; ICDT 2005)

34

Classes defined by the graph-theoretic syntactic structure
of the query and its interaction with the KCs

Actually, for every query Q in their class, Cforest , there is a
FO rewriting Q′ for CQA

Q : ∃x∃y∃z(R(x, z) ∧ S(z, y))
→
Q′ : ∃x∃z′(R(x, z′) ∧ ∀z(R(x, z)→ ∃yS(z, y)))

(underlined variables show the key for the relation, as usual)

Most of the research has concentrated on boolean
conjunctive queries as above, i.e. without free variables

They get Yes/No answers (the complexity is the same as
for non-boolean queries)

35

3. As in 2., but extending the class of queries (rooted queries)

Same property of FO rewritability (Wijsen; DBPL 2007)

Classes of queries above are rather sharp, i.e. not satisfying
some of their syntactic conditions increases complexity

(For more details, and complete and up-to-date references see my monograph;

also (Wijsen; PODS 2013) for more recent results)

• In all those cases, the query was also FO rewritable for CQA

However, PTIME CQA based on graph algorithms (or anything
else) does not imply FO query rewriting ...

• Repair checking is PTIME for arbitrary FDs and acyclic in-
clusion dependencies (deletion-based repair semantics)

(Chomicki et al., I&C 2005)

36

What about lower bounds?

• Consistent conjunctive query answering wrt FDs is coNP-
complete

To prove this we need to prove that the complement of this
problem is NP-complete

For membership, notice:

t̄ is not a consistent answer to Q(x̄) iff there is a repair D′

such that D′ �|= Q(t̄)
Such a witness D′ is “short” and can be checked in PTIME (wrt
to being repair and not making the query true)

For hardness, see later ...

37

However, in general terms we need a reduction, e.g. from SAT:

Fix the schema, ICs and boolean query Q
The only variable part is the (inconsistent) instanceD (and
the candidate answer when query non-boolean)

To a propositional formula ϕ in CNF, efficiently associate
an instance D

ϕ is satisfiable iff Yes is not the consistent answer to Q in
D

• For KCs and conjunctive queries (with some forms of
projection) CQA becomes coNP-complete

Q : ∃z∃y∃z(R(x, z) ∧ S(y, z))
(Chomicki et al.; I&C 2005), (Fuxman et al.; ICDT 2005), (Wijsen; DBPL 2007)

38

• For arbitrary FDs and inclusion dependencies (deletions only)
(Chomicki et al., I&C 2005)

Repair checking becomes coNP-complete

CQA becomes ΠP
2 -complete

Notice that this matches the complexity of skeptical reasoning
for DASPs

• However, for arbitrary universal ICs and RICs (even cyclic),
CQA becomes ΠP

2 -complete if RICs are repaired with non-
propagating SQL nulls (Bravo, Bertossi; IIDB 2006)

• For arbitrary FDs and inclusion dependencies (including RICs),
“combined” CQA becomes undecidable (Cali, Lembo, Rosati; Pods’03)

Here, inclusion dependencies are solved by insertions

39

• FO Rewriting vs. PTIME

There are sets of KCs K and conjunctive queries Q for which
CQA is in PTIME, but there is no FO rewriting of Q for CQA

Q : ∃x∃y(R(x, y) ∧ R(y, c)) (Wijsen; DBPL 2007)

Using Ehrenfeucht-Fraisse games

EFGs are used to prove that two structures D1, D2

satisfy the same FO-sentences, i.e. that they are elementary
equivalent (D1 ≡FO D2)

In our case, two inconsistent instances D1, D2 for same schema
and KCs as above

If one of them, D1, Yes is the consistent answer to Q, but for
D2, No is the consistent answer (i.e. false in some repair of D2)

40

The original query cannot be FO rewritable into a new boolean
FO query Q′

Both D1 and D2 would have to satisfy Q′ or not, so they would
have the same consistent answer ...

In which PTIME logic can the rewriting be done (if any)?

41

Newer Emphasis

Most of the results mentioned above can be seen from a higher-
level perspective

• As contributions to two more general problems that have
started to be addressed: (Wijsen; TODS’12) (Kolaitis, Pema; IPL’12)

(A) Find an algorithm that takes as input a boolean FO queryQ
(with a given set of key constraints KC which are indicated
together with the query), and decides whether CQA(Q) is
FO definable (i.e. there is a FO rewriting)

(B) Find an algorithm that takes as input a boolean FO query
Q, and decides whether CQA(Q) is in PTIME or coNP -
complete (i.e. tractable or intractable)

Neither may be the case: If PTIME �= coNP , there are
problems in coNP � P that are not coNP-complete

42

• Research on the above problems (A) and (B) has focused on
conjunctive queries

Additional restrictions are often imposed:

(a) Q must be acyclic (in the classical sense); and/or

(b) Q has no self-join, meaning that every relation name occurs
at most once in Q

• Problem (A) has been solved under both restrictions
(Wijsen; TODS’12)

For this class of queries, the decision boundaries in (A) and (B)
do not coincide:

For the conjunctive query Q : ∃x∃y(R(x, y) ∧ S(y, x)), CQA(Q)
is in PTIME , but not FO definable
(different from the one on page 39, that has self-joins)

43

• More queries with this property have later been identified
(Kolaitis, Pema; IPL’12)

The class of acyclic conjunctive queries without self-joins,
notwithstanding its restrictions, remains a large class of prac-
tical interest

• Relatively little is known about CQA(Q) for conjunctive
queries Q that are cyclic and/or contain self-joins

As mentioned above, FO definability of CQA(Q) is guaranteed
for all conjunctive queries Q belonging to the semantic class of
key-rooted conjunctive queries

Key-rooted queries can be cyclic and contain self-joins

However, no algorithm is known to test whether a conjunctive
query is key-rooted

44

• Concerning problem (B), it is an open conjecture that for
every conjunctive query Q without self-join, it is the case that
CQA(Q) is in PTIME or coNP -complete

An open dichotomy conjecture ...

Not anymore????? A recently submitted paper claims to have
settled the conjecture, positively ...

• For a class of conjunctive queries with two atoms, a dichotomy
result for CQA, i.e. about being in PTIME or being coNP-
complete, has been obtained (Kolaitis, Pema; IPL’12)

45

Beyond Data Complexity

• For arbitrary FDs and inclusion dependencies (including RICs),
CQA becomes undecidable (Cali, Lembo, Rosati; Pods 2003)

Issues:

Three parameters (ICs, query, and DB) are input

Inclusion dependencies repaired through insertions

Infinite underlying domain that can be used for insertions

Cycles in the set of inclusion dependencies

Problematic interaction of FDs and RICs

46

• Different combinations of input parameters
(Arenas, Bertossi; AMW’10)

Relational schema S, IC finite set of ICs, D database instance,
Q a boolean query:

d -CQA(IC ,Q) = {D | D |=IC Q}
ic-CQA(D,Q) = {IC | D |=IC Q}
q-CQA(D, IC) = {Q | D |=IC Q}

There are S, D,Q with ic-CQA(D,Q) undecidable

Reduction from SAT c for finite structures

Negative literal query; ICs in correspondence with FO sen-
tences checked for non-satisfaction

For any schema S with domain N, there are schema S ′ ⊃ S
with same domain and <, D over S ′, and IC in L(S ′), with
q-CQA(D, IC) undecidable

Reduction from SAT to q-CQA(D, IC)c

47

There are schema S, with domain containing N and <,
IC , and query Q with d -CQA(IC , Q) undecidable

Encode halting problem for Turing machines

ICs are universal

For finite, universal and domain independent IC and do-
main independent FO queries Q(x̄): easily ...

CQA := {(IC , D,Q(x̄), t̄) | D |=IC Q(t̄)} is decidable
An extreme “combined” case of CQA; naive algorithm is
exponential

There are S,Q such that, for domain independent universal
ICs ϕ, the combined problem

(d, ic)-CQA(Q) := {(D, {ϕ}) | D |={ϕ} Q}
is coNEXP-complete

48

Reduction from SAT for Bernays-Schoenfinkel’s class of
FO sentences to CQA(Q)c
(Actually, a subclass with same lower bound that allows for
specification of bounded tiling problems)

Logical Specifications of
Database Repairs1

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

1Chapter 3 of PhD Course at U. Calabria, Arcavacata, 2013.

2

The Reason Why ...

We have seen that a DB may have multiple repairs wrt a set of
ICs

What is consistent in the DB wrt the ICs is what is true in all
of them

That is, what is certain ...

How to handle and reason about all repairs?

Axiomatize them ... (by means of logical formulas)

As groups and vector spaces in math ...

In this case, we say that we specify them

And we may have to use special, adequate logics L

3

If T is such a theory (axiomatization), we expect the repairs D′

to be the models of T
D′ is repair ⇐⇒ D′ |=L T

(here |=L used for satisfaction)

That is, those structures that make T true (according to the
semantics of the logic)

Then, a statement (formula) ϕ is true in all repairs (i.e. consis-
tent) if it is a logical consequence of T :

ϕ is true in every repair D′ ⇐⇒ T |=L ϕ

(here |=L used for logical entailment)

So, obtaining/confirming consistent knowledge becomes logical
reasoning with/from specification T !

4

Another crucial issue:

Independently from the logical representation, consistent know-
ledge from a DB exhibits a non-monotonic behavior

Example: Consider schemaR(X,Y), instanceD = {R(a, b), R(c, d)}
and the FD X → Y

Consistent answers to query R(x, y)?: (a, b), (c, d)

If we add tuple R(a, e), then we lose the consistent answer (a, b)

That is, previous conclusions may have to be retracted when
new knowledge is added

Classical logic is monotonic: Σ |= ϕ =⇒ Σ ∪ {ψ} |= ϕ

So, we need a non-monotonic logic! (then, non-classical)

5

A. Specifying Repairs in APC

6

Annotated Predicate Logic and DBs

We want to specify database repairs, by means of a consistent
theory

The database instance D (seen as Reiter’s FO theory) and the
set of integrity constraints IC are mutually inconsistent

Use a different logic, that allows generating a consistent theory!

Use annotated predicate calculus (APC)
[Kifer & Lozinskii; J. Aut. Reas. 92]

Inconsistent classical theories can be translated into consistent
annotated, non-classical theories

(classical = with syntax/semantics of FO predicate logic)

7

Example: Instance D:
Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,000
Irwin Pearson Salesman 2,500
John Miller Salesman 1,600

Integrity constraints IC : universally quantified sentences (im-
plicitly)

Employee(x, y, z) ∧ Employee(x, u, v)→ y = u

Employee(x, y, z) ∧ Employee(x, u, v)→ z = v

Or, universally quantified disjunctions of DB literals plus built-
ins

E.g. ¬Employee(x, y, z) ∨ Employee(x, u, v) ∨ y = u

8

D has two repairs:

Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,000
John Miller Salesman 1,600

Employee

Name Position Salary

Steven Lerman CEO 4,000
Irwin Pearson Salesman 2,500
John Miller Salesman 1,600

Want to create an APC theory T (D, IC) from D and IC ...

9

Usual annotations in APC:

true (t), false (f), contradictory (�), unknown (⊥)

t f

4-value lattice

Atoms in an APC theory are annotated with truth values, at the
object (syntactic) level, e.g. we could have

Employee(Steven Lerman,CEO , 4000):t

Employee(Irwin Pearson, Salesman, 2000):f

Employee(V .Smith,CIO , 3000):�

10

Embed both D and IC into a single consistent APC theory
[Arenas, Bertossi, Kifer; DOOD 00]

ICs are hard, not to be given up

Data is flexible, subject to repairs

In case of conflict between the constraint and the data-
base the advise is to change the truth value to the value
prescribed by the constraint

We need a more refined lattice that the one above ...

Choose an appropriate truth values lattice Lat

11

Database values: td, fd

Constraint values: tc, fc

Advisory values: ta, fa

⊥

fc td fd tc

fa f t ta

�

Intuitively, ground atoms A for
which A:ta or A:fa become
true are to be inserted into, resp.
deleted from D

They advise to solve conflicts between d-values and c-values in
favor of c-values

12

Navigation in the lattice plus an adequate definition of APC
formula satisfaction help solve the conflicts between database
facts and constraint facts

For every s ∈ Lat: ⊥ ≤ s ≤ �
lub(t, f) = �, lub(tc, fd) = ta, etc.

Use Herbrand structures, i.e sets of ground annotated atoms,
with the DB domain as the universe

Formula satisfaction: I a structure, s ∈ Lat, A a classical
atomic formula

I |= A:s iff there exists s′ ∈ Lat such that A:s′ ∈ I
and s ≤ s′

For other formulas, as usual in FO logic

13

Generate an APC theory T (D, IC) embedding D and IC into
APC:

Translate the constraint:

¬Employee(X,Y) ∨ ¬Employee(X,Z) ∨ Y = Z

into

Employee(X,Y):fc ∨ Employee(X,Z):fc ∨ Y = Z:t

Translate database facts, e.g. Employee(J .Page , 5000)
into Employee(J .Page, 5000):td

Plus axioms for unique names assumption, closed world
assumption, ...

Due to the notion of satisfaction, we concentrate on models that
have their atoms annotated with ta, fa, t or f only

(It can be proved that an atom in a model of the theory is never annotated with

�, that is, our theory is epistemologically consistent)

14

Transition to Non-Monotonicity

We haven’t captured the non-monotonic behavior that CQA
should exhibit Where is it?

A general fact: When we reason with a subclass of special or
intended models of a theory, logical consequence wrt the theory
becomes non-monotonic

Intended usually means “minimal” in some sense ...

So, we need to identify a subclass of intended models of the
APC theory above ...

Models(Spec)

Special (minimal)
models of Spec

Min-Models(Spec)

I |= ϕ replaced by I |=MinMod ϕ

15

It can be proved that the database repairs correspond to the
models of Spec that make true a minimal set of atoms annotated
with ta, fa

Change a minimal set of database atoms!!!

Reasoning with the minimal models of T (D, IC) makes reaso-
ning non-monotonic, as expected

From the specification T (D, IC) algorithmic and complexity
results for consistent query answering can be obtained

Most importantly, this approach motivated a more general and
practical approach to specification of database repairs based on
logic programs

16

Example: (cont.) Translation into the APC theory T (D, IC)

1. ¬Employee(x, y, z) ∨ ¬Employee(x, u, v) ∨ y = u

¬Employee(x, y, z) ∨ ¬Employee(x, u, v) ∨ z = v

transformed into
Employee(x, y, z) : fc ∨ Employee(x, u, v) : fc ∨ y = u : t

Employee(x, y, z) : fc ∨Employee(x, u, v) : fc ∨ z = v : t

2. We also add for every predicate two rules:

Employee(x, y, z) : tc ∨ Employee(x, y, z) : fc

¬(Employee(x, y, z) : tc) ∨ ¬(Employee(x, y, z) : fc)

A unique constraint truth value!

3. Transforming database instance:

Employee(Steven Lerman,CEO , 4000) : td

Employee(Irwin Pearson, Salesman, 2000) : td

Employee(Irwin Pearson, Salesman, 2500) : td

Employee(John Miller, Salesman, 1600) : td

17
4. Closed World Assumption:

Employee(x, y, z) : fd
∨

x = Steven Lerman : td ∧ y = CEO : td ∧ z = 4000 : td
∨

x = Irwin Pearson : td ∧ y = Salesman : td ∧ z = 2000 : td
∨

x = Irwin Pearson : td ∧ y = Salesman : td ∧ z = 2500 : td
∨

x = John Miller : td ∧ y = Salesman : td ∧ z = 1600 : td

5. Equality theory plus Unique Names Assumption

True built-in atoms:

Steven Lerman = Steven Lerman:t, CEO = CEO:t, 2000 = 2000:t, etc.

False built-in atoms:

Steve Lerman = Irwin Pearson:f , Irwin Pearson = Steve Lerman:f ,

CEO = Salesman:f , Salesman = CEO:f , etc.

Finally,the axiom: ¬(x = y : �) (a unique truth value)

18

Repairs as Minimal Models of Spec

Every model of T (D, IC) assigns values t, f , ta, fa (only) to
atoms

The minimal models of T (D, IC) with respect to Δ = {ta, fa}
correspond to the repairs of the database:

Comparison wrt to inclusion of the sets of atoms annotated
with ta, fa in each model

For a Δ-minimal modelM,

DM = {p(ā) | M |= p(ā) : t ∨ p(ā) : ta}
is a repair of D

And every repair can be obtained in this way

19

The minimal models areM1:

Employee(Steven Lerman,CEO , 4,000) : t

Employee(Irwin Pearson, Salesman, 2,000) : t

Employee(Irwin Pearson, Salesman, 2,500) : fa ⇐
Employee(John Miller, Salesman, 1,600) : t

andM2:

Employee(Steven Lerman,CEO , 4,000) : t

Employee(Irwin Pearson, Salesman, 2,000) : fa ⇐
Employee(Irwin Pearson, Salesman, 2,500) : t

Employee(John Miller, Salesman, 1,600) : t

20

Then, DM1 :

Employee(Steven Lerman,CEO , 4,000)

Employee(Irwin Pearson, Salesman, 2,000)

Employee(John Miller, Salesman, 1,600)

and DM2 :

Employee(Steven Lerman,CEO , 4,000)

Employee(Irwin Pearson, Salesman, 2,500)

Employee(John Miller, Salesman, 1,600)

21

Consistent Query Answering

We have embedded D, IC and built-in atoms into a consistent
APC theory

FO queries waiting for consistent answers can be transformed
into APC queries

- FO query Q(x̄)

- compute Qan(x̄) simultaneously replacing

• negative DB literals

¬p(s̄) �→ p(s̄):f ∨ p(s̄):fa

• positive DB literals

p(s̄) �→ p(s̄):t ∨ p(s̄):ta

22

• Built-in literals: p(s̄) �→ p(s̄):t

(logically equivalent FO queries produce annotated queries with
the same consistent answers)

Example: Want the consistent answers to the query

Q(x): ∃y∃z∃w∃t(Book(x , y , z) ∧ Book(x ,w , t) ∧ y �= w)

Generate Qan(x̄):

∃y∃z∃w∃t(Book(x , y , z):t ∨ Book(x , y , z):ta) ∧
(Book(x ,w , t):t ∨ Book(x ,w , t):ta) ∧ (y �= w):t)

23

Theorem: Given D, IC , FO query Q(x̄):

D |=IC Q(t̄) iff T (D, IC) |=Δ Qan(t̄)

RHS means true wrt Δ-minimal models of the APC theory

Consistent query answering is reduced to non-monotonic entail-
ment in APC

What about answer computation on the RHS?

24

B. Specifying Repairs with Logic
Programs

25

C. Interlude on Answer Set Programs

26

Datalog

Example: Intentional DB:

Ancestor(x, y) ← Parent(x, y) (1)

Ancestor(x, y) ← Parent(x, z),Ancestor(z, y) (2)

Extensional DB: Parent(a, aa),Parent(a, ab),Parent(aa, aaa),
Parent(aa, aab),Parent(aaa, aaaa),
Parent(c, ca)

Query: Q(x) ← Ancestor(aa, x)

Computation:

27

1. Initialize Ancestor and Q as empty:

Ancestor = ∅ Q = ∅
2. View Ancestor needs to be computed

First Ancestor = ∅

Apply rule (1) once, obtaining by forward propagation:

Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa),
(c, ca)}

This is a partial computation of the view

3. Apply (2) with the tuples obtained in the previous step as
input for the right-hand side, and propagate to the head

This means performing the join Parent � “Ancestor”,
where “Ancestor” is only a partial version of (final)Ancestor

28

Newly generated tuples for Ancestor :

(a, aaa), (a, aab), (aa, aaaa)

New state:

Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa),
(c, ca), (a, aaa), (a, aab), (aa, aaaa)}

4. Since new tuples were generated wrt 1., apply rule (2)
again, with the partial extension for Ancestor as input,
from righ to left (forwards)

Newly generated tuples for Ancestor :

(a, aaa), (a, aab), (aa, aaaa), (a, aaaa)

New state:

Ancestor = {(a, aa), (a, ab), (aa, aaa), (aa, aab), (aaa, aaaa),
(c, ca), (a, aaa), (a, aab), (aa, aaaa), (a, aaaa)}

The underlined tuple was recomputed!

29

5. Since new tuples were generated, apply rule (2) once more

Generated tuples for Ancestor :

(a, aaa), (a, aab), (aa, aaaa), (a, aaaa)

6. No new tuples were obtained (redundant recomputation!);
same state

Block for Ancestor is completely computed

7. Now compute the extension of Q applying the query rule

(a selection followed by a projection)

Generated tuples: Q = {aaa, aaaa, aab}

30

Remarks:

The answer set for the query, or more generally, the
contents of the views, were obtained after reaching a
fixpoint of the iterative upwards, bottom-up, propagation
process

Several tuples were recomputed; we might try a more
incremental evaluation mechanism

Improvement on this: Semi-Naive Evaluation

All the computations before last step (7.) were done wit-
hout considering the parameter aa in the query

Many tuples were taken up to the upper level and then
filtered out: too much useless computation

31

Improvement on the last issue: Magic Sets Method makes
the computation more sensitive/suited to the parameters
in the query, and the relations and rules that are relevant
to the query

Only the relevant data in the extensional DB is considered

We can say that MSM is a bottom-up query evaluation
mechanism that in some aspects simulates a top-down ap-
proach

In general, top-down mechanisms are more “focused” on
the relevant data (as in Prolog), but less efficient, at least
for DB applications

In different forms and with different limitations, MSM are
implemented in DBMS

32

Anc(X,Y)
j

pruned search space

search space

p p
(relevance cone of query)

MS propagate upwardsMS propagate upwards
through the relevance cone

This is achieved by using the query to rewrite the original pro-
gram into a new, magic program, which has additional predi-
cates to impose more and adequate conditions (related to the
structure and parameters in the query)

The new program is used for bottom-up evaluation as before,
but through a narrower cone (Ceri, Gottlob, Tanca; Springer 1990)

33

Datalog and Negation

Example: Extensional DB

D = {P (a, b), P (a, a), P (c, b), Q(a, b), Q(c, c), T (a, b),M(a, a, b)}
Intensional database using view definitions in Datalognot :

R(x, y)← P (x, y), not Q(x, y)

R(x, y)← T (x, y), R(x, z), not S(x, z)

S(x, y)←M(x, y, z)

P,Q, T,M are base tables, and S,R are intensional relations

Program uses both negation and recursion

A query on top: Ans(x, y)← R(x, y)

We can try to answer it by bottom-up evaluation, as before

34

1. First propagate values into R using the first rule, obtaining:
R = {(a, a), (c, b)} (partial extension)
This rule is used only once, and computes a (set) difference
of relations via the not negation

A non-monotonic negation in the sense that we do not
have to prove that, e.g. not Q(a, a) is true, but just fail
to find/compute the atom Q(a, a) (as with the CWA)

2. Next propagate values into S using the last rule, obtaining
S(a, a)

3. Use second rule with partial contents for R in body

(T � R)(x, y, z) = {(a, b, a)}, but (a, a) ∈ S
The body gives no answer, at this step R = ∅
We are left as before: R = {(a, a), (c, b)}, no new tuples,
and a fixpoint is reached

35

4. We obtained Ans = {(a, a), (c, b)}

Notice: negation and recursion do not interact

36

Example: (recursion via negation) Extensional DB Q = {1, 2}
Extended with view definition:

P (x) ← Q(x), not P (x)

Bottom-up computation of P : steps ...

1. P = ∅
2. P = {1, 2}
3. P = ∅
4. etc., etc. (infinite loop)

P is defined by recursion via negation

What is the semantics (intended model) of a program like this?

Can we give to it a reasonable semantics?

37

The first program is stratified, with strata:

3. R
↑

2. S
↑

1. P,Q, T,M

Stratification: ordered sequence of layers (levels), each predica-
tes in one of the layers

Mutually dependent predicates (defined in terms of each other)
belong to the same stratum

If a predicate is defined in term of the negation of another pre-
dicate, the latter belongs to a lower stratum

Like a hierarchical sequence of blocks of predicates

38

Bottom-up evaluation follows the upwards hierarchy of strata

Each strata is computed completely before moving to the next
stratum

There is always a unique fixpoint that produces the intended
model of the program (and gives the semantics to it)

Datalog (no negation) and Datalogstr .not programs have a
unique model that can be computed bottom-up, and turns out
to be a minimal model (it is a model and no proper subset is)

The second program is not stratified (no way to define strata
with restrictions as above)

The stable model semantics gives semantics also to non-stratified
programs (extending the semantics of Datalog and Datalogstr .not)

39

Answer Set Programs

First Normal Programs:

Now programs with one atom in the head, weak negation (not)
in the body

Rules may be of the form:

A←− A1, . . . , Am,not Am+1, . . . ,not An

where the A,Ai are atoms

The program can be stratified or not ...

Example: Extensional DB: D = {U(a), U(c), V (b), V (a)}
P (x) ←− R(x), S(x, y).

R(x) ←− U(x), not V (x).

S(x, y) ←− U(x), V (y)

40

Herbrand Universe of the program: HU = {a, b, c}
Herbrand Base for the program: HB contains all possible ground
atoms with constants from HU

HB = {R(a), R(b), R(c), P (a), . . . , S(a, a), . . . , V (c)}
A potential modelM will be a subset of HB , telling us which
atoms are true (and the others false by default)

E.g. {R(a), P (b), S(b, a), U(a), U(c), V (b)} could be, in
principle, a model (is it?)

We give a declarative semantics to normal programs through a
collection of intended models ... A Possible-World Semantics!

It is the stable model semantics (or more generally, answer set
semantics) (Gelfond & Lifschitz, 1988)

Can be applied to stratified and non-stratified programs

41

Let Π be a normal program, and S � HB , i.e. a subset of the
Herbrand Base, i.e. a set of ground atoms

S is a candidate to be a (stable) model of Π; a “guess” that
will be accepted if properly supported by Π

S can be seen as a set of assumptions

S will be a stable model of Π if it can be justified on the basis
Π; more precisely, if assuming S, we can recover S via Π

The Test does the following:

Pass from Π to ΠH , the ground instantiation of Π

Construct a new ground program ΠS
H , depending on S as

follows:

42

1. Delete from ΠH every rule that has a subgoal not A
in the body, with A ∈ S
Intuitively: We are assuming A to be true, then not A
is false, then the whole body is false, and nothing can
be concluded with that rule, it is useless

2. From the remaining rules, delete all the negative sub-
goals

Intuitively: Those rules are left because the negative
subgoals are true, and since they are true, we can eli-
minate them as conditions in the bodies (because they
hold)

We are left with a ground definite program ΠS
H (no nega-

tion)

43

Compute M(ΠS
H), the minimal model of the definite pro-

gram

If M(ΠS
H) = S, we say that S is a stable model of Π

Intuitively, we started with S (as an assumption) and we reco-
vered it, it was stable wrt to the Π-guided process described
above; it is self-justified ...

44

Example: Non-stratified (ground) programΠ: p(a)← not p(b)

Consider S = {p(a)}
Here: p(b) /∈ S, then not p(b) is satisfied in S and can be
eliminated from the body

We obtain ΠS : p(a)←, a definite program

Its minimal model is {p(a)}, that is equal to S
S is a stable model of the original program

Notice that Π is a non-stratified (there is recursion via negation),
but has a stable model, actually only one in this case

45

Example: Program Π (non-stratified)

p(x)← q(x, y), not p(y)
q(a, b).

ΠH : (ground instantiation) Candidate S = {p(b)}

p(a)← q(a, a), not p(a)

p(a)← q(a, b), not p(b) ×

p(b)← q(b, a), not p(a)

p(b)← q(b, b), not p(b) ×

q(a, b).

46

ΠS
H :

p(a) ← q(a, a)

p(b) ← q(b, a)

q(a, b).

Minimal model of ΠS
H is {q(a, b)} �= S, then S is not a stable

model

The program is non-stratified, but it has the stable model
S = {q(a, b), p(a)} (check!)

47

Example: Program Π (non-stratified)

male(a) ← person(a),not female(a)

female(a) ← person(a),not male(a)

person(a)

If S1 = {person(a),male(a)}, then ΠS1 is:

male(a)← person(a)
person(a)

It has {persona,male(a)} as minimal model, then, S1 is a
stable model of Π

S2 = {person(a), female(a)} is also a stable model of Π

There may be more than one stable model for a program!

Exercise: Check that ∅, {person(a),male(a), female(a)} are not
stable models

48

Some Results:

Every stable model of Π is a Herbrand model in the usual
sense

In them, not is interpreted as “not belonging to the model”

The semantics is non-monotonic: additional facts/rules may
invalidate previous conclusions (cf. below for “conclusions”)

A stable model is always a minimal model (i.e. no proper
subset of it is a model of the program)

A normal program may have several stable models; so seve-
ral (stable) models determine the semantics of a program

If there are several stable models for a program, it means
that some atoms are left undetermined (those that are true
in some of them, but false in others)

49

We are giving a declarative semantics to a wider class of
programs (with or w/o negation), even non-stratified ones

Consequences from normal programs with stable model
semantics?

• Skeptical or cautious semantics: What is true of a
program is what is true of all stable models of the
program

• Brave or possible semantics: What is true of a program
is what is true of some stable model of the program

50

If Π is definite or normal, but stratified, then it has a unique
stable model

In this case the only stable model coincides with the mini-
mal (positive Datalog program) or standard model (strati-
fied Datalog program)

This SM coincides with the minimal model for definite pro-
grams, and the “natural” one for normal stratified pro-
grams

Then this semantics extends the ones we had for the
“good” cases before

In particular, the unique stable model can be computed by
means of an bottom-up iterative process

51

Disjunctive, Negation-Free Programs:

We now consider more expressive logic programs containing
clauses of the form

A1 ∨ · · · ∨ An ←− B1, . . . , Bm

where the Ai, Bj are atoms

Example: Extensional DB: D = {U(a), U(c), V (b), V (a)}
P (x) ∨Q(x) ←− R(x), S(x, y)

R(x) ←− U(x), V (x)

S(x, y) ←− U(x), V (y)

HU = {a, b, c}, HB = {Q(a), Q(b), . . .}
Now, two minimal (Herbrand) models:

M1 = {U(a), U(c), V (b), V (a), S(a, a), S(a, b), S(c, a), S(c, b),
R(a), P (a)}

52

M2 = {U(a), U(c), V (b), V (a), S(a, a), S(a, b), S(c, a),
S(c, b), R(a), Q(a)}

Disjunctive programs may have more than one minimal model
(Minker et al.)

Cautious or skeptical semantics: What is true in all minimal
models

Brave or possible semantics: What is true in some minimal model

Under this minimal model semantics, disjunctions in rules are
interpreted, unless otherwise implied by the other program rules,
in an exclusive manner

Computation can be bottom-up, making true one chosen atom
from the disjunctive head, in turns

Gives rise to a branching process ...

53

Disjunctive Normal Programs: (Gelfond & Lifschitz; 1990)

A1 ∨ · · · ∨ An ←− B1, . . . , Bn

Ai: positive Bj: literals, possibly with not

Example: Extensional DB: D = {U(a), U(c), V (b), V (a)}

P (x) ∨Q(x) ←− R(x), S(x, y)

R(x) ←− S(x, y), not R(y)

R(x) ←− U(x), V (x)

S(x, y) ←− U(x), V (y)

Semantics as for normal programs

Pick up a set of ground atoms S as a guess

The test is the same

54

After elimination of negated atom and some unsatisfiable rules
(exactly as for normal programs), we are left with a disjunctive,
positive Datalog program

If S is one of the minimal models of this residual program, S is
a stable model

55

B. Specifying Repairs with Logic
Programs

56

Stable Model Semantics for Repairs

The collection of all database repairs can be represented in a
compact form

Use disjunctive logic programs with stable model semantics
[Barcelo, Bertossi; PADL 03]

Repairs correspond to distinguished models of the program, na-
mely to its stable models

The programs use annotation constants in an extra attribute in
the database relations

57

To keep track of the atomic repair actions: ta, fa

To give feedback to the program in case additional changes
become necessary: t�, f�

To collect the tuples in the final, repaired instances: t��, f��

Annotation Atom The tuple P (ā) is ...

td P (ā, td) a fact of the database
fd P (ā, fd) not a fact in the database

ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false

t� P (ā, t�) true or becomes true
f� P (ā, f�) false or becomes false

t�� P (ā, t��) true in the repair
f�� P (ā, f��) false in the repair

The program rules have to capture this intended semantics for
annotations

58

Example: Full inclusion dependency IC : ∀x̄(P (x̄)→ Q(x̄))

D = {P (c, l), P (d,m), Q(d,m), Q(e, k)}
Repair program Π(D, IC):

1. Original data facts: P (c, l, td), P (d,m, td), Q(d,m, td), ...

2. Whatever was true (false) or becomes true (false), gets
annotated with t� (f�):

P (x̄, t�)← P (x̄, td)

P (x̄, t�)← P (x̄, ta)

P (x̄, f�)← not P (x̄, td)

P (x̄, f�)← P (x̄, fa)

... the same for Q ...

59

3. There may be interacting ICs (not here)

The repair process may take several steps, changes could
trigger other changes

We need annotation constants for the local changes (ta, fa),
but also annotations (t�, f�) to provide feedback to the ru-
les that produce local repair steps

P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t�), Q(x̄, f�)

One rule per IC; that says how to repair the IC (the head)
in case of a violation (the body)

Passing to annotations t� and f� allows to keep repairing
the DB wrt to all the ICs until the process stabilizes

60

4. Repairs must be coherent: Use program constraints to
prune undesirable models, those where the body of the
rule becomes true

← P (x̄, ta), P (x̄, fa)
← Q(x̄, ta), Q(x̄, fa)

Similarly to denial constraints for DBs, they say that the
conjunction in the body is not allowed

5. Annotations constants t�� and f�� are used to read off the
literals that are inside (outside) a repair

P (x̄, t��)← P (x̄, ta)

P (x̄, t��)← P (x̄, td), not P (x̄, fa)

P (x̄, f��)← P (x̄, fa)

P (x̄, f��)← not P (x̄, td), not P (x̄, ta) ... etc.

61

The program has two stable models (and two repairs):

M1 = {P (c, l, td), ..., P (c, l, t�), Q(c, l, f�), Q(c, l, ta), P (c, l, t��),
Q(c, l, t�),P (d,m, t��), Q(d,m, t��), . . . , Q(c, l, t��), ...}
≡ {P (c, l), Q(c, l), P (d,m), Q(d,m), Q(e, k)}

... insert Q(c, l)!!

M2 = {P (c, l, td), ..., P (c, l, t�), P (c, l, f�), Q(c, l, f�), P (c, l, f��),
Q(c, l, f��),P (d,m, t��), Q(d,m, t��), . . . , P (c, l, fa), ...}

≡ {P (d,m), Q(d,m), Q(e, k)}
... delete P (c, l)!!

62

To obtain consistent answers to a FO query:

1. Transform or provide the query as a logic program
(a standard process)

2. Run the query program together with the specification
program

... under the skeptical or cautious stable model semantics
that sanctions as true of a program what is true of all its
stable models

63

Methodology:

1. Q(· · ·P (ū) · · ·) �−→ Q′ := Q(· · ·P (ū, t��) · · ·)
2. Q′(x̄) �−→ (Π(Q′), Ans(X̄))

(Lloyd-Topor transformation)

Π(Q′) is a query program (a third layer, on top
of the DB and the repair program)

Ans(X̄) is a query atom defined in Π(Q′)

3. “Run” Π := Π(Q′) ∪ Π(D, IC)

4. Collect ground atoms

Ans(t̄) ∈ ⋂{S | S is a stable model of Π}

64

Example: (continued)

• Consistent answers to query P (x, y)?

Run repair program Π(D, IC) together with query program

Ans(x̄)← P (x̄, t��)

The two previous stable models become extended with ground
Ans atoms

M′
1 = M1 ∪ {Ans(c, l), Ans(d,m)}

M′
2 = M2 ∪ {Ans(d,m)}

Then the only answer is tuple (d,m)

• Consistent answers to query ∃yQ(x, y)?
Run repair program with query Ans(x)← Q(x, y, t��)

Obtain answer values d, e

65

• Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program with either of the queries

Ans(x̄)← P (x̄, t��), Q(x̄, f��)

Ans(x̄)← P (x̄, t��),not Q(x̄, t��)

No ground Ans atoms can be found in the intersection of the
two (extended) models

In consequence, under the skeptical stable model semantics,
Ans = ∅, i.e. no consistent answers, as expected ...

66

Remarks:

The same repair program can be used for all queries, the
same applies to the computed stable models

The query at hand adds a final layer on top (obtaining a
“split program”)

Related methodologies: [Arenas, Bertossi, Chomicki; TPLP 03]

[Greco, Greco, Zumpano; IEEE TKDE 03]

Use of DLP is a general methodology that works for general
FO queries, universal ICs and referential ICs

One-to-one correspondence between repairs and stable mo-
dels of the program

Existential ICs, like referential ICs, e.g. ∀x(P (x)→ ∃yR(x, y)),
are handled via introduction of null values or deletions

[Barcelo,Bertossi,Bravo; LNCS 2582] [Bravo,Bertossi; IIDB’06]

67

The repairs program can be seen as query rewritings into
a highly expressive query language

The expressive power comes with higher computational
complexity

Skeptical reasoning under disjunctive ASPs is ΠP
2 -complete

in data [Dantsin et al., ACM Comp. Surveys 2001]

However, CQA is a ΠP
2 -complete decision problem in data

The repairs program provide the right expressive power (for
the worst cases)

For “easier” cases, other methods like FO query rewriting
are more appealing ...

Optimization of the access to the DB, to the relevant
portions of it [Eiter, Fink, G.Greco, Lembo; TODS 04]

68

Query evaluation based on skeptical stable model semantics
should be guided by the query and its relevant information
in the database

Magic sets (or similar query-directed methodologies) for
ASPs could be used for CQA [Faber et al.; ICDT 2005]

Efficient integration of relational databases and answer set
programming environments

We have successfully experimented with the DLV system
for computing the stable models semantics

[Leone et al.; ACM TCL’05]

The program can be optimized in several ways
[Barcelo,Bertossi,Bravo; LNCS 2582] [Caniupan, Bertossi; DKE 2010]

System implemented ConsEx [Caniupan, Bertossi; DKE 2010]

In particular, we adapted and implemented the magic sets
techniques for our purposes

69

Magic Sets for Repair Programs

• Consistent answers are obtained from the intersection of the
stable models of the repair program plus the query program

The repair programs -and also its stable models- contain more
information than necessary to answer a query

They consider all database predicates and database facts

Query predicates are related to a subset of the database
predicates

Only a portion of the data is relevant to answer the query

• Most commonly, we are not interested in obtaining the stable
models (or repairs), but in obtaining the consistent answers to
particular queries

Important to consider only relevant predicates and facts in query
evaluation

70

• Classically, magic set methods (MS) evaluate queries bottom-
up, but simulating a top-down approach in terms of access to
relevant data

• MS methods had been around for a while for Datalog

• Given a query and a repair program, MS selects the relevant
rules from the program to compute the answers

It pushes down the query constants (if any) to restrict the tuples
involved in the computation of the answer

It generates a rewritten program that has a subset of the original
rules, plus a set of “magic” rules

• MS methods have been extended only recently to disjunctive
ASPs [Alviano, Faber, Greco, Leone; AIJ 2012]

71

Our Application of MS: [Caniupan, Bertossi; DKE 2010]

MS method for disjunctive repair programs with program
constraints (PCs):

Program Π(DB , IC ,Q) := Π(DB , IC) ∪ Π(Q).
MS is applied over

Π−(DB , IC ,Q) := Π(DB , IC ,Q)� PC

PC is the set of program denials of Π(DB , IC ,Q)

At the end PC is put back into the resulting program, for the
rewritten program to have only coherent models

72

Example: For DB = {S(a), T (a)} and IC:

∀x(S(x)→ Q(x)), ∀x(Q(x)→ R(x)) , ∀x(T (x)→ W (x))

Π(DB , IC ,Q) is:
S(a) T (a)

S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa)

S(x, fa) ∨Q(x, ta)← S(x, t�), not Q(x)

Q(x, fa) ∨R(x, ta)← Q(x, t�), R(x, fa)

Q(x, fa) ∨R(x, ta)← Q(x, t�), not R(x)

T (x, fa) ∨W (x, ta)← T (x, t�),W (x, fa)

T (x, fa) ∨W (x, ta)← T (x, t�), not W (x)

S(x, t�)← S(x, ta) (same for Q,R,T ,W)

S(x, t�)← S(x) (same for Q,R,T ,W)

S(x, t��)← S(x, t�), not S(x, fa) (same for Q,R,T ,W)

← Q(x, ta), Q(x, fa)

Q : Ans(x)← S(x, t��)

73

MS follows three steps: [Cumbo,Faber,Greco,Leone; ICLP 04]

1. Adornment: The materialization of binding information by
adornments: b means bound, f stands for free

Starting from the query: Ans(x)← S(x, t��)

The adorned rule is: Ansf (x)← Sfb(x, t��)

Adorned predicate Sfb propagate bindings to rules defining S:

S(x, fa) ∨Q(x, ta)← S(x, t�), Q(x, fa)

Sfb(x, fa) ∨Qfb(x, ta)← Sfb(x, t�), Qfb(x, fa)

The adorned predicate Qfb has to be processed similarly

Output: An adorned program

74

2. Generation of Magic Rules: A magic rule is generated for
each adorned atom in the body of adorned rules

For the adorned rule: Sfb(x, t�)← Sfb(x, ta)

The magic rule is: magic S fb(ta) ← magic S fb(t�).

Output: Set of magic rules

3. Modification: Each adorned rule is modified by inserting the
magic version of its head into the body

Rule: Ans(x)← S(x, t��) becomes: Ans(x)← magic Ansf , S(x, t��).

Output: Set of modified rules

In order to evaluate them, the magic rules defined before have
to be invoked

75

The rewritten programMS←(Π(DB , IC ,Q)) consists of:

The magic rules, and the modified rules

The set of program denial constraints PC

The query including the atom magic Ansf (the magic ver-
sion of the Ans predicate)

The stable models of the rewritten program are (displayed
without the magic atoms):

M1 = {S(a), T (a), S(a, t�), Q(a, ta), S(a, t
��), Q(a, t�), R(a, ta), Ans(a)}

M2 = {S(a), T (a), S(a, t�), S(a, fa)}
The original program had four stable models!

Only the relevant models to answer the query are computed!

And only partially computed!

76

The original query

Q : Ans(§)← S(§, t��)
becomes

Ans(x)← magic Ansf , S(x, t��)

And is “run” inMS←(Π(DB , IC ,Q))
No cautious answers in this case

That is, no consistent answers then

Which is correct in this case ...

77

Example:D = {S(a, c), S(b, c), R(b, c), T (a,null),W (null , b, c)}
IC: {∀xy(S(x, y)→ R(x, y)), ∀xy(T (x, y) → ∃zW (x, y, z)),

∀xyz(W (x, y, z) ∧ IsNull(x)→ false)}
Π(D , IC ,Q) is: D = { S(a, c), S(b, c), R(b, c), T (a, null),W (null , b, c)}
plus rules for IC handling2

S(x, y, fa) ∨R(x, y, ta)← S(x, y, t�), R(x, y, fa), x �= null , y �= null

S(x, y, fa) ∨R(x, y, ta)← S(x, y, t�), not R(x, y), x �= null, y �= null

T (x, y, fa) ∨W (x, y, null , ta)← T (x, y, t�), not aux(x, y), x �= null , y �= null

aux(x, y)←W (x, y, z, t�), not W (x, y, z, fa), x �= null , y �= null , z �= null

W (x, y, z, fa)←W (x, y, z, t�), x = null

2Conditions x �= null , etc., are needed to handle nulls, in original data and in
inserted tuples for existential ICs

78

Plus annotation rules:

S(x, y, t�)← S(x, y, ta)
S(x, y, t�)← S(x, y)
S(x, y, t��)← S(x, y, t�), not S (x, y, fa)

⎫⎪⎬
⎪⎭

(similarly for R, T and W)

←W (x, y, z, ta),W (x, y, z, fa)

Ans(x)← S(b, x, t��)

The stable models of Π(D , IC ,Q) are:
M1 = {S(a, c, t�), S(b, c, t�), R(b, c, t�), T (a, null , t�),W (null , b, c, t�),

W (null , b, c, fa), R(a, c, ta), S(a, c, t
��), S(b, c, t��), R(b, c, t��),

R(a, c, t�), R(a, c, t��), T (a, null , t��),Ans(c)}

M2 = {S(a, c, t�), S(b, c, t�), R(b, c, t�), T (a, null , t�),W (null , b, c, t�),

W (null , b, c, fa), S(a, c, fa), S(b, c, t
��), R(b, c, t��), T (a, null , t��),

Ans(c)}

The consistent answer to Q : Ans(x)← S(b, x) is (c)

79

MS method for disjunctive repair programs with program cons-
traints is applied over Π−(D , IC ,Q) := Π(D , IC ,Q)� PC

Π(D , IC ,Q) := Π(D , IC) ∪Π(Q) and PC the set of program
constraints of Π(D , IC ,Q)
After following three steps MS produces a rewritten program

The rewritten programMS←(Π(D , IC ,Q)) consists of:

The set of magic rules,

The set of modified rules,

Reinserting the rules in PC

80

QueryAns(x)← S(b, x, t��) becomesAnsf (x)← S bfb(b, x, t��)

The adorned atom S bfb(b, x, t��) produces adornment over
rules defining predicates S:3

(1) S bfb(x, y, t�)← S(x, y)
(2) S bfb(x, y, t�)← S bfb(x, y, ta)
(3) S bfb(x, y, fa)∨R bfb(x, y, ta)← S bfb(x, y, t�), R bfb(x, y, fa)
. . .
New magic rules: for adorned atom S bfb(x, y, ta) in the body
of the adorned rule 2:

magic S bfb(x, ta)← magic S bfb(x, t�).

Modified rule:

S (x, y, t�)← magic S bfb(x, t�), S (x, y, ta).

3For readability, we omit conditions with null

81

Program MS(Π)
magicAnsf.
magic S bfb(b, t��)← magic Ansf.
magic S bfb(x, ta)← magic S bfb(x, t�).
magic S bfb(x, t�)← magic S bfb(x, t��).
magic S bfb(x, fa)← magic S bfb(x, t��).
magic Rbfb(x, ta)← magic S bfb(x, fa).
magic S bfb(x, t�)← magic S bfb(x, fa).
magic Rbfb(x, fa)← magic S bfb(x, fa).
magic S bfb(x, fa)← magic Rbfb(x, ta).
magic S bfb(x, t�)← magic Rbfb(x, ta).
magic Rbfb(x, fa)← magic Rbfb(x, ta).
magic Rbfb(x, ta)← magic Rbfb(x, t�).
magic Rbfb(x, t�)← magic Rbfb(x, t��).
magic Rbfb(x, fa)← magic Rbfb(x, t��).
Ans(x)← magic Ansf , S (b, x, t��).

S (x, y, fa)∨R (x, y, ta)← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t�), R (x, y, fa).

S (x, y, fa)∨R (x, y, ta)← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t�), not R(x, y).

S (x, y, t�)← magic S bfb(x, t�), S (x, y, ta).

S (x, y, t�)← magic S bfb(x, t�), S(x, y).

82

R(x, y, t�)← magic Rbfb(x, t�), R(x, y, ta).

R(x, y, t�)← magic Rbfb(x, t�), R(x, y).

S (x, y, t��)← magic S bfb(x, t��), S (x, y, t�), not S (x, y, fa).

R(x, y, t��)← magic Rbfb(x, t��), R(x, y, t�), not R(x, y, fa).

←W (x, y, z, ta),W (x, y, z, fa).

ProgramMS←(Π(D , IC ,Q)) has one stable model (displayed
here without magic atoms):

M1 = {S(b, c, t�), S(b, c, t��),Ans(c)}}
The original program has two stable models!

Only the relevant models to answer the query are computed!

They are only partially computed!

The consistent answer to query: Ans(x)← S(b, x, t��) is (c)

Expressed in MS←(Π(D , IC ,Q)) as:
Ans(x)← magic Ansf , S(b, x, t��)

83

Some results:

For general disjunctive programs with constraints, MS does
not always produce an equivalent rewritten program

[Greco, G. et al.; TPLP’05]

Two programs are cautiously equivalent wrt a query Q, if
for any set of facts, they produce the same cautious answers
to Q

Theorem: ProgramsMS←(Π(D , IC ,Q)) andΠ(D , IC ,Q)
are query equivalent under the cautious semantics

MS can be used to evaluate disjunctive repair programs
with program constraints

The implemented MS technique considerably improves response
time in comparison with the use of the original repair program!

84

Consistent Answers in Virtual Data Integration?

ICs on the global schema have to be imposed at query answering
time

Data and the sources may be “inconsistent” with global ICs

CQA can be applied in this case

This applies to GAV and LAV

We assume open sources, etc. [Lenzerini; Pods’02]

For GAV, a single legal instance that can be specified in Datalog

For LAV, possible multiple legal instances

85

DBM S

Global Query (SQL):

 SELECT ...
 FRO M ...
 W H ERE ...
 CONSISTENT W ITH

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

86

The semantics of the VDIS is given in terms of a collection
of intended, legal global instances

Mediator

Sources

legal potential
global instances a “possible worlds”

semantics

Each of them would give extensions to the global DB predicates
if they were materialized

Some of the intended, legal global instances are minimal: they
do not properly contain any other legal instance

87

Class of minimal legal instances can be specified with DASPs

Virtual repairs are repairs of also virtual minimal legal instances
of VDIS

88

Our Approach:

Answer set programming (ASP) based specification of
minimal legal instances of a VDIS

For LAV, not shown here (Bravo, Bertossi; IJCAI 03)

(Bertossi, Bravo; Springer LNCS 3300, 2004)

ASP based specification of repairs of minimal instances

Repair programs as before ...

Global query in Datalog (or its extensions) to be answered
consistently

Non-recursive (and stratified) if original query is FO

Run combined programs above under skeptical stable
model semantics

89

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

Some Alternative
Developments and Extensions

of the CQA Semantics1

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

1Chapter 4 of PhD Course at U. Rome, “La Sapienza”, 2013.

2

Aggregate Queries

So far only first order queries

What about aggregate queries?

They are natural and usual in DBs, and part of SQL

They are crucial in scenarios where inconsistencies are likely
to occur, e.g. data integration, in particular, datawarehou-
sing

We will see:

Semantics may need revision

Aggregation is challenging for CQA

Some graph-theoretic techniques can be developed

3

A restricted scenario:

Functional dependencies

Standard set of SQL-2 scalar aggregation operators:

MIN, MAX, COUNT(*), COUNT(A), SUM, and AVG

No GROUP BY

Atomic queries applying just one of these operators

4

Redefining Consistent Anwers

Example: A database instance and a FD : Name → Amount

Salary Name Amount
V .Smith 5000
V .Smith 8000
P .Jones 3000
M .Stone 7000

The repairs:

Salary Name Amount Salary Name Amount

V .Smith 5000 V .Smith 8000
P .Jones 3000 P .Jones 3000
M .Stone 7000 M .Stone 7000

Query: MIN(Amount)?

5

We should get 3000 as a consistent answer: MIN(Amount)

returns 3000 in every repair

Query: MAX(Amount)?

The maximum, 8000, comes from a tuple that participates in
the violation of FD

MAX(Amount) returns a different value in each repair: 7000 or
8000

There is no consistent answer as previously defined

This seems to be quite a general situation ...

So, we modify the definition of consistent answer

6

Definition: The consistent answer to an aggregate query Q in
the database instance D is the shortest numerical interval that
contains all the answers to Q obtained from the repairs of D

In the example [7000, 8000] is the consistent answer to query
MAX(Amount)

This is the range semantics for CQA (numerical queries)
(Arenas, Bertossi, Chomicki; ICDT 01)

min answers to Q Q(D′) max answers to Q

−−−−
a

| − − −−−−−−
b

| − − −−
for all repairs D′

a: the max-min answer

b: the min-max answer

7

Problem: Develop algorithms for computing the optimal bounds:

The max-min answer a, and the min-max answer b

By querying D only!

Sometimes we are interested in one of the two only, e.g.

In max-min for MIN(Amount)

The max-min is always the min in original instance

In the example, for MIN(Amount): [3000]

In min-max for MAX(Amount)

The min-max is always the max in the original instance

In the example, for MAX(Amount): [7000, 8000]

Finding the extremes of the interval becomes two optimization
problems over the class of repairs

8

maximization minimization

optimal interval
max-min min-max

or the other way around

maximizationminimization

decreases increases

(as long as we find values in repairs)

Problem: Determine the computational complexity of finding the
min-max and max-min answers

associated decision problems

b1

max-min b1 ?

b2

min-max ?b2

9

Which give rise, as usual, to two corresponding decision
problems, in terms of bounds or budgets (b1, b2 above)

We need the right tools to attack these problems ...

Particularly useful is a graph-based representation of repairs

The undirected conflict graph CGFD(D) associated to set FD
and instance D:

Vertices are the tuples t̄ in D

Edges are of the form {t̄1, t̄2} for which there is a depen-
dency in FD that is simultaneously violated by t̄1, t̄2

Graph algorithms ca be applied ...

10

Example: Schema R(A,B) FDs: A→ B and B → A

Instance D = {(a1, b1), (a1, b2), (a2, b2), (a2, b1)}

(a1, b1) (a1,b2)

(a2, b1) (a2, b2)

Repairs: D1 = {(a1, b1), (a2, b2)} and D2 = {(a1, b2), (a2, b1)}
Each repair of D corresponds to a maximal independent set in
CGFD(D)

Each repair of D corresponds to a maximal clique in the
complement (graph) of CGFD(D)

11

Some Complexity Results

• MAX(A) can be different in every repair

However, maximum of the MAX(A)’s is MAX(A) in D

Then computing the min-max answer to MAX(A) from D is

direct −−−−−−−
b

| −−
• Computing directly from D the minimum of the MAX(A)’s,
i.e. the max-min answer to MAX(A), is not that direct

−−
a

| − − − −−−
But still, computing the max-min answer to MAX(A) for one FD
F is in PTIME (in data complexity):

12

Algorithm: For computing max-min answer to MAX(Y) for
the FD R : X → Y

Create and pose a sequence of SQL queries to the inconsistent
database: query rewriting using aggregate views
For each group of (X,Y)-values, store the maximum of A:

CREATE VIEW S(X,Y,C) AS

SELECT X,Y,MAX(A) FROM R

GROUP BY X,Y;

For each value of X, store the minimum of the maximums:

CREATE VIEW T(X,C) AS

SELECT X, MIN(C) FROM S

GROUP BY X;
Output the maximum of the minimums:

SELECT MAX(C) FROM T;

In the end, a new query in FO plus aggregation ...

13

• For more than one FD, the problem of deciding whether
“max-min answer to MAX(A) ≤ k” is NP -complete
(corresponding to associated minimization problem)

NP -hardness: By reduction from SAT

Being data complexity, fix the schema and FDs: T (X,Y, Z,W)
with FDs: X → Y and Z → W (the query is already fixed)

Now, we are given a propositional formula ϕ in CNF C1∧· · ·∧Cn

with propositional variables p1, . . . pm

We create an instance D for the schema above, with tuples:

1. (pi, 1, Cj , 1) if making pi true makes Cj true

2. (pi, 0, Cj , 1) if making pi false makes Cj true

3. (x, x, Cj , 2), 1 ≤ j ≤ n, with x a new symbol

Due to first FD, each propositional variable cannot have more
than one truth value

14

The instance can be efficiently built from ϕ

Furthermore, it holds:

ϕ is satisfiable iff for D and k = 1, the answer to “max-min
MAX(W) ≤ 1” is Yes

That is, if there is a repair that never takes the “scape value”2,
i.e. one that represents a satisfying truth assignment

Membership of NP : Take D′ ⊆ D, a possible certificate

It is feasible to check whether D′ is a repair of D (satisfaction
of FDs plus minimality) and MAX(W) ≤ k in D′

If max-min answer to MAX(W) ≤ k, there is a (short) repair
certificate D′ that gives answer Yes to the question MAX(W)

≤ k in D′

15

(Essentially the same proof can be used to obtain that consistent
conjunctive query answering (without aggregation) wrt FDs is
coNP-complete)

• Even for one FD, the problem of deciding if the maximal
min-answer to COUNT(A) ≤ k is NP -complete

(reduction from HITTING SET)

maximal min-answer minimal max-answer

|FD | = 1 |FD | ≥ 2 |FD | = 1 |FD | ≥ 2

MIN(A) PTIME PTIME PTIME NP-complete

MAX(A) PTIME NP-complete PTIME PTIME

COUNT(*) PTIME NP-complete PTIME NP-complete

COUNT(A) NP-complete NP-complete NP-complete NP-complete

SUM(A) PTIME NP-complete PTIME NP-complete

AVG(A) PTIME NP-complete PTIME NP-complete

(Arenas,Bertossi,Chomicki,He,Raghavan,Spinrad; TCS 2003)

These are results in data complexity, i.e. for fixed queries and
FDs, and changing database instances (sizes)

16

• We have identified normalization conditions, e.g. BCNF, and
other conditions on the DB, e.g. producing a conflict graph with
a certain structure, under which more efficient algorithms can
be designed

However, CQA for aggregate queries stays as an intrinsically
complex problem

• It seems necessary to efficiently and optimally approximate
consistent answers to aggregate queries

However, “maximal independent set” seems to have bad appro-
ximation properties

• Complexity analysis of aggregate queries opened the ground
for more general study of complexity of CQA

17

Further developments:

Aggregate conjunctive queries with group-by, also with ran-
ge semantics (Fuxman, Miller; Sigmod’05)

The range semantics is used in answering aggregate queries
in data exchange (Afrati; Kolaitis; Pods’08)

CQA on numerical databases with aggregation constraints

Non-aggregate queries, no range semantics

Repairs minimize number of changes of attribute values
(Flesca, Furfaro, Parisi; DBPL’05)

Numerical databases, denial constraints, changes of
numerical attribute values, numerical distance minimized,
aggregate queries (Bertossi, Bravo, Fanconi, Lopatenko; IS 2008)

Numerical databases open ground for interesting research on
repairs and CQA ...

18

Fixing Numerical Attributes in DBs under ICs

(Bertossi, Bravo, Franconi, Lopatenko; IS’08)

Motivation I:

• Most of the research on CQA has concentrated on repairs
of databases that minimize under set inclusion the set of inser-
tions/deletions of whole database tuples (no matter what type
of data they contain)

In some scenarios or applications this repair semantics may not
be the most natural

• No much interest in the repairs per se or their computation
(unless necessary), but in CQA

• Interest in census-like data, where other ontological assum-
ptions, fixes, and computational needs appear

(Franconi,Laureti Palma, Leone, Perri, Scarcello; LPAR 01)

19

Many attributes take numerical values

Most natural form of fix is to change some of the values
of attributes in tuples (Wijsen; ICDT 03)

Tuples identified by a key (e.g. household identifier) that
is fixed and not subject to changes

Identifiers are kept in any repaired version of the database
(census form)

Constraints are expressed as prohibitions of combinations
of positive data, i.e. denial constraints

Few relations in the database, actually not uncommon to
have a single relation

Computation of fixes (repairs) becomes crucial and a com-
mon task in census like applications

Aggregate queries are most important, rather than queries
about individual properties

20

Check out:

United Nations Economic Commission for Europe, Work Session on Statistical

Data Editing (Ottawa, 16-18 May 2005)

http://www.unece.org/stats/documents/2005.05.sde.htm

For a glossary of terms and computational tasks related to
data editing
http://www.unece.org/stats/publications/editingglossary.pdf

21

The Problem:

We propose a notion of fix (repair) of a database containing
numerical, integer values that:

Allows, as basic fixing actions, changes of values in (chan-
geable or flexible) attributes

For the first time takes into account the occurrence of
numerical values and their nature when distances between
databases are measured in numerical terms

Considers the presence of non-contradictable key constraints

In this scenario, completely new issues and problems appear:

Computing database fixes

Determining existence of fixes, e.g. not beyond a certain
distance from the original database

CQA to aggregate queries wrt to denial constraints

22

Example 1: A denial constraint DC : Pay at most 6000 to em-
ployees with less than 5 years of experience

Database D, with Name as the key, is inconsistent wrt DC

Employee Name Experience Salary
Sarah 6 12000
Robert 4 7000
Daniel 5 8000

Under tuple and set oriented semantics for repairs, the only mi-
nimal repair corresponds to deleting tuple Employee(Robert, 4, 7000)

23

Other options may make more sense that deleting employee Ro-
bert (a value for the key):

Change the violating tuple to Employee(Robert,5, 7000)

Change it to Employee(Robert, 4, 6000)

They satisfy the implicit requirements that:

Key values are kept

Numerical values associated to them do not change too
much

24

Minimum Numerical Fixes:

We concentrate on linear denial constraints (LDCs) of the form
∀x̄¬(A1 ∧ . . . ∧ Am)

Ai are database atoms, or built-in atoms of the form Xθc,
with θ ∈ {=, �=, <,>,≤,≥}, or X=Y

(the latter can be replaced by different occurrences of the
same variable)

If we allow atoms of the formX �=Y , we call them extended
linear denial constraints (ELDs)

Examples: Pay at most 6000 to employees with less than 5 years
of experience

∀Name,Experience, Salary¬(Employee(Name,Experience, Salary),

Experience < 5, Salary > 6000)

25

Distance between Instances:

When numerical values are updated to restore consistency,
it is desirable to make the smallest overall variation of the
original values

A database and a fix share the same key values

Key values can be used to compute associated numerical
variations

To compare instances, we need a common relational schema R,
a set of key constraints K, assumed to be satisfied by all the
instances, the set of attributes A, a subset of fixable, numerical
attributes F (not containing any attributes in the key)

For a tuple k̄ of key values in relation R in instanceD, t̄(k̄, R,D)
denotes the unique tuple t̄ in relation R in instance D whose
key value is k̄

26

Example 1: (cont.) R = {Employee},A = {Name,Experience ,

Salary}, F = {Experience,Salary} Key(Employee) = {Name}
Employee Name Experience Salary

Sarah 6 12000
Robert 4 7000
Daniel 5 8000

The (kept) key values are:
Sarah, Robert , Daniel

t̄(Sarah,Employee , D) = (Sarah, 6, 12000), etc.

27

Example 2: D has tables Client(ID ,A,M), A is age, M is
money; and Buy(ID , I ,P), I is items, P is price

Denials: People younger than 18 cannot spend more than 25 on
one item nor spend more than 50 in the store

IC 1 : ∀ID , P, A,M¬(Buy(ID , I, P),Client(ID , A,M), A < 18, P > 25)

IC 2 : ∀ID , A,M¬(Client(ID , A,M), A < 18,M > 50)

D: Client ID A M

1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

IC1 is violated by {t1, t4} and {t1, t5}; IC 2 by {t1} and {t2}
t̄((1,CD),Buy , D) = Buy(1,CD , 27), etc. F = {A,M,P}

28

For instances D ,D ′ over the same schema and same key values
for each relation R ∈ R, their square distance is

Δ(D ,D ′) =
∑

αA[πA(t̄(k̄, R,D))− πA(t̄(k̄, R,D′))]2

Sum is over all relations R, fixable numerical attributes
A ∈ F and tuples of key values k̄

πA is the projection on attribute A

αA is the -application dependent- weight of attribute A

Other numerical distance functions can be considered, e.g. “city
distance”, obtaining results similar to those that follow

29

Given an instance D, with D |= K, and a set of possibly viola-
ted ELDCs IC , a least-squares fix (LS-fix) for D wrt IC is an
instance D′ with:

1. Same schema and domain as D

2. Same values as D in the non-fixable attributes A� F (in
particular in key attributes)

3. D′ |= K ∪ IC ;

4. Δ(D,D′) is minimum over all the instances that satisfy
1. - 3.

LS−Fix (D, IC) := {D′ | D′ is an LS-fix of D wrt IC}

Fix (D, IC) defined as LS−Fix(D, IC), but without minimality
condition

30

Example 1: (cont.) Candidates to fixes were

D1 = {(Sarah, 6, 12000), (Robert , 5, 7000),
(Daniel , 5, 8000)}

D2 = {(Sarah, 6, 12000), (Robert , 4, 6000),
(Daniel , 5, 8000)}

With αSalary = 10−6, αExperience = 1:

Square distances to D: Δ(D,D1) = 1, Δ(D,D2) = 4

Only D1 is an LS-fix

31

Example 2: (cont.)

IC 1 : ∀ID , P, A,M¬(Buy(ID , I, P),Client(ID , A,M), A < 18, P > 25)

IC 2 : ∀ID , A,M¬(Client(ID , A,M), A < 18,M > 50)

D:
Client ID A M

1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

Assume αA = αM = αP = 1

32

A (minimal) fix D′ with cost = 12 + 22 + 12 + 22 = 10

Client’ ID A M

1 15 � 52 50 t′1
2 16 � 51 50 t2

′

3 60 900 t3
Buy’ ID I P

1 CD � 27 25 t4
′

1 DVD � 26 25 t5
′

3 DVD 40 t6

A fix D′′ with cost = 12 + 32 = 10

Client” ID A M

1 � 15 18 52 t1
′′

2 16 � 51 50 t2
′′

3 60 900 t3
Buy” ID I P

1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

33

In this example, it was possible to obtain LS-fixes by performing
direct, local changes in the original conflictive tuples alone

No new, intermediate inconsistencies introduced in the repair
process

This may not be always the case ...

34

Decidability and Complexity of LS-fixes:

It is relevant to ask about the existence of fixes

In contrast to the “classical” case of CQA, there may be no fixes

We concentrate on data complexity and denial constraints

The number of fixes can be exponential, actually

For (E)LDCs:

NE (IC) := {D | Fix (D, IC) �= ∅} is NP -complete

35

The Database Fix Problem:

DFP(IC) :={(D, k)| there is D′ ∈ Fix(D, IC) with
Δ(D,D′) ≤ k}, the database fix problem

It is important for transformation of inconsistent database into
the closest consistent state

What is the distance to the closest consistent state?

Make computations more efficient by cutting off incorrect
(too expensive) branches during computation or materiali-
zation of a consistent state

Complexity of DFP provides lower bounds for CQA under some
assumptions

36

Theorem: DFP(IC), the problem of deciding whether there
exists a fix wrt IC at a distance ≤ k, is NP -complete

Hardness: By encoding “Vertex Cover”

One LDC with three database atoms plus two built-ins is
good enough

Membership:

• Possible values in repaired tuples are determined by
the constants in the DCs

• PTIME computation of the distance function

37

Approximate Solutions to DFP :

Given that DFP(IC) is NP -complete, can we get a good and
efficient approximate solution?

DFOP denotes the optimization problem of finding the mini-
mum distance to a fix

Theorem: For a fixed set of LDCs, DFOP is MAXSNP -hard

Proof by reduction from “Minimum Vertex Cover Problem for
Graphs of Bounded Degree” which is MAXSNP -complete

MAXSNP -hardness implies (unless P = NP) that there exists
constant δ such that DFOP for LDCs cannot be approximated
within an approximation factor less than δ

38

Can we provide an approximation within a constant factor,
possibly with restriction to a still useful but hard class of LDCs?

Definition: A set of LDCs IC is local if:

Equalities between attributes and joins involve only non-
fixable attributes

There is a built-in with a fixable attribute in each IC

No attribute A appears in IC both in comparisons of the
form A < c1 and A > c2

Example 2: (cont.) The LDCs there are local

IC 1 : ∀ID , P, A,M¬(Buy(ID , I, P),Client(ID , A,M), A < 18, P > 25)

IC 2 : ∀ID , A,M¬(Client(ID , A,M), A < 18,M > 50)

39

Why “local” and why interesting?

Basically, inconsistencies can be fixed tuple by tuple, wit-
hout introducing new violations

LS-fixes always exist

Local LDCs are the most common in census-like applica-
tions (Franconi,Laureti Palma, Leone, Perri, Scarcello; LPAR 01)

DFP still NP -complete for local LDCs

DFOP still MAXSNP -hard for local LDCs
(the non-local LDCs can be eliminated from the proof of the general case)

We will reduce DFOP to the “Weighted Set Cover Problem”

40

A Weighted Set Cover Problem:

The WSCP is defined as follows

Instance: (U,S, w)

S is a collection of subsets of set U
⋃S = U (a cover)

w assigns numerical weights to elements of S

Question: Find a sub-collection of S with minimum weight that
covers U

WSCP is MAXSNP -hard

41

We create a “good” instance of WSCP ...

1. A set I of database atoms (tuples) from D is a violation
set for ic ∈ IC if I �|= ic, and for every I ′ � I , I ′ |= ic,
i.e. a minimal set of tuples that participate in the violation
of an IC

U := set of violation sets for D, IC

2. I(D, ic, t) denotes the set of violation sets for ic in D that
contain tuple t

S(t, t′) := {I | exists ic ∈ IC , I ∈ I(D, ic, t) and
((I � {t}) ∪ {t′}) |= ic},

i.e. the violations sets containing tuple t that are solved by
changing t to t′

42

S := collection of S(t, t′)’s such that t′ is a local fix of t

I.e.

(a) t, t′ share same values in non-fixable attributes

(b) S(t, t′) �= ∅ (some inconsistency is solved)

(c) Δ({t}, {t′}) is minimum (relative to (a), (b))

3. Finally, w(S(t, t′)) := Δ({t}, {t′})

43

Properties of the Reduction:

Local fixes can be obtained in polynomial time

One-to-one correspondence between solutions to DFOP
and solutions to WSCP that keeps the optimum values

Each set cover corresponds to a consistent instance

Transformation is in polynomial time

Correspondence may be lost if applied to non-local LDCs
(LDCs may not be satisfied by resulting instances)

44

Example 2: (cont.)

t1 t2 t3

t4 t5 t6

A

B C D

Client ID A M
1 15 52 t1
2 16 51 t2
3 60 900 t3

Buy ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

Violation sets: {t1, t4}, {t1, t5} for IC 1; {t1}, {t2} for IC 2

Tuple t1: One local fix wrt IC 1, one wrt IC 2

Tuple t2: One local fix Tuples t4, t5: One local fix each

Conflict (Hyper)Graphs: (Arenas, Bertossi, Chomicki; ICDT 01),

(Chomicki, Marcinkowski; Information and Computation 05)

45

Tuples, their local fixes, and weights ...

Set cover els. S(t1, t
′
1) S(t1, t

′′
1) S(t2, t

′
2) S(t4, t

′
4) S(t5, t

′
5)

Local Fix t′1 t′′1 t′2 t′4 t′5
Weight 4 9 1 4 1

Violation set A 0 1 0 1 0
Violation set B 1 1 0 0 0
Violation set C 0 1 0 0 1
Violation set D 0 0 1 0 0

1 and 0 at the bottom indicate if the violation set belongs or
not to S(t, t′)

46

Approximating DFOP :

We approximate a solution to DFOP by approximating WSCP

In general,WSCP can be approximated within a factorO(log(n))
by greedy algorithms (Chvatal)

In our case, the frequency (number of elements of S covering
an element of U) is bounded by the maximum number of atoms
in the ICs (small in general)

In this case WSCP can be efficiently approximated within a
constant factor given by the maximum frequency
(Hochbaum; 1997)

The approximation algorithm always returns a cover, from which
we can compute an instance, that turns out to satisfy the LDCs,
but may not be optimal (in Example 2 we get D′)

47

Consistent Query Answering:

We have several results on data complexity for CQA, a decision
or an optimization problem depending on the semantics

Some involving 1-atom denial constraints (1AD), a common
case in census-like applications (one DB atom plus built-ins)

Usual semantics for CQA:

Certain: Answer true in every LS-fix (default semantics)

Possible: True in some LS-fix

Range: Shortest numerical interval where all answers from
LS-fixes can be found (for numerical, mainly aggregate que-
ries) (Arenas, Bertossi, Chomicki; ICDT 2001)

Two optimization problems: find extremes of the interval

48

Some results for CQA:

Non-aggregate queries, certain semantics:

• 1ADs; atomic ground query (and a wide class of boo-
lean conjunctive queries): PTIME

• Arbitrary extended LDCs; atomic query: PNP -hard and
in ΠP

2

Aggregate queries (with one of sum, count distinct, ave-
rage) and possible semantics (boolean query true in some
fix: comparison of the aggregation to a constant) or range
semantics

• 1ADs; acyclic conjunctive query: coNP -hard

E.g. 1AD: ∀u, c1, c2¬(R(u, c1, c2) ∧ c1 < 1 ∧ c2 < 1)

Query: q(count(distinct z))← R(u, x, y), S(u, z, x)

49

The Gist: COUNT DISTINCT Aggregation

CQA under range semantics for COUNT DISTINCT acyclic con-
junctive queries and one 1AD is coNP -complete

By reduction from MAX-SAT with instance P = 〈U,C,K〉; U a set of variables,
C collection of clauses over U , K a positive integer

Introduce relation Var(u,C1, C2) with tuple (u, 0, 0) for every variable in
u ∈ U ; C1, C2 fixable, taking values 0 or 1

Introduce non-fixable relation Clause(u, c, s), with tuple (u, c, s) for every
occurrence of u ∈ U in clause c ∈ C, s is assignment (0 or 1) for u
satisfying clause c

1AD: ∀u, c1, c2¬(V ar(u, c1, c2) ∧ c1 < 1 ∧ c2 < 1)

Query: q(count(distinct c))← Var(u, c1, c2),Clause(u, c, s), c1 = s

asks for how many clauses are satisfied in a given fix

Max value in a fix is max number of clauses that can be satisfied for P

50

Approximating CQA for Aggregate Queries:

Even for simple constraints, and simple aggregate queries de-
fined on top of also simple conjunctive queries, CQA becomes
hard

Finding the minimum/maximum values for an aggregate query
among the LS-fixes become optimization problems

They are MAXSNP -hard for sum

For 1ADs and conjunctive aggregate query with sum, the ma-
ximum value for CQA (i.e. range semantics) can be efficiently
approximated within a constant factor

51

Open Research Issues:

Implementation issues and experimentation

Applications in census-like scenarios

Cases of polynomial complexity for LDCs with more that
one database atoms

Applications to data integration with preferences

Approximation algorithm for DFP in more general cases

Approximation algorithms for CQA to aggregate queries

Fixes that preserve statistical validity; distribution preser-
ving DFP and CQA

Other numerical domains? Real numbers?

