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Explanations in Databases

• In data management (DM), we need to understand and compute why certain
results are obtained or not

E.g. query answers, violation of semantic conditions, ...

• A DB system should provide explanations

In our case, causality-based explanations (Halpern and Pearl, 2001)

There are other (related) approaches, e.g. lineage, provenance

• Our interest: model, specify and compute causes

Understand causality in DM from different perspectives; and profit from the
connections
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Causality in DBs

Example: DB D as below

Boolean conjunctive query (BCQ):

Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y))

R A B

a b
c d
b b

S A

a
c
b

D |= Q Causes?
(Meliou, Gatterbauer, Moore, Suciu; 2010)

• Tuple τ ∈ D is counterfactual cause for Q if D |= Q and D r {τ} 6|= Q

S(b) is counterfactual cause for Q: if S(b) is removed from D, Q is no
longer an answer
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Causality in DBs
Example: DB D as below

Boolean conjunctive query (BCQ):

Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y))

R A B

a b
c d
b b

S A

a
c
b

D |= Q Causes?
(Meliou, Gatterbauer, Moore, Suciu; 2010)

• Tuple τ ∈ D is counterfactual cause for Q if D |= Q and D r {τ} 6|= Q

S(b) is counterfactual cause for Q: if S(b) is removed from D, Q is no
longer an answer

• Tuple τ ∈ D is actual cause for Q if there is a contingency set Γ ⊆ D, such
that τ is a counterfactual cause for Q in D r Γ

R(a, b) is an actual cause forQ with contingency set {R(b, b)}: if R(a, b)
is removed from D, Q is still true, but further removing R(b, b) makes
Q false
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• How strong are these as causes? (Chockler and Halpern, 2004)

• The responsibility of an actual cause τ for Q:

ρ
D
(τ) := 1

|Γ| + 1 |Γ| = size of smallest contingency set for τ
(0 otherwise)

Responsibility of R(a, b) is 1
2 = 1

1+1 (its several smallest contingency
sets have all size 1)

R(b, b) and S(a) are also actual causes with responsibility 1
2

S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0
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• How strong are these as causes? (Chockler and Halpern, 2004)

• The responsibility of an actual cause τ for Q:

ρ
D
(τ) := 1

|Γ| + 1 |Γ| = size of smallest contingency set for τ
(0 otherwise)

Responsibility of R(a, b) is 1
2 = 1

1+1 (its several smallest contingency
sets have all size 1)

R(b, b) and S(a) are also actual causes with responsibility 1
2

S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0

High responsibility tuples provide more interesting explanations

• Causes in this case are tuples that come with their responsibilities as “scores”

All tuples can be seen as actual causes and only the non-zero scores matter

• Causality can be extended to attribute-value level (Bertossi, Salimi; TOCS 2017)
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Connections: Repairs and Diagnosis

• There is a connection with repairs of DBs wrt. integrity constraints (ICs)

A connection to consistency-based diagnosis and abductive diagnosis

; new complexity and algorithmic results for causality and responsibility
(Bertossi, Salimi; TOCS, IJAR, 2017)

• Causality under ICs ; Causality under semantic, domain knowledge (op. cit.)

• Model-Based Diagnosis is an older area of Knowledge Representation

A logic-based model is used

Elements of the model are identified as explanations
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• Causality-based explanations are newer

Still a model is used, representing a more complex scenario than a DB and
a query

Pearl’s causality: Perform counterfactual interventions on a structural,
logico/probabilistic model

What would happen if we change ...?
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• Causality-based explanations are newer

Still a model is used, representing a more complex scenario than a DB and
a query

Pearl’s causality: Perform counterfactual interventions on a structural,
logico/probabilistic model

What would happen if we change ...?

• In the case of DBs the underlying logical model is query lineage (coming ...)

• Much newer in “explainable AI”: Provide explanations in the possible absence
of a model

• Explainability scores have become popular (coming ...)

They usually have a counterfactual component: What would happen if ...?

Responsibility can be seen as such ...
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The Causal Effect Score

Example: Boolean Datalog query Π becomes true on E if there is a path between
a and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)
P (x, y) ← E(x, y)
P (x, y) ← P (x, z), E(z, y)

E ∪Π |= yes
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The Causal Effect Score

Example: Boolean Datalog query Π becomes true on E if there is a path between
a and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)
P (x, y) ← E(x, y)
P (x, y) ← P (x, z), E(z, y)

E ∪Π |= yes

All tuples are actual causes: every tuple appears in a path from a to b

All the tuples have the same causal responsibility: 1
3

Maybe counterintuitive: t1 provides a direct path from a to b
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• Alternative notion to responsibility: causal effect (Salimi et al., TaPP’16)

• Causal responsibility has been criticized for other reasons and from different
angles

• Retake question: How answer to Q changes if τ deleted from D? (inserted)

An intervention on a structural causal model

In this case provided by the the lineage of the query

12



Example: Database D
R A B

a b
a c
c b

S B
b
c

BCQ Q : ∃x∃y(R(x, y) ∧ S(y)) True in D

Query lineage instantiated on D given by propositional formula:

ΦQ(D) = (XR(a,b) ∧XS(b)) ∨ (XR(a,c) ∧XS(c)) ∨ (XR(c,b) ∧XS(b)) (∗)

Xτ : propositional variable that is true iff τ ∈ D

ΦQ(D) takes value 1 in D
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Example: Database D
R A B

a b
a c
c b

S B
b
c

BCQ Q : ∃x∃y(R(x, y) ∧ S(y)) True in D

Query lineage instantiated on D given by propositional formula:

ΦQ(D) = (XR(a,b) ∧XS(b)) ∨ (XR(a,c) ∧XS(c)) ∨ (XR(c,b) ∧XS(b)) (∗)

Xτ : propositional variable that is true iff τ ∈ D

ΦQ(D) takes value 1 in D

• Want to quantify contribution of a tuple to a query answer, say, S(b)

Assign probabilities, uniformly and independently, to the tuples in D
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?

• Interventions of the form do(X = x): In the structural equations make X take
value x

For {y, x} ⊆ {0, 1}: P (Q = y | do(Xτ = x))? (i.e. make Xτ false/true)

E.g. with do(XS(b) = 0) lineage (∗) becomes: ΦQ(D)XS(b)
0 := (XR(a,c) ∧XS(c))
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?

• Interventions of the form do(X = x): In the structural equations make X take
value x

For {y, x} ⊆ {0, 1}: P (Q = y | do(Xτ = x))? (i.e. make Xτ false/true)

E.g. with do(XS(b) = 0) lineage (∗) becomes: ΦQ(D)XS(b)
0 := (XR(a,c) ∧XS(c))

• The causal effect of τ : CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))
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CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

Example: (cont.) With Dp, when XS(b) is made false, probability that
instantiated lineage becomes true in Dp:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1)× P (XS(c) = 1) = 1
4

When XS(b) is made true, probability of lineage becoming true in Dp:

ΦQ(D)XS(b)
1 := XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b)

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b) = 1)
= · · · = 13

16
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CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

Example: (cont.) With Dp, when XS(b) is made false, probability that
instantiated lineage becomes true in Dp:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1)× P (XS(c) = 1) = 1
4

When XS(b) is made true, probability of lineage becoming true in Dp:

ΦQ(D)XS(b)
1 := XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b)

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b) = 1)
= · · · = 13

16

E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) = 1
4

E(Q | do(XS(b) = 1)) = 13
16

CED,Q(S(b)) = 13
16 −

1
4 = 9

16 > 0 causal effect for actual cause S(b)!
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Example: (cont.) The Datalog query (here as a union of BCQs) has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧Xt3) ∨ (Xt4 ∧Xt5 ∧Xt6)

CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5)
= CED,Q(t6) = 0.09375

The causal effects are different for different tuples!

More intuitive result than responsibility
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Example: (cont.) The Datalog query (here as a union of BCQs) has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧Xt3) ∨ (Xt4 ∧Xt5 ∧Xt6)

CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5)
= CED,Q(t6) = 0.09375

The causal effects are different for different tuples!

More intuitive result than responsibility

• Rather ad hoc or arbitrary? (we’ll be back ...)
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Scores and Coalition Games

• A starting point for a research direction: By how much a database tuple
contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?
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Scores and Coalition Games

• A starting point for a research direction: By how much a database tuple
contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?

• There had been research in KR on the Shapley-value to measure the
inconsistency of a propositional KB

• The Shapley-value is firmly established in Game Theory, and used in several
areas

Why not investigate its application to query answering in DBs?
(Livshits et al.; ICDT’20)
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Scores and Coalition Games
• A starting point for a research direction: By how much a database tuple

contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?

• There had been research in KR on the Shapley-value to measure the
inconsistency of a propositional KB

• The Shapley-value is firmly established in Game Theory, and used in several
areas

Why not investigate its application to query answering in DBs?
(Livshits et al.; ICDT’20)

• Several tuples together are necessary to violate an IC or produce a query result

Like players in a coalition game, some may contribute more than others

The Shapley-value of a tuple will be a score for its contribution
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p})− G(S))

(|S|!(|D| − |S| − 1)! is number of permutations of D with all players in S
coming first, then p, and then all the others)
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p})− G(S))

(|S|!(|D| − |S| − 1)! is number of permutations of D with all players in S
coming first, then p, and then all the others)

Expected contribution of player p under
all possible additions of p to a partial
random sequence of players followed
by a random sequence of the rests of
the players

Shapley Value

Livshits et al. ICDT 2020 8

஻⊆஺∖{௔}

72
21 25

+4

The Shapley value is the expected delta 
due to the addition in a random permutation
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• Shapley value is the only function that satisfy certain natural properties

A result of a categorical set of axioms/conditions

• Shapley difficult to compute; provably #P-hard in general

• Counterfactual flavor: What happens having p vs. not having it?
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Shapley as Score for QA

• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q
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Shapley as Score for QA

• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q

• Concentrated on BCQs (and some aggregation on CQs)

Shapley(D,Q, τ) :=
∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

Quantifies the contribution of tuple τ to query result (Livshits et al.; ICDT’20)
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Shapley as Score for QA
• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q

• Concentrated on BCQs (and some aggregation on CQs)

Shapley(D,Q, τ) :=
∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

Quantifies the contribution of tuple τ to query result (Livshits et al.; ICDT’20)

• So as with actual causality/responsibility, players (tuples) can split into
endogenous and exogenous tuples

E.g. the former are those in a specific table

One wants to measure the contribution of endogenous tuples
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete

• Q is hierarchical if for every two existential variables x and y:

• Atoms(x) ⊆ Atoms(y), or

• Atoms(y) ⊆ Atoms(x), or

• Atoms(x) ∩Atoms(y) = ∅
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete

• Q is hierarchical if for every two existential variables x and y:

• Atoms(x) ⊆ Atoms(y), or

• Atoms(y) ⊆ Atoms(x), or

• Atoms(x) ∩Atoms(y) = ∅

Example: Q : ∃x∃y∃z(R(x, y) ∧ S(x, z))

Atoms(x) = {R(x, y), S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) = {S(x, z)}

Hierarchical!
Example: Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y))

Atoms(x) = {R(x), S(x, y)}, Atoms(y) = {S(x, y), T (y)} Not hierarchical!
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• Same criteria as for QA over probabilistic DBs (Dalvi & Suciu; 2004)

• Positive case: reduced to counting subsets of D of fixed size that satisfy Q

A dynamic programming approach works

• Negative case: requires a fresh approach (not from probabilistic DBs)

Use query Qnh above

Reduction from counting independent sets in a bipartite graph
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• Same criteria as for QA over probabilistic DBs (Dalvi & Suciu; 2004)

• Positive case: reduced to counting subsets of D of fixed size that satisfy Q

A dynamic programming approach works

• Negative case: requires a fresh approach (not from probabilistic DBs)

Use query Qnh above

Reduction from counting independent sets in a bipartite graph

• Dichotomy extends to summation over CQs; same conditions and cases

Shapley value is an expectation, that is linear

• Hardness extends to aggregate non-hierarchical queries: max, min, avg

• What to do in hard cases?
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• Approximation: For every fixed BCQ Q, there is a multiplicative fully-
polynomial randomized approximation scheme (FPRAS)

P (τ ∈ D | Sh(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Sh(D,Q, τ)}) ≥ 1− δ

Also applies to summations
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• Approximation: For every fixed BCQ Q, there is a multiplicative fully-
polynomial randomized approximation scheme (FPRAS)

P (τ ∈ D | Sh(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Sh(D,Q, τ)}) ≥ 1− δ

Also applies to summations

• A related and popular score is the Bahnzhaf Power Index (order ignored)

Banzhaf (D,Q, τ) := 1
2|D|−1 ·

∑
S⊆(D\{τ})(Q(S ∪ {τ})−Q(S))

Bahnzhaf also difficult to compute; provably #P-hard in general

• We proved “Causal Effect” coincides with the Banzhaf Index (op. cit.)

38



Score-Based Explanations for Classification

eL(e)

B

e = 〈x1, . . . , xn〉 entity requesting a
loan

• Black-box binary classification model returns label L(e) = 1, i.e. rejected

Why???!!!

• Similarly if we have the model, e.g. a classification
tree or a logistic regression model

X1

X2

Xn

.

.

.

L

O
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Score-Based Explanations for Classification

eL(e)

B

e = 〈x1, . . . , xn〉 entity requesting a
loan

• Black-box binary classification model returns label L(e) = 1, i.e. rejected

Why???!!!

• Similarly if we have the model, e.g. a classification
tree or a logistic regression model

X1

X2

Xn

.

.

.

L

O

• Which feature values xi contribute the most?

Assign numerical scores to feature values in e

Capturing the relevance of the feature value for the outcome

• In general (but not always) they are based on counterfactual interventions
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• Some scores can be applied with both black-box and open models

E.g. Shapley ; SHAP has become popular (Lee& Lundberg; 2017)
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• Some scores can be applied with both black-box and open models

E.g. Shapley ; SHAP has become popular (Lee& Lundberg; 2017)

• Players are feature values in e: D = {xi = Fi(e) | for some Fi ∈ F}

• Game function: Ge(S) := E(L(e′) | e′S = eS) (eS : projection on S)

• For a feature F ∈ F , compute: Shapley(F ,Ge, F (e))

42



• Some scores can be applied with both black-box and open models

E.g. Shapley ; SHAP has become popular (Lee& Lundberg; 2017)

• Players are feature values in e: D = {xi = Fi(e) | for some Fi ∈ F}

• Game function: Ge(S) := E(L(e′) | e′S = eS) (eS : projection on S)

• For a feature F ∈ F , compute: Shapley(F ,Ge, F (e))

• This requires computing∑
S⊆D\{F (e)}

|S|!(|D|−|S|−1)!
|D|! (E(L(e′|e′S∪{F (e)} = eS∪{F (e)})− E(L(e′)|e′S = eS))

Assuming one has the probability space of possible entities e′

Then L acts as a Bernoulli random variable

Using the classifier many times, and computing the weighted averages

• In practice? (we’ll be back ...)
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores

• So as with SHAP: underlying probability space? (if any)

No need to access the internals of the classification model
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores

• So as with SHAP: underlying probability space? (if any)

No need to access the internals of the classification model

• One problem: changing one value may not switch the label

No explanations are obtained

• Extend this score bringing in contingency sets of feature values!

The RESP-score (c.f. paper, simplified version follows)
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0, for x′ ∈ Dom(F )

• x actual explanation for L(e) = 1 if there is a set of values Y in e,
x /∈ Y, and (all) different values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0, for x′ ∈ Dom(F )

• x actual explanation for L(e) = 1 if there is a set of values Y in e,
x /∈ Y, and (all) different values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0

• If Y is minimum in size, RESP(x) := 1
1+|Y| (can be formulated with expected values)
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

• Due to e7, F2(e1) is counterfactual explanation; with RESP(F2(e1)) = 1

• Due to e4, F1(e1) is actual explanation; with {F2(e1)} as contingency set

And RESP(F1(e1)) = 1
2
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Experiments and Foundations

• We compared COUNTER, RESP, SHAP, Banzhaf

Kaggle loan data set, and XGBoost with Python library for classification model
(opaque enough)
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Experiments and Foundations
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Experiments and Foundations

• We compared COUNTER, RESP, SHAP, Banzhaf

Kaggle loan data set, and XGBoost with Python library for classification model
(opaque enough)

• Also comparison with Rudin’s FICO-Score: model dependent, open model

Uses outputs and coefficients of two nested logistic-regression models

Model designed for FICO data; so, we used FICO data

• Here we are interested more in the experimental setting than in results
themselves
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• RESP score: appealed to “product probability space”: for n, say, binary features

• Ω = {0, 1}n, T ⊆ Ω a sample

• pi = P (Fi = 1) ≈ |{ω∈T | ωi=1}|
|T | =: p̂i (estimation of marginals)

• Product distribution over Ω:
P (ω) := Π

ωi=1 p̂i ×Π
ωj =0(1− p̂j), for ω ∈ Ω
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• RESP score: appealed to “product probability space”: for n, say, binary features

• Ω = {0, 1}n, T ⊆ Ω a sample

• pi = P (Fi = 1) ≈ |{ω∈T | ωi=1}|
|T | =: p̂i (estimation of marginals)

• Product distribution over Ω:
P (ω) := Π

ωi=1 p̂i ×Π
ωj =0(1− p̂j), for ω ∈ Ω

• Not very good at capturing feature correlations

• RESP score computation for e ∈ Ω:

• Expectations relative to product probability space

• Choose values for interventions from feature domains, as determined by T

• Call the classifier

• Restrict contingency sets to, say, two features
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space is #P -hard (c.f. the paper)
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{ 1
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space is #P -hard (c.f. the paper)

• Use sample T ⊆ Ω, test data

Labels L(ω), ω ∈ T , computed with learned classifier

• Empirical distribution: P (ω) :=
{ 1
|T | if ω ∈ T
0 if ω /∈ T ,for ω ∈ Ω

• SHAP value with expectations over this space, directly over data/labels in T

• The empirical distribution is not suitable for the RESP score (c.f. the paper)
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Final Remarks

• Explainable AI (XAI) is an effervescent area of research

Its relevance can only grow

Legislation around explainability, transparency and fairness of AI/ML systems
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Final Remarks

• Explainable AI (XAI) is an effervescent area of research

Its relevance can only grow

Legislation around explainability, transparency and fairness of AI/ML systems

• Different approaches and methodologies

Causality, counterfactuals and scores have relevant role to play

• Much research needed on the use of contextual, semantic and domain knowledge

Some approaches are more appropriate, e.g. declarative (Bertossi; RuleML+RR’20)

• Still fundamental research is needed on what is a good explanation

And the desired properties of an explanation score

Shapley originally emerged from a list of desiderata
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