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e Bank client e = (john, 18, plumber, 70K, harlem, .. .)

As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

e e requests a loan from a bank that uses a classifier

e The client asks Why? m

e What kind of explanation?
H OW? classifier

From what?
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Some of them are causal explanations, some are explanation
scores a.k.a. attribution scores

They are sometimes related

E.g. actual causality leads to responsibility scores

Large part of our recent research is about the use of causality,
and score definition and computation

In data management and machine learning

Some of them (in data management or ML)

e Responsibility (in its original and generalized versions)
e The Causal Effect score

e The Shapley value (as Shap in ML)
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e Set of players F contain features, relative to classified entity e

e We need an appropriate e-dependent game function that
maps (sub)sets of players to real numbers

e For S C F, and egs the projection of e on S:
Ge(S) = E(L(e') | €& & €s=es)
e For a feature F* € F, compute: Shap(F, Ge, F*)

Sscrvrry ST E(LE | esu e = esugrn) —E(L(e)|es = es)]

Ge(SU{F*}) Ge(S)

e Shap score has become popular (Lee & Lundberg, 2017)
e Assumes a probability distribution on entity population
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Shap may end up considering exponentially many
combinations, and multiple passes through the black-box
classifier

Shap computation is #P-hard in general

Can we do better with an open-box classifier?
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Exploiting its elements and internal structure?

What if we have a decision tree, or a random forest, or a
Boolean circuit?

Can we compute Shap in polynomial time?
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Tractability for BC-Classifiers

e We investigated this problem in detail

e Theorem: Shap can be computed in polynomial time for
dDBCs under the uniform distribution

e Can be extended to a product distribution on & = {0, 1}V
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lArenas, Bertossi, Barcelo, Monet; AAAI'21; JMLR'23
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e Corollary: Via polynomial time transformations, under the
uniform and product distributions, Shap can be computed in
polynomial time for

e Decision trees (and random forests)
e Ordered binary decision diagrams (OBDDs)
(mx1 A2 A=x3) V (x1 A xe) V (x2 A x3) )
Compatible variable orders along full paths

Compact representation of Boolean formulas

e Sentential decision diagrams (SDDs)
Generalization of OBDDs

e Deterministic-decomposable negation normal-form (dDNNFs)
As dDBC, with negations affecting only input variables
o All the latter relevant in Knowledge Compilation

e An optimized efficient algorithm for Shap computation can be
applied to any of these
7/13
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e Binary Neural Networks (BNNs) are commonly considered
black-box models

e Naively computing Shap on a BNN is bound to be complex

e Better try to compile the BNN into an open-box BC where
Shap can be computed efficiently

e We have experimented with Shap computation with a
black-box BNN and with its compilation into a dDBC?

e Even if the compilation is not entirely of polynomial time, it
may be worth performing this one-time computation

e Particularly if the target dDBC will be used multiple times, as
is the case for explanations

e We illustrate the approach by means of an example

2Bertossi, Leon; JELIA'23
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e The BNN is described o+ (=[(z3 A (z2V 1)) V (x2 A 21)] A
by a propositional (23 A (=22 V —21)) V (22 A —21)] V
formula, which is further (w3 A (=22 V —2)) V (=22 A —21)])) V
' ([(—x3 A (=22 V —21)) V (=22 A —21)] A
transformed and

[(z3 A (=22 V —21)) V (=22 A —21)]).
optimized into CNF

@06 on

e Done using always CNFs and keeping them “short” ...

(room for optimizations)

e INCNF: o0 «— (—x1V—x)A(=x1V —=x3) A (—x2 V —x3)

‘a _ {1 if W ei+bg >0,
A
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It succinctly represents the CNF

e The expensive compilation step

But upper-bounded by an
exponential only in the tree-width [ [ [ [2]7]
of the CNF

TW of the associated undirected graph:
an edge between variables if together in

a clause
A measure of how close it is to a tree
(In example, graph is clique, TW is #vars -1 =
e The SDD is easily transformed \\\

into a dDBC x3
e On it Shap is computed, possibly multiple times

e With considerable efficiency gain
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open-box dDBC, and black-box dDBC

Total time for computing all Shap scores for all entities, with
increasing numbers of them

W BNN black-box

WEm dDBC black-box
] I

e The uniform distribution was used

100
(logarithmic scale)
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Some Research Directions

e The above results on Shap computation hold under the
uniform and product distributions

The latter imposes independence among features

Other distributions have been considered for Shap and other
scores

The empirical and product-empirical distributions

They naturally arise when no more information available
about the distribution

How far can we go with other distributions?

Do we still have an efficient algorithm?
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domain knowledge is relevant to explore

Can we modify Shap's definition and computation
accordingly?
Or the probability distribution?

e Shapley values satisfy desirable properties for general coalition
game theory

Existing scores have been criticized or under-explored in terms
of general properties

Specific general and expected properties for Explanations
Scores (in Al)?
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