
Datalog± Multidimensional Ontologies

and
Data Quality

Leopoldo Bertossi
Carleton University

Ottawa, Canada

In honor of Georg Gottlob on his Celebration Day, Genova, 2016

Motivation: Contexts and Data Quality

A table containing data about the temperatures of patients at a hospital

TempNoon
Patient Value Time Date
Tom Waits 38.5 11:45 Sep/5
Tom Waits 38.2 12:10 Sep/5
Tom Waits 38.1 11:50 Sep/6
Tom Waits 38.0 12:15 Sep/6
Tom Waits 37.9 12:15 Sep/7

Are these quality data?

If not, anything to clean?

What?

We do not know ... It depends ...

Actually, the table is supposed/expected to contain:

“Tom’s temperatures taken at noon by a certified nurse with oral thermometer”

Are these quality data? We still do not know ...

2

We do not have any elements to judge ...

Questions about quality of data make sense in a broader setting

The quality of the data depends on “the context”

A context supporting:

• Making sense of the data

• Providing additional semantics

In particular, quality related semantics, e.g. quality constraints, rules?

• Providing relationships (mappings) to other, external, additional data

• Assessment of data (quality)

• Data cleaning

• “Clean query answering” with dirty data

3

Our approach: quality of data can be assessed with contextual knowledge
about the production and/or use of data

Our first approach:

(LB et al., VLDB’10 BIRTE WS) C

CS

external sources

Ri

Rj

D

i

P

E

quality predicates

i
PRi

Ri
’

Rj
’

D’

S

under assessment

?

Context C:

• A relational database, a relational schema, a virtual integration system,
a knowledge base, an ontology, ...

• Including quality predicates, data quality rules and constraints, quality
criteria and guidelines ...

4

• Instance D under quality assessment
(seen) as a footprint of contextual data

C

T

D as a footprint of a (broader) contextual instance

D

Only at C’s level can D’s data be
analyzed, assessed, cleaned, ...

•D can be mapped into the context

Quality criteria imposed at
contextual level (as above)

C

S

D

DP1
S

?

schema
context

mapping

under assessment
DP2

DP3

class D of intended instances

instance

‘

‘

‘

Through the context, alternative
clean versions of D can be specified,
computed, compared (with each other and D), queried, ...

Depending on the mapping and context’s ingredients

5

•D’s quality measured by its distance to class D of its quality versions

Collection of quality instances reflects “uncertainty” in dirty D

Ground opened for “quality QA” (certain answers wrt. D)

6

Multidimensional Contexts and Data Quality

Doctor requires temperatures taken
with oral thermometer, and expects
data corresponds to requirement

Table has no elements for this
assessment

An external context can provide them

The context could be a (multi-)dimensional database, or a dimensional
ontology

Actually, we may have been missing “dimensions” above, something
intrinsically “contextual”

7

A MD data model/instance

A hospital guideline

As a rule or a constraint

“Take patients’ temperatures in standard care units with oral
thermometers”

Can be taken advantage of through/after upward navigation in the hierarchical,
dimensional hospital structure

8

• Contextual information has a multi-dimensional nature

Other dimensions could be easily considered, e.g. time

• Enabling contextual, dimensional navigation, rolling-up/drilling-down

To access and generate missing data at certain levels (as in example above)

• Idea: Embed Hurtado-Mendelzon (HM) MD data model in contexts

A multidimensional context is generated for dimensional and finer-granularity
data quality assessment

• Go beyond: Enrich it with additional, dimension-related data, rules and
constraints

An ontological, multidimensional context!

9

Ontological Contexts with Dimensions

New ingredients in MD contexts:1 (AMW’12, RuleML’15)

• A (relational reconstruction of) the HM model

• Categorical relations: Generalize fact tables

Not necessarily numerical values, linked to different levels of dimensions,
possibly incomplete

• Dimensional rules: generate data where missing, enable navigation

• Dimensional constraints: on (combinations of) categorical relations,
involving values from dimension categories

1Join work with Mostafa Milani

10

• Categories Ward and Unit in
Hospital dimension

• UnitWard(unit,ward): parent/child
relation

• PatientWard: categorical relation
Ward and Day categorical attributes
takes values from categories

• Categorical relations are subject to dimensional constraints

• Need rules for dimensional navigation

What language to express all this? Datalog±, of course!

(Gottlob et al.,∞)

11

Datalog± MD Ontologies

Dimensional Constraints:

• A referential constraint restricting units in PatientUnit to
elements in the Unit category, as a negative constraint

⊥ ← PatientUnit(u,d; p),¬Unit(u)

• “All thermometers used in a unit are of the same type” :

t = t′ ← Thermometer(w, t;n),Thermometer(w′, t′;n ′),

UnitWard(u,w),UnitWard(u,w ′) An EGD

Thermometer(ward , thermometertype;nurse) is categorical relation,
t, t′ for categorical attributes

12

• “No patient in intensive care unit on August /2005”:

⊥ ← PatientWard(w,d; p),UnitWard(Intensive, w),

MonthDay(August/2005, d)

Dimensional Rules:

• Data in PatientWard generate data about patients for higher-
level categorical relation PatientUnit

PatientUnit(u,d; p) ← PatientWard(w,d; p), UnitWard(u,w)

To navigate from PatientWard.Ward up to PatientUnit.Unit via
UnitWard

Once at the level of Unit, take advantage of guideline (a rule):

“Temperatures of patients in a standard care unit are taken with oral
thermometers”

Data at Unit level that can be used there and at Ward level

13

• Data in categorical relation WorkingSchedules generate data in categorical
relation Shifts

WorkingSchedules

Unit Day Nurse Type

Intensive Sep/5 Cathy cert.

Standard Sep/5 Helen cert.

Standard Sep/6 Helen cert.

Standard Sep/9 Mark non-c.

↘

Shifts

Ward Day Nurse Shift

W4 Sep/5 Cathy night

W1 Sep/6 Helen morning

W4 Sep/5 Susan evening

∃z Shifts(w,d; n, z) ← WorkingSchedules(u,d; n, t),

UnitWard(u,w)

Captures guideline: “If a nurse works in a unit on a specific day, she has shifts
in every ward of that unit on the same day”

Existential variable z for missing values for the non-categorical shift attribute

Rule for downward- navigation and value invention, with join via categorical
attribute between categorical and parent-child predicate

14

Properties of MD Ontologies

• With reasonable and natural conditions, Datalog± MD ontologies become
weakly-sticky Datalog± programs [Cali et al., AIJ’12]

Important that join variables in TGDs are for categorical attributes (with
values among finitely many category members)

• The chase (that enforces TGDs) may not terminate

Weak-Stickiness guarantees tractability of conjunctive QA: only a “small”,
initial portion of the chase has to be queried

Boolean conjunctive QA is tractable for weakly-sticky (WS) Datalog±
ontologies

15

• Separability condition on the (good) interaction between TGDs and EGDs
becomes application dependent

If EGDs have categorical head variables (as in page 12), separability holds

Separability guarantees decidability of conjunctive QA, etc.

We wanted:

(a) A practical QA algorithm for WS Datalog±

(b) The possibility of optimizing the algorithm

16

Query Answering on WS MD-Ontologies

• There is a non-deterministic PTIME algorithm for WS Datalog±
(Cali et al., AIJ’12)

• Our goal was to develop a practical chase-based QA algorithm

• Apply magic-sets techniques to optimize QA

There is such a technique (MS) available for (a class of) “existential
programs” (∃-Datalog) (Alviano et al., Datalog 2.0’12)

•WS Datalog± is not closed under MS

Questions:

- A class extending WS Datalog±, closed under MS, with tractable QA?

- For which a PTIME QA algorithm can be developed?

17

Going Not-Too-Far Beyond WS MD-Ontologies

Sticky W-Sticky
?

tractable QA closed under MS

X

•WS Datalog± is a syntactic class
defined by a combination of:

- The notion of finite-rank position
(predicate/attribute) found in
weakly-acyclic TGDs (ΠF in data exchange)

- A variable-marking procedure developed for sticky Datalog±, to keep
track of value propagation via joins

(A better-behaved, less expressive subclass of WS Datalog±)

It captures “finite positions”: finitely many nulls in them during the chase

A “selection function”, Srank , of finite positions via finite-rank positions

• But not necessarily all finite positions (doing so is undecidable)

18

SƎ
All

computable non-computable

Srank

selecting finite positionsWe started investigating more general
selections functions (AMW’15, RR’16)

• Determining a new, syntactic, computable
selection function: Srank ⊆ S∃

It uses:

- the existential-dependency graph (Krötzsch & Rudolph, IJCAI’11)

- a marking procedure via join variables in TGDs (neglected by Srank)

•We identified and characterized via S∃ the Joint-Weakly-Sticky (JWS) class

A syntactic class with tractable QA that extends WS Datalog± and is closed
under MS!

19

Joint-Weak-Stickiness

Set of TGDs Σ:
p(X̂, Ŷ), u(Ŷ) → ∃Z p(Y, Z)

u(X), p(X, Ŷ), p(Ŷ , Ŵ) → t(X)Marks body variables that either:

(a) do not appear in heads, e.g. X in the first rule, and Y in the second, or

(b) occur in heads only in positions of marked variables (maybe another rule), e.g. Y in first rule

(Y occurs in p[1] in the head, where marked variable Y appears in the body of second rule)

• Srank(Σ) = ΠF (Σ) = {u[1]}

• With marked variables as for WS programs

• Σ is WS if marked join variables appear in at least one “finite position”

• Join variable Y appears in p[1], p[2] 6∈ Srank(Σ) Σ is not WS!

• Σ is JWS: S∃(Σ) = {p[1], p[2], u[1], t[1]}

20

•We proposed a PTIME chase-based QA algorithm for JWS Datalog±

For QA a finite initial fragment of the chase is good enough

• The (generic) algorithm takes into account during the chase if a position is
finite or not

As determined by the selection function (which acts as an oracle)

And behaves accordingly

• As such it can be applied both to WS and JWS, but some finite positions will
be missed when applied to WS

21

QA Algorithm

p(X̂, Y) → ∃Z p(Y, Z)

u(X̂), p(X̂, Y), p(Y, Ŵ) → t(Y)

• Σ :

• Σ is JWS: X appears in S∃(Σ) = {u[1]}

• Algorithm with D = {p(a, b), u(b)} and Q : ∃Y t(Y)

- Initialize I := D, and apply first TGD, creating p(b, ζ1)

- First TGD cannot be applied again: p(ζ1, ζ2) homomorphic to p(b, ζ1)

- No applicable rules

- Resume with frozen ζ1 (as a constant, relevant for homo tests)

- As many resumptions as existentials in query (one here)

22

p(X̂, Y) → ∃Z p(Y, Z)

u(X̂), p(X̂, Y), p(Y, Ŵ) → t(Y)

D = {p(a, b), u(b)}
Q : ∃Y t(Y)

- Algorithm continues

- Apply first and second TGDs, creating p(ζ1, ζ2) and t(ζ1), resp.

- No applicable rules (due to homo test), no more resumptions

- The algorithm stops with instance I = D ∪ {p(b, ζ1), p(ζ1, ζ2), t(ζ1)}

- I |= Q, so answer is true in Σ ∪D

Algorithm stops, producing a query-dependant, initial, finite portion of the reg-
ular chase, and is good enough to answer the query

23

Conclusions

• Datalog± is an expressive and computationally nice family of existential
programs (with constraints)

• Interesting applications in data modeling and the semantic web

• We have used Datalog± to create multidimensional ontologies

They can be seen as logic-based extensions of multidimensional DBs

They were motivated by data quality concerns

They are interesting by themselves

• They belong to well-behaved classes of Datalog±

• We proposed chase-based QA algorithms for (extensions of) WS Datalog±

• We applied magic-sets techniques

• QA can be used to extract quality data from dirty data (RuleML’15)

24

Open problems in our setting:

- Sometimes we have to deal with closed predicates, e.g. categories

- Inconsistency tolerance What if constraints are not satisfied?

• Implementation of the QA algorithm and experiments

25

EXTRA SLIDES

26

Downward Navigation and Categorical Attributes

TGDs as in page 14 can be used for “deterministic” downward navigation: only
values for non-categorical attributes are created, with determinism wrt. the
categories involved

In some applications there may be incomplete data about the categorical
attributes

Existential quantifications over categorical variables may be needed

27

Categorical relation DischargePatients, linked to Institution, with data about
patients leaving the hospital

DischargePatients

Inst. Day Patient

H1 Sep/9 Tom Waits

H1 Sep/6 Lou Reed

H2 Oct/5 Elvis Costello

−→

Query on PatientUnit about the dates that ‘Elvis Costello’ was in a unit at
institution ‘H2’

No answer directly from PatientUnit (as derived from PatientWard)

If each patient is in a (only one) unit, DischargePatient can generate data
downwards for PatientUnit

28

Knowledge about the unit (a category value) at the lower level is uncertain:

∃u InstitutionUnit(i , u),PatientUnit(u,d; p) ←
DischargePatients(i,d; p)

With rules of this kind, an MD ontology is still weakly-sticky: no infinite loops,
only a limited number of new nulls can be generated with the chase

EGDs with only categorical attributes in heads do not guarantee separability
anymore, and becomes application dependent

29

MD Contexts and Quality Query Answering: The Gist

The Datalog± MD ontologyM becomes part of the context for data quality
assessment

The original instance D is to be as-
sessed or cleaned through the context

By mapping D into the contextual
schema/instance C

In the context:

• Contextual predicates Ci

• Predicates Pi specifying single quality requirements

• Sq copy of schema S : Sqi clean version of original Si, specified using
C,P andM

30

We want quality answers to the query about Tom’s temperatures:

Q(t, p, v) ←Measurements(t , p, v), p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

Quality requirements are not captured by this query; we expect:

“Body temperatures of Tom Waits for September 5 around noon taken by a
certified nurse with a thermometer of brand B1”

Table Measurements does not contain information about nurses or
thermometers

Contextual data must be taken into account, such as categorical relation
PatientUnit and the guideline

“Temperature measurement for patients in a standard care unit are taken with
thermometers of brand B1”

31

According to the general contextual approach DQA, table (or better predicate)
Measurement has to be logically connected to the context

As a “footprint” of a “broader” contextual table that is given or built in the
context, in this case, one with information about thermometer brands (b) and
nurses’ certification status (y):

Measurement ′(t, p, v, y, b) ← Measurementc(t, p, v),

TakenByNurse(t, p, n, y),

TakenWithTherm(t, p, b)

Measurement c is contextual version of Measurement (e.g. the latter mapped
into the context)

32

If we want quality measurements data, we impose the required conditions:

Measurementq(t, p, v) ← Measurement ′(t, p, v, y, b),

y = Certified, b = B1

The auxiliary predicates above:

TakenByNurse(t, p, n, y) ← WorkingSchedules(u, d;n, y),

DayTime(d, t),PatientUnit(u, d; p)

TakenWithTherm(t, p, b) ← PatientUnit(u, d; p),

DayTime(d, t), b = B1, u = Standard

(DayTime is parent/child relation in Time dimension)

The second definition is capturing the guideline above

33

To obtain quality answers to the original query, we pose to the ontology the
new query:

Qq(t, p, v) ←Measurements(t , p, v)q , p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

Answering it triggers dimensional navigation, when requesting data for
categorical relations PatientUnit and WorkingSchedules

34

Magic-Sets Rewriting

•We consider a magic-sets rewriting method (MS) for Datalog∃

[Alviano et al., Datalog 2.0’12]

Quite general, and does not bound existential variables

Nothing like this: ∃w Assist f b(v, w)← Assistff (u, v)

•WS not closed under MS, but JWS is

• AL(Sext) can be applied both to a JWS program and its MS rewriting

Whereas AL(Srank) applied to a WS program’s MS rewriting
(possibly no longer WS) will be sound, but possibly incomplete

35

Example: Σ below is WS

σ1 : ∃z Assist(z, x)← Assist(x, y)

σ2 : ∃w Assist(v, w)← Assist(u, v)

σ3 : Certified(x′)← Assist(x′, y′),Assist(y′, z′),Doctor(y′)

QueryQ : Certified(Marie)?

Adorned program Σa:

r1 : ∃z Assist fb(z, x)← Assistbf (x, y)

r2 : ∃w Assistbf (v, w)← Assist fb(u, v)

r3 : Certifiedb(x′)← Assistbf (x′, y′),Assistbf (y′, z′),Doctor(y′)

Still WS

36

The MS rewriting ΣM :

m1 : ∃z Assist fb(z, x)← mg Assist fb(x),Assistbf (x, y)

m2 : ∃w Assistbf (v, w)← mg Assistbf (v),Assist fb(u, v)

m3 : Certifiedb(x′)← mg Certifiedb(x′),Assistbf (x′, y′),

Assistbf (y′, z′),Doctor(y′)And the magic rules:

m4 : mg Certifiedb(Marie).

m5 : mg Assistbf (x′)← mg Certifiedb(x′)

m6 : mg Assistbf (y′)← mg Certifiedb(x′),Assistbf (x′, y′)

m7 : mg Assist fb(v)← mg Assistbf (v)

m8 : mg Assistbf (x)← mg Assist fb(x)

ΣM is not WS!

Σ is JWS since it is WS

ΣM is also JWS

37

Example: (EDG and Joint Acyclicity)

Assume a set Σ of tgds (a variable only appears in one rule):

σ1 : ∃z Assist(x, z)← Nurse(x, y),Doctor(x)

σ2 : ∃w Nurse(w, u)← Assist(t, u)

ΠB
x and ΠH

x are the set of all positions where a variable x occurs in the body
and head of a rule

I.e. ΠB
x = {Nurse[1],Doctor [1]} and ΠH

x = {Assist [1]}

For any ∃-variable x, Ωx is the set of positions in which values invented for x
may appear

38

Ωx can be computed as the smallest set that:

(1) ΠH
x ⊆ Ωx and

(2) ΠH
y ⊆ Ωx for every ∀-variable y with ΠB

y ⊆ Ωx

That is, Ωz = {Assist [2],Nurse[2]} and Ωw = {Nurse[1]}

EDG of Σ has:

(1) ∃-variables as its nodes,

(2) There is an edge from x to y if the rule where y occurs contains a ∀-variable
z in its body with ΠB

z ⊆ Ωx

In this example, EDG of Σ has two nodes: z and w

There is only one edge from z to w

39

A set of tgds Σ is joint acyclic (JA) if its EDG is acyclic

Σ is JA (because EDG is acyclic)

We now define ∃-infinite positions of Σ:

Π∃∞(Σ) :=
⋃

Ωxi , with xis variables that appear in a cycle in
the EDG

Π∃F (Σ) are ∃-finite positions (the rest of the positions)

Proposition 1: ΠF (Σ) ⊆ Π∃F (Σ) (Π∃∞(Σ) ⊆ Π∞(Σ))

In this example:

Π∞(Σ) = {Assist [1],Assist [2],Nurse[1],Nurse[2]}, while

Π∃∞(Σ) = ∅

40

Example: (MS) Consider a set Σ of tgds:

σ1 : ∃z Assist(z, x)← Assist(x, y)

σ2 : ∃w Assist(v, w)← Assist(u, v)

σ3 : Certified(x′)← Assist(x′, y′),Assist(y′, z′),Doctor(y′)

ΠF (Σ) = {Doctor [1]}

ΠF (Σ) = {Assist [1],Assist [2], Certified [1]}

Σ is WS!

y′ is repeated and marked but appears in Doctor [1] ∈ ΠF (Σ)

Dashed lines represent special edges

41

Given a queryQ : Certified(Marie) the adorned program Σµ is:

r1 : ∃z Assist fb(z, x)← Assistbf (x, y)

r2 : ∃w Assistbf (v, w)← Assist fb(u, v)

r3 : Certifiedb(x′)← Assistbf (x′, y′),Assistbf (y′, z′),Doctor(y′)

ΠF (Σµ) = {Certified b [1],Assistbf [1],Assist fb [2],Doctor [1]}

Π∞(Σµ) = {Assistbf [2],Assist fb [1]}

Σµ is still WS (y′ in r3 appears in Doctor [1] ∈ ΠF (Σµ))

42

The MS rewriting ΣM contains modified rules:

m1 : ∃z Assist fb(z, x)← mg Assist fb(x),Assistbf (x, y)

m2 : ∃w Assistbf (v, w)← mg Assistbf (v),Assist fb(u, v)

m3 : Certifiedb(x′)← [mg Certifiedb(x′),Assistbf (x′, y′),

Assistbf (y′, z′),Doctor(y′)]

And the magic rules:

m4 : mg Certifiedb(Marie)

m5 : mg Assistbf (x′)← mg Certifiedb(x′)

m6 : mg Assistbf (y′)← mg Certifiedb(x′),Assistbf (x′, y′)

m7 : mg Assist fb(v)← mg Assistbf (v)

m8 : mg Assistbf (x)← mg Assist fb(x)

43

ΠF (ΣM) = {mg Certified b [1],Doctor [1]}

ΣM is not WS! Because of repeated variables in m1,m2 and m6

This proves that WS is not closed under MS rewriting

44

Σ is JWS since it is WS

Now consider the EDG of ΣM :

Ωz contains Assist fb [1] and Ωw has Assistbf [2]

Therefore Π∃∞(Σ) contains Assist fb [1] and Assistbf [2]

ΣM is JWS

45

Example: (The QA algorithm) A WS Σ:

∃zAssist(z, x)← Assist(x, y)

∃wNurse(x,w)← Doctor(x)

Certified(z, x)← Assist(x, y),Nurse(x, z)

D = {Doctor(john),Certified(alice),Assist(john, alice)}

CQ Q : ∃x∃y(Assist(x, y) ∧ Assist(y, john))

We use Srank and ΠF (Σ) = {Nurse[1],Nurse[2],Doctor [1]}

46

The two phases for QA:

1. pChase runs until termination

However, after a pChase-step the generated nulls appearing in ΠF (Σ)-
positions are immediately frozen

W1 is frozen (hence underlined)
immediately, because it appears in Nurse[2] ∈ ΠF (Σ)

Z1 is not frozen, because
Assist [1] ∈ Π∞(Σ)

47

2. pChase iteratively resumes for a number of times
that depends on the number of distinct ∃-variables that appear in a join
in the query (deals with joins in the query)

y is the only ∃-variable that
also appears in a join inQ
Therefore, we freeze all nulls
(e.g. Z1), and resume the
chase only once

Assist(Z2, Z1) is entailed
since Z1 is frozen now!

Q true after the chase
resumption!

It was false without it!

48

Let us now pose the query:

Q′ : ∃x∃y∃z (Assist(x, y) ∧ Assist(y, z) ∧ Assist(z, john))

Now the algorithm runs with two chase resumptions (because of y and z), and
returns true!

49

50

