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1. Databases and Integrity Constraints

A database instance D is a model of an outside reality

An integrity constraint on D is a condition that D is expected
to satisfy in order to capture the semantics of the application
domain

A set IC of integrity constraints (ICs) helps specify/maintain
the correspondence between D and that reality
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Several applications: [Godfrey et al. 98]

By being satisfied, an IC imposes a restriction on the
evolution of the DB under updates

When guaranteed to be satisfied, ICs can be used for
semantic query optimization

ICs properly represented become metadata, i.e. data about
the data Many uses, e.g. interoperability

IC enforcement:

By the DBMS itself when IC have been declared with sche-
ma (limited applicability)

Through triggers (active, ECA rules) stored by user in DB

Reject/notify inadmissible updates or compensate updates

Can be derived from ICs [Widom et al. 95]

Through application/transaction programs
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Logically?

A relational DB D can be seen as a set-theoretic structure

An IC as a sentence ϕ in language associated to DB schema

So, D |= ϕ is well defined as model-theoretic satisfaction in
FO predicate logic

Alternatively, D can be seen as a theory Th(D) written in FO
predicate logic: Reiter’s logical reconstruction [Reiter 84]

Manager Boss Subordinate

ken john
john mary
peter joePredicate extensions plus CWA:

∀xy(Manager(x, y) ↔ x = ken ∧ y = john ∨ · · · ∨ x = peter ∧ y = joe)

Possibly domain-closure: ∀x(x = ken ∨ · · · ∨ x = mary ∨ x = sue)

UNA: john �= mary, etc.
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Now D |= ϕ also makes sense as Th(D) � ϕ

ICs have to be entailed by the DB ...

Contrast with more recent views of DB, e.g. for an incomplete
DB D and a set Σ of ICs: [Greco et al. 12]

For D seen as a structure (closed set of ground atoms),
maybe D �|= Σ

However, it is good enough if D ∪ Σ is consistent

D is usually extended through Σ (chase, etc.)

Incarnation of older discussion: [Reiter 92]

Reiter: ICs are satisfied by the DB

Kowalski: ICs are to be consistent with DB
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2. Database and View Maintenance

Database maintenance is about keeping the ICs satisfied when
the DB undergoes updates

View maintenance is about keeping materialized view extensions
synchronized with base table

A view is just a (usually virtual) relation defined on top of base
(usually material) relations

A view defined on table Manager (cf. page 5):

∀x(TopBoss(x) ↔ ∃yManager (x, y) ∧ ¬∃zManager (z, x)) (*)

TopBoss(D) = {ken, peter} If 〈sue, ken〉 �→ D?

The two problems are related ...
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Associate a violation view Vϕ to IC ϕ

ϕ is satisfied by D iff Vϕ(D) = ∅
Example: FD : Subordinate → Boss on previous schema

VFD(x, y) ↔ Manager(x, y) ∧ ∃z(Manager(z, y) ∧ x �= z)

To maintain the IC (satisfied), maintain the violation view
(empty)

BTW, a condition that is commonly used by ECA rules for
IC maintenance

A view definition, e.g. (*), can be seen as an IC expressed
in an expanded language

The definition has to be kept satisfied

Techniques for each of database and view maintenance can be
applied to the other problem

In both cases, incremental techniques are desirable
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3. Incremental Approaches

The issues:

• We do not want to check the full IC every time the DB is
updated

Maybe an update on base table is irrelevant to the IC

Maybe only “a portion” of the IC has to be rechecked

• We do not want to recompute the view from scratch using
the definition every time base tables are updated

Crucial for materialized views, as in DWHs [Gupta et al. 99]

Maybe the update is irrelevant to the view (definition)

Maybe it is a matter of computing a delta

Hopefully without the whole DB
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“Inductive” IC checking: [Nicolas 82]

1. Assume D |= ϕ

2. Update D into D′ by a set U of updates

3. What portion of ϕ (if any) has to be checked on D′

(or only D,U)?

Example: With FD : Subordinate → Boss above

Assume D |= FD Instead of checking on D′:
∀xyz(Manager(x, y) ∧Manager(z, y) → x = z)

1. If U contains only deletions:

Do not check anything

2. If U is insertManager (a, b):

Check on D: ∃x(Manager(x, b) ∧ x �= a)?

General mechanism that relies on syntactic structure of ICs
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View maintenance and relevant updates: [Blakeley et al. 89]

[Gupta et al. 95]

• Self-maintainable views: View update without accessing base
tables, but instead

current, material state of the view

view definition

the actual updates

possibly ICs on base tables

No need for the updated underlying base data ...
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Example: (the gist) Schema R(A,B) with FD : B → A

Instance D = {R(a, b), R(c, d), R(e, f)}
View (projection of R on B): V (Y )← R(X,Y )

V (D) = {b, d, f}
With update deleteR(a, b), using

the update itself (knowing it has an effect on V )

the pre-update extension of the view

the FD (assumed to be satisfied so far)

we obtain right away the new extension: V (D′) = {d, f}
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• Irrelevant Updates: Determine views that are not affected
by certain classes of updates on base tables

Ignore those updates for view maintenance

The “irrelevant update problem”

Example: (as above, cont.) For the view V (X)← R(X,Y )

Updates of the form changeR[Y ](t̄; v) (in tuple t̄ in R change
value for Y into v) are always irrelevant

The irrelevant update problem also appears in IC maintenance:
some updates never lead to inconsistency

For example, for FDs tuple deletions are always irrelevant
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4. ICs on Views

Having ICs on views could be useful for the tasks above, for mo-
nitoring the DB behaviour through the views, query answering
using views, metadata for interoperability in general ...

The classic problem of deriving ICs for views from view defini-
tions and ICs on base tables [Klug 80, 82]

Example:
Manager Boss Subordinate Salary

ken john 100
john mary 120
peter joe 150FD : Subordinate → Boss

View V (x, y) : ∃zManager(x, y, z)

From V ’s definition and FD , an IC on V : FDV: Subordinate → Boss

Any violation of FDV indicates a violation of FD
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S D ICh S)(IC fS D  ICschema S)(ICs for  

view V V(D) IC’ (ICs for  V)
for all  D

view V ( ) ( )

?

There are syntactic techniques for deriving the ICs on the views

However, in virtual data
integration, under GAV:

Global ICs imposed directly on
the views (global relations)

No guarantee for their satisfac-
tion (data stay at the sources)

S

P Q
R

T

mediator

GAV LAV
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5. Updates through Views

Another related classic problem in relational DBs

Given:
Base schema S
View definition: ∀x̄(V (x̄) ↔ ϕS(x̄)) (*)

An instance D for S, and extension V (D) for the view

Apply update U on V (D), propagating updates on D, keeping
(*) satisfied

Example: V (x, y) ↔ Manager(x, y, z) ∧ z = 100

Manager Boss Subordinate Salary

ken john 100
john mary 120
peter joe 150

Easy!

Less easy with base ICs, e.g. Manager : Boss, Subordinate → Salary
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However, for more complex queries ...

Example: D = {R(a, b), R(c, d), S(b, c)}
V2(x, y)← R(x, z), S(z, y)

U : insertV2(a, d)

D′ = {R(a, b), R(c, d), S(b, c), R(a,NULL), R(NULL, d)}?
Ordinary SQL Nulls? (in joins?)

Arbitrary values from the domain?

Conditional instances?

D′ = {R(a, b), R(c, d), S(b, c), R(a,X), R(X, d)}
What if also base IC R : A→ B?
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Disjunctive views?

V3(x, y) ← R(x, y)
V3(x, y) ← S(x, y) U : insertV3(e, d)

D′ = {R(a, b), R(c, d), S(b, c), R(e, d)}?
D′ = {R(a, b), R(c, d), S(b, c), S(e, d)}?
D′ = {R(a, b), R(c, d), S(b, c), R(e, d), S(e, d)}?

Several choices ... Which are the right ones?

It depends on the update semantics (of DBs through views)

It can be a “possible world semantics”
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A class of intended (admissible, legal) instances D′ that
reproduce the view update U

D

V

V[D]

uV
S S

Preference criteria can be imposed on elements of the class

An old and difficult problem in relational databases

Semantics and algorithms based on assumption of availability of
a view complement [Bancil. et al. 81; Cosm. et al. 84; ...; Lecht. et al. 03]

No standard solution offered/implemented in commercial DBMS
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In practice:

Some views are considered to be updatable

Restrictions on views make them updatable or not

INSTEAD-OF triggers

Instead of direct view update, update base tables (as in-
dicated by trigger), causing the intended change on the
view
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Different approaches to update through views:

• Abductive: Relationship between views V and base tables T
given by view definitions plus base ICs

Observations are the intended view updates ( +
−atomV )

Abductibles are +
−atomT , those that explain (cause) the obser-

vations

Abductive logic programming, including ICs [Kakas et al. 90, 92]

• ASPs: Possible worlds as stable models of a disjunctive ASP
specifying how view and base updates are related [LB et al. 11]

Remark: In virtual data integration, the corresponding problem
would be updating the sources through the mediator (containing
views under GAV) Not allowed in general, but [De Giac. et al. 09]
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6. Inconsistency Handling

What If the database is inconsistent?

Inconsistencies can be detected, and data can be changed to
reach a physical consistent state

This kind of data cleaning may be difficult, impossible, nonde-
terministic, undesirable, unmaintainable, etc.

We may have to live with inconsistent data ...

The database (the model) is departing from the outside reality
that is being modeled

However, the information is not all semantically incorrect

Most likely most of the data in the database are still “consistent”
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Idea:

(a) Keep the database as it is

(b) Obtain semantically meaningful information at query time;
dealing with inconsistencies on-the-fly

Particularly appealing in virtual data integration ...
(no direct access to the data sources)

This requires: [LB 11]

(a) Logically characterizing consistent data within an inconsis-
tent database

Via database repairs: Consistent instances that minimally
depart from the original instance

Consistent data is invariant across the class of all repairs

(b) Developing algorithms for retrieving the consistent data:
Consistent query answering
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Example: For the instance D that violates
FD : Name → Salary

Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of
whole tuples are allowed: D1, resp. D2

Employee Name Salary

page 5K
smith 3K
stowe 7K

Employee Name Salary

page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not; actually it participates in the violation of
FD
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A consistent answer to a query Q from a database D is an
answer that can be obtained as a usual answer to Q from every
possible repair of D wrt IC (a given set of ICs)

Q1 : Employee(x, y)?

Consistent answers: (smith, 3K), (stowe, 7K)

Q2 : ∃yEmployee(x, y)?

Consistent answers: (page), (smith), (stowe)

CQA may be different from classical data cleaning!

However, CQA is relevant for data quality; an increasing need
in business intelligence

It also provides concepts and techniques for data cleaning

Paradigm shift: ICs are constraints on query answers, not on
database states!
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Depending on the ICs and the queries, tractable and intractable
cases for CQA have been identified

For some tractable cases, query rewriting algorithms have been
developed

Q(x, y) : Employee(x, y) �→
Q′(x, y) : Employee(x, y) ∧ ¬∃z(Employee(x, z) ∧ z �= y)

Pose the second query to the inconsistent database to ob-
tain the consistent answers to the first query

For higher-complexity cases, specifications of repairs by means
of logic programs with stable model semantics can be used

CQA becomes querying (as usual) a logic program, say a Datalog
program with possible complex extensions
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7. Specifying DB Evolution

So far here, we have a logical specification of the DB, but ex-
ternal updates that change the DB

We can integrate everything into a single logical theory that
specifies the DB and its evolution

For that we need the right language

Situation Calculus

A family of languages of many-sorted first-order logic

Used in logic-based KR to describe evolving domains subject to
the execution of actions

Regained popularity in the 90’s due mainly to the work of Ray-
mond Reiter and collaborators [Reiter 01]
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A simple solution to the frame problem in the SC

Given a specification of precondition and effects of actions,
how to obtain a compact, economical specification of the
many things that are not changed by the actions

Basis for cognitive robotics programs: GOLOG, CONGO-
LOG
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The Languages

- Domain individual, situations (states), and actions at first-
order level

- First–order quantifications over sorts: ∀x̄, ∀s, ∀a
- S0, name for initial situation

- Function name do: do(a, s) is the successor state that results
from executing action a at state s

- Predicate Poss: Poss(a, s) says that action a is possible at
state s

- Parameterized action terms, e.g. promote(x, p)

- Predicates with situation argument, e.g. Enrolled(x, p, s)

- Static predicates
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Foundational Axioms for the SC

Unique Names Axioms for Actions: ai(x̄) �= aj(ȳ), for all diffe-
rent action names ai, aj , e.g. delete(id) �= classifyBook(isbn, id ′)

Unique Names Axioms for States: S0 �= do(a, s)

do(a1, s1) = do(a2, s2) → a1 = a2 ∧ s1 = s2

For some reasoning tasks the Induction Axiom on States (IA):

∀P (P (S0) ∧ ∀s∀a (P (s)→ P (do(a, s))) → ∀s P (s))

restricts the domain of situations to S0 plus the situations ob-
tained by executing actions

We are usually interested in reasoning about states that are
accessible from S0 by executing a finite sequence of legal actions:

¬s < S0 s < do(a, s′) ≡ Poss(a, s′) ∧ s ≤ s′
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Specifying DB Updates

Stock (isbn, copies)classify (isbn, id)

Classified (isbn, id)

BooksInPrint (isbn, author, title,  year, edition)

order (isbn, copies)

Unclassified (isbn, copies)

Update actions: order(isbn, copies), classifyBook(isbn, id),
deleteBook(id)
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Predicates: BooksInPrint(isbn, title, author , editor , year , edition),
Unclassified(isbn, copies , s), Classified(isbn, id , s),
Stock(isbn, copies , s)

Action Preconditions:

• Poss(order(isbn, copies), s) ≡
(∃ title, author , editor , year , edition)

BooksInPrint(isbn, title, author , editor , year , edition)

• Poss(classifyBook(isbn, id), s) ≡
¬(∃ isbn′) Classified(isbn ′, id , s) ∧

(∃ copies) Unclassified(isbn, copies, s)
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Successor State Axioms

Solution to the frame problem is based on the use (generation)
of successor state axioms (Reiter 91)

Specify under what conditions each fluent becomes true at an
arbitrary successor state do(a, s)

∀a∀s Poss(a, s) → [R(do(a, s)) ≡ γ+
R (a, s) ∨ (R(s) ∧ ¬γ−

R (a, s))]

R is true at a successor state iff it is made true or it was already
true and it is not made false

This solution relies on the possibility of quantifying over deter-
ministic actions

Actions are syntactically atomic, but semantically complex

In DB applications (Reiter 95), individual actions may result in
several DB updates
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A SSA

∀a Poss(a, s) −→
(Stock(isbn, j, do(a, s)) ≡

a = delete book(id) ∧
(Classified(isbn, id, s) ∧

∃i (Stock(isbn, i, s) ∧ i > 1 ∧ j = i− 1)) ∨
a = classify book(isbn, id) ∧

(∃i (Stock(isbn, i, s) ∧ j = i+ 1) ∨
¬∃i (Stock(isbn, i, s))∧

j = 1) ∨
Stock(isbn, j, s) ∧

¬(a = delete book(id) ∧
Classified(isbn, id, s) ∧

Stock(isbn, j, s) ∨
a = classify book(isbn, id) ∧

Stock(isbn, j, s)))

(can be constructed from positive and negative effect axioms)
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Integrity Constraints

Static ICs, e.g. FDs, are sentences that must hold at every legal
state of the database:

DB spec. |= ∀s (S0 ≤ s → ϕ(s))

↑
Th(DB(S0)) ∪ Spec. of Dynamics

For example, for a FD it should hold

DB spec. |= ∀S0 ≤ s → (Classified(isbn1, id, s) ∧
Classified(isbn2, id, s) → isbn1 = isbn2)

Induction principle for proving static ICs can be derived:

∀P ([P (S0) ∧ ∀s∀a(P (s) ∧ Poss(a, s) → P (do(a, s))] →
∀s(S0 ≤ s → P (s)))
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Similar treatment for dynamic ICs:

A person’s salary cannot decrease:

∀s, s′(S0 ≤ s ≤ s′ → (Salary(x, p, s) ∧ Salary(x, p′, s′) → p ≤ p′))

ICs proved by automated mathematical induction [LB et al. 96]
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Specifying the Dynamics of Relational Views

Given a specification of DB dynamics in terms of SSAs

Automatically derive SSAs for (relational calculus) views

Applications to view and database maintenance [Arenas et al. 98]

Can be extended to aggregate views

Combination with hypothetical reasoning? “What if” queries?

Hypothetical Database Reasoning [Arenas et al. 02]

Queries in first-order past temporal logic about a whole evolution
of the database

Application to transformation of dynamic ICs into static ICs

Application to transformation of history dependent actions into
“Markovian” actions
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Change and Ontologies

Complex actions can be constructed from basic actions (cf. GO-
LOG)

It is possible to derive SSAs from complex actions [Fritz et al. 08]

They and GOLOG used for composition of semantic web services
[McIlr. et al. 02]

Actually, generic ontologies (ontology languages) have been pro-
posed for specifying action and change

General ontologies Og for high-level descriptions of action pre-
conditions, actions effects, etc. (e.g. OWL-S, FLOWS)
[Martin et al. 07, Grün. et al. 08]
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Specific theoriesOs of action and change (as in the library exam-
ple above) can feed Og

The combination can be applied to specify the evolution of an
initially static domain, e.g. a database D

A three-layered approach ...
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