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Explanations in Machine Learning

• Bank client e = ⟨john, 18, plumber, 70K, harlem, . . .⟩
As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

• e requests a loan from a bank, which uses a classifier

classifier

e
loan?

No!

• The client asks Why?

• What kind of explanation?
How?
From what?
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Explanations in AI

• Users and those affected by results from AI systems, the
stakeholders, request explanations

Assessments (e.g. a credit score), classifications (good/bad
client), decisions (approve/reject loan), etc.

• A whole new area of AI has emerged: Explainable AI (XAI)

A whole discipline has emerged: Ethical AI

• It touches Law, Sociology, Philosophy, ...

• Motivated by the need for more transparent, trustable, fair,
unbiased, ... and interpretable AI systems

classifier???

e
loan?

No!

It may really be a “black box”!
• New legislation forces AI systems
affecting users to provide
explanations and guarantee all the above
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Explanations (in AI)

• Search for explanations belongs to the nature of human beings

• The quest has been around since the inception of humans

• Ancient Greeks already concerned with causes (and effects)

• Studied as such by Philosophers, Logicians, Physicists, ...

• Are explanations a new subject in AI?

• Yes and No

• Explanations have been studied in AI for some decades by
now, and in related disciplines, e.g. Logic, Statistics

Some forms of explanations are new in AI

Others have roots in already existing ones
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Model-Based Diagnosis

• MBD has been an area of AI for some time

• It is about doing a diagnosis of a system (exhibiting some
unexpected behavior) using a model of the system (and
possibly a bit more)

Example: A very simple Boolean circuit (a classifier?)

It should be:
and gate

x1 →
0 →

1 → or gate

−→ 1
(x = 0)

However:
x1 →

0 →

1 →
−→ 0

Why? What’s wrong? A diagnosis?
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• What is a diagnosis? We need a characterization ...

x1 →
0 →

1 →
−→ 0

• A logical model of the ideal circuit:

{(x ←→ (a ∧ b)), (d ←→ (x ∨ c))}
• The observation Obs : a ∧ ¬b ∧ c ∧ ¬d
• What can be get from the combination? Logically?

Since the combination is inconsistent, everything!
Trivial, irrelevant, useless conclusion ...

• Need flexible model that allows failures: (a “weak model of failure”,specifying things under normality)

M = {¬AbA −→(x ↔ (a ∧ b)), ¬AbO −→(d ↔ (x ∨ c))}
“when A is not abnormal, it works as an and gate”, etc.

Now gates could be abnormal (faulty)
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• Now Obs ∪ M is perfectly consistent

• But Obs ∪ M ∪{¬AbA,¬AbO} is inconsistent (as before)

• So, something has to be abnormal ...

• D = {abO} is a diagnosis, because making gate O abnormal
restores consistency

Obs ∪ M ∪ {¬AbA,AbO} is consistent

Abnormality of gate O is an explanation for the malfuction of
the circuit

• D ′ = {abO, abA} is a diagnosis, because making every gate
abnormal restores consistency

Obs ∪ M ∪ {AbA,AbO} is consistent

• D is “better” than D ′: fewer assumptions, narrower, more
focused and informative

• This is Consistency-Based Diagnosis (CBD, Ray Reiter, 1987)

• Can we assign scores to diagnoses? (coming)
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Actual Causality

Example: (cont.)
x1 →

0 →

1 →

−→ 0

We had:

M = {¬AbA −→(x ↔ (a ∧ b)), ¬AbO −→(d ↔ (x ∨ c))}
And: {a,¬b, c ,¬d} ∪ M ∪ {¬AbA,¬AbO} inconsistent

Logically equivalent to:

{a,¬b, c} ∪ M ∪ {¬AbA,¬AbO} =⇒ d (*)

Counterfactuals: hypothetical changes of non-abnormalities
into abnormalities, to see if implication changes

{a,¬b, c} ∪ M ∪ {¬AbA, AbO︸︷︷︸
changed

} ≠⇒︸︷︷︸
switched

d

abO is a counterfactual cause for the observation
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However: {a,¬b, c} ∪ M ∪ {AbA︸︷︷︸
changed

,¬AbO} =⇒︸︷︷︸
not switched

d

AbA is not a counterfactual cause

Extra counterfactual changes may be necessary:

{a,¬b, c} ∪ M ∪ {AbA︸︷︷︸
changed

, AbO︸︷︷︸
contingent change

} ≠⇒︸︷︷︸
switched

d

Had it not been abO a counterfactual cause, AbA would have
been an actual cause with Contingency Set {abO}
AbA is neither counterfactual nor actual cause

• Actual Causality: J. Halpern & J. Pearl (2001)

• Actual causality provides counterfactual explanations

• Correspondences with both forms of MBD

• Numerical scores to quantify strength of a cause?

Causal Responsibility (Chokler & Halpern, 2004)
Resp(abO) := 1

1+min. cardinality of CS
= 1

1+0
= 1 (max. responsibility)

Resp(abA) := 0
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The Causal Networks Connection

• Actual causality as presented may not look like the Causal
Networks and Structural Models used in AI

It can be cast in those terms

x

abA a b

x = (‐abA ^ a ^ b)  v  (abA ^ (‐a v –b)

abO c

d

d =  (‐abO ^ (c v x)) v (abO ^ ‐c ^ ‐x)

• Here abA, abO are endogenous variables, which can be subject
to counterfactual changes

The others are exogenous variables

• Links have structural equations
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Some Applications of Actual Causality

• We have applied AC to explanations for query answers from
databases

• Explanations are DB tuples that contribute to a query answer

Or attribute values in them

• Tuples get responsibility scores, quantifying how much they
contribute

• We have established some connections with MBD

Profiting from those connections

• We have applied AC to explanations for outcomes from ML
classification systems −→ XAI

• These methods can be applied without necessarily knowing
“the internals” of the classifier

The latter is treated (or is) a “black box” system

Only input/output relation is needed
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Resp and Explanations (gist and simple case)

classifier

e
loan?

No!

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No

• Counterfactual versions:

e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes

e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• For the gist:

1. Value for feature Age is counterfactual cause with explanatory
responsibility Resp(e,Age) = 1

2. Value for Income is actual cause with Resp(e, Income) = 1
2

This one needs additional (contingent) changes ...
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Causality and Responsibility -4

• For binary features the previous definition of responsibility
(as for DBs) works fine

• In the case of the classifier, possibly many new values for a
feature do not change the label, and few of them do

• Then, the original value is not great explanation

• Responsibility score has to be generalized (B. et al., Deem@SIGMOD20)

• Better consider contingent features and values for them, and
average labels!

• We are considering binary classifiers, with labels 1 or 0

Assume label 1 is the one we want to explain

• Resp is a “local” explanation score: for a feature value in a
particular entity
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Generalized Responsibility -1

• e classified entity, L(e) = 1, F ⋆ ∈ F (set of features)

• “Local” Resp-score: for fixed contingent assignment Γ := w̄

Γ ⊆ F ∖ {F ⋆} (potential contingent set of features)

• e′ := e[Γ := w̄ ] (potential contingent values), with L(e′) = L(e)

Resp(e,F ⋆, Γ, w̄) :=
L(e)−E[L(e′′) | e′′F∖{F⋆}= e′F∖{F⋆}]

1+|Γ| (∗)

• e′′ := e[Γ := w̄ ,F ⋆ := v ], with v ∈ dom(F ⋆)

• eS is projection of e on S ⊆ F
• When (∗) > 0, F ⋆(e) is actual causal explanation for L(e) = 1

with contingency ⟨Γ, eΓ⟩

• Global score: Resp(e,F ⋆) := max Resp(e,F ⋆, Γ, w̄)
⟨Γ, w̄⟩, |Γ| min., (∗) > 0
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Generalized Responsibility -2

• (∗) requires multiple “passes” through the classifier ...

• Resp requires (assumes) a probability distribution on the
entity population E
Several probability distributions can be used (B. et al., Deem@SIGMOD20)

• In our experiments, Resp score computed with empirical
product distribution

This is quite a relevant issue ...
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Generalized Responsibility -3

• We are usually interested in max-Resp feature values

Associated to minimum (cardinality) contingency sets

Their computation is in some cases provably intractable

• Resp does not require the internals of a classifier

Can we compute it faster when we have access to the
internals?

• Also relevant: doing something with a high-responsibility
explanation

Some counterfactuals may not “make sense” or be “useful”

• In the example, changing the age (waiting for 7 years) may
not be feasible

But maybe changing job and neighborhood could be done ...

• We may want an actionable explanation

We may want the explanation to be a resource
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Shapley Values: Shap

• Based on the general Shapley value of coalition game theory

• For each application of Shapley one needs an appropriate
game function that maps (sub)sets of players to real numbers

• Our case: Set of players F contain features, but relative to e

• Game function: For S ⊆ F , and eS the projection of e on S

Ge(S) := E(L(e′) | e′ ∈ E & e′S = eS)

• For a feature F ⋆ ∈ F , compute: Shap(F ,Ge,F ⋆)∑
S⊆F\{F⋆}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})︸ ︷︷ ︸

Ge(S∪{F⋆})

−E(L(e′)|e′S = eS)︸ ︷︷ ︸
Ge(S)

]

• Shap score has become popular (Lee & Lundberg, 2017)

• Assumes a probability distribution on entity population

• Requires multiple passes through classifier ...

17 / 25



Shap: Tractability -1

• Both Resp and Shap may end up considering exponentially
many combinations

And multiple passes through the black-box classifier

• Both provably intractable in the general case

• Can we do better with an open-box classifier?

classifier

e
loan?

No!

X1

X2

Xn

.

.

.

L

O

CHAPTER 3 DECISION TREE LEARNING 53 

Noma1 Strong Weak 

No 
\ 

Yes 
/ 

No 
\ 

Yes 

FIGURE 3.1 
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree 
to the appropriate leaf node, then returning the classification associated with this leaf (in this case, 
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for 
playing tennis. 

from that node corresponds to one of the possible values for this attribute. An 
instance is classified by starting at the root node of the tree, testing the attribute 
specified by this node, then moving down the tree branch corresponding to the 
value of the attribute in the given example. This process is then repeated for the 
subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas- 
sifies Saturday mornings according to whether they are suitable for playing tennis. 
For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) 

would be sorted down the leftmost branch of this decision tree and would therefore 
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no). 
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm 
are adapted from (Quinlan 1986). 

In general, decision trees represent a disjunction of conjunctions of con- 
straints on the attribute values of instances. Each path from the tree root to a leaf 
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc- 
tion of these conjunctions. For example, the decision tree shown in Figure 3.1 
corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast)  

v (Outlook = Rain A Wind = Weak)  

;

Exploiting its elements and internal structure?

• What if we have a decision tree, or a random forest, or a
Boolean circuit?

• Can we compute Shap in polynomial time?
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Shap: Tractability -2

• We investigated this problem in detail (Arenas, Barcelo, B., Monet; AAAI21)

• Tractable and intractable cases, with algorithms for the
former

Investigated existence (or not) of good approximation
algorithms

• Choosing the right abstraction (model) is crucial

• We used Boolean classifiers (BCs), i.e. propositional formulas
with (binary) output gate

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2 ). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

• We established early on that computing
Shap is at least as hard as counting the
satisfying truth assignments of the BC
(intractable in general)

• So, it has to be a broad and interesting class of BCs for which
the latter problem is not intractable
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Shap: Tractability -3

• We concentrated on the class of deterministic and
decomposable Boolean circuits (dDBCs) (example above)

• Input gates are variables (features) or constants

• An ∨-gate never has both inputs true (determinism)

• An ∧-gate do not has inputs sharing variables
(decomposability)

• A class of BCs that includes -possibly via efficient
compilation- many interesting ones, syntactic and not ...

• Decision trees (and random forests)

• Ordered binary decision diagrams (OBDDs)

• Sentential decision diagrams (SDDs)

• Deterministic-decomposable negation normal-form (dDNNFs)

• Theorem: For dDBCs, under the uniform or product
distribution, Shap can be computed in polynomial time

20 / 25



Shap: Tractability -4

• Binary Neural Networks (BNNs) -usually considered black-box
models- can be compiled into OBDDs (Shi et al., KR20)

• Opening the ground for efficient Shap computation for BNNs
(via additional compilation into dDBC)

• We have experimented with Shap computation with a
black-box BNN and with its compilation into an open-box
dDBC

Considerable efficiency
gain
(this is logarithmic scale)

• A BNN with 14 gates was compiled into a dDBC with 18,670
nodes

A one-time computation that fully replaces the BNN
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The Need for Reasoning

• What can we do with attribution scores and counterfactual
explanations? (apart from the obvious)

• We can reason about/with them, analyze them, select some
of them, aggregate them, etc.

In interaction with both attribution-score model/algorithm or
classifier, for further exploration

For global understanding of the classifier or application domain

• We need tools for conveying or imposing domain knowledge
(domain semantics), e.g. an age never decreases

Only some counterfactuals may make sense

Some combinations of feature values may not be allowed

Some changes may “trigger” other changes

To impose preferences on counterfactuals
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• We need tools for doing this kind of logical reasoning

• We need tools for posing and answering queries about
explanations

Are there explanations with this particular property?

Or any two that differ by ...?

• Specification of high-score actionable explanations, and
possibly computation of those only

Or others with a different preferred property

• On-the-fly interaction with different ML models and scores

Do I get same score with this different ML system?

Or this other attribution score (definition, algorithm or
implementation)?

23 / 25



• Imposing conditions on feature values

What if I leave some feature values fixed?

Do I get same high-score feature with this “similar” entity?

Is there a high-score counterfactual version of the entity that
changes this specific feature?

Or never changes that one?
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