
From Hilbert to Turing
and beyond ...

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

2

An Old Problem Revisited

X^2 + 2XY^3 - 4Y^5Z -3

 = 0

solution in Z?

yes?

no?

X^2 + Y^2 -2 = 0

yes

X^2 + 1 =0

no

Example: Hilbert’s 10th problem (1900): Is there a general me-
chanical procedure to decide if an arbitrary diophantine equation
has integer roots?

3

David Hilbert (1862 - 1943)

It was an open problem to Hilbert’s time

4

5

6

Hilbert does not use the word “algorithm”, but procedure (Ver-
fahren) with the usual requirements

He does use explicitly “decision” (Entscheidung)

There had been “algorithms” since long before, e.g. for the gcd

Even decision algorithms, e.g. deciding if a number is prime

However, the term comes from the name of the Persian sci-
entist and mathematician Abdullah Muhammad bin Musa al-
Khwarizmi (9th century)

In the 12th century one of his books was translated into Latin,
where his name was rendered in Latin as “Algorithmi”

His treatise “al-Kitab al-mukhtasar fi hisab al-jabr wal-muqabala”
was translated into Latin in the 12th century as “Algebra et Al-
mucabal” (the origin of the term algebra)

7

And Even More Hilbert ...

In the context of his far reaching program on foundations of
mathematics, Hilbert identifies the following as crucial:

Das Entscheidungsproblem: (The Decision Problem)

Determine if the set of all the formulas of first-order logic that
are universally valid (tautological) is decidable or not

∀x(P (x) → P (c)) and (P (c) → ∃xP (x)) are valid (always true)

∀x∃y(Q(x) ∧ P (x, y)) is not (it is false in some structures)

Explicitly formulated in the 20’s in the the context of the “engere
Funktionenkalkül” (the narrower function calculus)

Hilbert, D. and Ackermann, W. “Grundzüge der Theoretischen Logik”,

Springer, 1928.

8

9

10

11

12

13

Tackling the Problems

To give a positive answer, it was good enough to exhibit the
decision algorithm (and prove that it works)

To give a negative answer, quite a different approach was nec-
essary

How could it be possible to show that there was no such algo-
rithm?

It’s a universal quantification over the class of all algorithms:
none of them should work ...

It was impossible to settle the problem in the negative without
a mathematical characterization or formalization of the notion
of algorithm (or the class of algorithms)

14

With that mathematical definition we would know what class of
objects (the algorithms) we are talking about

To Hilbert’s time there was no mathematical formalization of
algorithm yet

To Hilbert’s time there was only an intuitive notion:

A specified discrete process that follows a finite and fixed
set of rules

Follows the same steps with the same input (determinism)

...

Hilbert himself talked about a “mechanical procedure”

15

So, what is an algorithm?

A first attempt could be as follows:

An algorithm is what can be programmed in (computed, calcu-
lated, ... with) a model X of computation ...

What model X of computation?

It was necessary to wait for the introduction and development of
the first mathematical model (actually, models) of computation

This happened in the mid 30’s

A model that could be accepted by the scientific community as a
good formalization of the intuitive notion of a computing device
(and indirectly of algorithm)

16

This acceptance criterion is not something that can be settled
in mathematical terms

What is a good model (of anything)?

It can be judged by its (internal) mathematical correctness, the
intuitions that it captures, its results, e.g. predictions, etc.

We will have to come back to this ...

In between, Hilbert’s problems were still waiting ...

17

Turing Machines

A Turing machine (TM) is a computational model introduced
by Alan Turing around 1936

The idea behind was to capture the so far only intuitive notions
of: computational device, computational procedure, algorithm,
computable function, etc.

One can safely say that computer science has it origins in the
work by Turing (and by others around the same time and on the
same subject)

The inception of the new discipline was started and motivated
by the work and problems of mathematical logicians

In particular, Hilbert’s Entscheidungsproblem was a crucial mo-
tivation

18

19

20

Turing is famous for (among other achievements):

Having proposed a mathematical model of a computer, of
algorithm, etc.

Applying the model to the study of solvability of certain
problems using computers (and algorithms)

Establishing the first results about the unsolvability of cer-
tain problems by means of computers

And then, establishing limits on what computers can do ...

Introducing the idea of a universal machine that can sim-
ulate any other machine

This idea was crucial for the later development of machines
that could store programs (by John von Neumann and oth-
ers)

21

The Turing’s Test in AI

Breaking the cryptographic communication code of the
German navy during the 2nd World War

22

Alan Turing (1912-1954)

The most important award in computer science research is named
after him: the ACM Turing Award

(ACM: Association for Computing Machinery)

23
A Turing Machine M :

…………………………….

e0

e1

e2

e4

a b a

X

hardware software

e0 a b +1 e1

e0 b b +1 e1

e1 b b +1 e2

e2 a a +1 e2

e2 +1 e2

e1 a a +1 e4

It has:

A control unit consisting of a finite set of states

A finite alphabet Σ

An infinite tape in two directions with cells

We can think the cells as numbered: . . . ,−2,−1, 0, 1, 2, . . .

A reading/writing head that moves along the tape

24
A transition function δM , the “software”

It can be represented as a finite table

The function may be partial, i.e. δM may not be always
defined

If M reaches a configuration (e, a) for which δM is unde-
fined, M stops (halts)

Notice that a TM is a mathematical object: a finite number of
finite set-theoretic objects

25

TM can be used to compute functions, e.g. the usual arithmeti-
cal functions

And many other functions on natural numbers ...

E.g. Is there a TM that computes the factorial function?

F : N→ N, that is usually defined by recursion:

F (0) := 1

F (n + 1) := F (n)× (n + 1)

TMs can be used to solve decision problems

For solving decision problems with a TM, one usually assumes
that there are states qY , qN for Yes !,No!, resp.

At them, the TM stops and the answer is read from the corre-
sponding state

26

Decision Problems

D

L

yes

no
w

w in L?

Algorithm (for any w)

w in D

Start from a domain of instances D and a subset L

Is there an algorithm to decide membership to L?

More precisely, we search for a general algorithm that takes
inputs w ∈ D, and answers Yes ! or No! depending on whether
w belongs to L or not

27

Usually the problem is characterized in terms of finite words over
a finite alphabet Σ: L $ D ⊆ Σ?

We are confronted to decision problems, and we look for algo-
rithms to solve them

Given a decision problem, with L ⊆ D:

L is decidable (or solvable) if there is an algorithm AL that for
any w ∈ D, AL answers Yes ! if w ∈ L and No! if w /∈ L

There are many natural and common decision problems

28
Example: D is the set of all propositional formulas in “con-
junctive normal form” (CNF) over a certain set of propositional
variables, say p1, p2, p3, . . .

The formulas in D are conjunctions of disjunctions of “literals”,
i.e. propositional variables or negations thereof,

D = {p1,¬p2, p3∧¬p4, p1∧¬p1, (p1∨¬p2)∧(p2∨p3∨¬p1), . . .}
L := SAT , the subset of D containing the formulas that are
satisfiable

E.g. p1 ∧ (p2 ∨ ¬p1) is satisfiable, but p1 ∧ (¬p1 ∨ p2) ∧ ¬p2

is not

All these formulas can be encoded (represented) as words over
a finite alphabet

Is SAT decidable? I.e. is there a decision algorithm for it?

29

An algorithm to decide membership to SAT :

Given an arbitrary formula ϕ ∈ D, construct and check the
truth table of ϕ; if the final column has a 1 (T), answer
Yes !, otherwise No!

We can say SAT is (computationally) decidable or solvable

30

Example: Is there an algorithm to decide if an arbitrary planar
undirected (finite) graph (or map) G is colorable with 3 colors?
(in such a way that vertices connected by an edge have different
colors)

map graph

No!

Yes!

Here: D is the set of (encodings of) graphs

3GC is the set of all graphs than can be colored with 3 colors

A solvable decision problem: Try the finitely many possible col-
orations with three colors and check if one works

31

Notice that a decision problem can be formulated as a problem
of computing a function

D

L

w L?
w

Consider the characteristic function of L:

chL : D → {0, 1}, defined by chL(w) :=

{
1 if w ∈ L
0 if w ∈ D r L

L is decidable iff the function chL is computable (i.e. there is
an algorithm that computes it)

32

Algorithms

We proposed the TM as a model of computation

TMs seem to be powerful enough to compute what we consider
to be computable

We haven’t defined “algorithm” yet

We can make at this stage a commitment and give a precise
definition

Definition: An algorithm is a procedure that can be programmed
in (as) a TM (or computed with a TM)

This makes the notion of algorithm precise from the mathemat-
ical point of view

From a mathematical point of view it is O.K.

33

But is it a good definition?

It cannot be judged mathematically

We need a different kind of support for this definition

It seems to capture the intuitions behind and practice of
computation and use of algorithms

People who have tried to program their favorite (intuitive)
algorithms in (as) a TM have succeeded

Alternative notions of algorithm that have been proposed
have turned out to be equivalent in terms of computational
power to TMs

If we accept this definition, we obtain right away the other char-
acterizations missing:

34
Definition:

(a) A decision problem L (⊆ D) is (computationally) solvable
if there is TM that solves it

That is, the TM halts with every input from D by reaching
either qY or qN , but qY iff the input belongs to L

(b) A function f : (Σ?)n → (Σ?)m is computable iff it can be
computed by means of a TM

We should say “Turing-decidable” and “Turing-computable”

In particular, this applies to functions of natural numbers

For example, Sum : ({0, 1}?)2 → {0, 1}? is computable

Here the number are represented in, say binary notation

35
We accept that this is the right definition of computable func-
tion, i.e. we accept the so-called

Church’s Thesis: The class of computable functions coincides
with the class of Turing-computable functions

This thesis cannot be mathematically proved, we accept it or
not (on other grounds)

It is impossible to mathematically prove a statement that says
that two classes of objects coincide when one of them is math-
ematically defined, but not the other

(“Turing-computable” has a mathematically precise meaning:
computable by means of a TM)

36

Well, we are lying a bit ...

Church presented his own model of computation (or of com-
putable function) a little before Turing, in a 1936 paper

Again, the Entscheidungsproblem at the very origin ...

Not everybody convinced that Church captured the essence of
computable function, e.g. Goedel ...

Turing shows in his 1936/37 paper that the classes of Church-
computable functions and Turing-computable functions coincide

After that Goedel was convinced!

The Turing model is such a natural model ...

37

Alonzo Church (1903-1995)

Today, Church’s thesis is widely accepted

Church was one of those who at that time proposed a (super-
ficially) different model of computation: the “lambda calculus”
(λ-calculus), that is at the root of some modern (functional)
programming languages like Lisp and Scheme

38

39

Now, with a precise mathematical definition of algorithm it be-
comes possible to prove that some (decision) problems are un-
decidable

That is unsolvable by algorithmic means, i.e. unsolvable by means
of a TM

Are there any?

40
Undecidable Problems, Universal TMs

We will concentrate on Σ = {0, 1, #}
With this alphabet we can represent, among other things, nat-
ural number, e.g. in binary notation

Σ? is infinite, but countable: It can be put in one-to-one corre-
spondence with the set of natural numbers

In consequence, P(Σ?) is uncountable

The set of languages over Σ is uncountable!

Now, let us consider TMs over alphabet Σ

How many TMs can we have?

41

Every machine is a finite device: it depends on a finite set of
states, the finite alphabet Σ, the finite transition function, ...

So, we cannot generate (produce, describe, define) more than
an infinite, but countable set of TMs

The set T of TMs over alphabet Σ is infinite and countable

That is, there is a bijective function e : T → N

For a TM M , e(M) is the natural number associated to M

Since e(M) is a number, it has a representation in {0, 1}, e.g.
the binary representation of number e(M)

42

e(M) is the encoding of machine M as a binary string, i.e.
e(M) ∈ {0, 1}?

The existence of such a numerical encoding of TMs follows from
a simple cardinality analysis

However, it is possible to give effective and explicit encodings
of TMs as binary strings

We will not do this here, but just use the encoding

43

We have also obtained: The set of TMs is strictly smaller that
the set of languages over Σ

Every decidable language over Σ requires the existence of a TM
that decides it

Then, there cannot be more decidable languages than TMs:

The set of decidable languages over Σ is strictly smaller than
the set of languages over Σ

Thus: There are languages over Σ that are undecidable!

A concrete undecidable problem? A first undecidable problem?

It will be related to the intimate nature of TMs

44

We recall that every TM M can be encoded as a binary string
e(M)

Actually, this encoding is invertible, and it is possible (not done
here) to effectively reobtain the components of M from e(M)

In particular, a TM could take the encoding of another TMs as
input, “deconstruct” the encoding, reobtain the encoded ma-
chine, and simulate its behavior

We can go a bit further and consider also inputs for the machines
that are being simulated

45
Consider the following algorithm U :

1. It takes inputs of the form e(M)#w, with e(M) the en-
coding of a machine M over Σ and w ∈ {0, 1}?

(at least these are the interesting inputs)

2. Obtain from e(M) the components of M to ...

3. Simulate the run of machine M with input w

4. (If M stops with qY , return Yes !)

5. (If M stops with qN -or whatever different from qY , return
No!)

6. (If M does not stop, do not stop)

This is clearly an algorithm, an informal one

46
Appealing to Church’s thesis, there is a TM TU for this algorithm

So, TU on inputs e(M), w simulates the computation of ma-
chine M with input w

This is a universal Turing machine

The existence of such a universal machine was obtained from
Church’s thesis

However, it is possible to give an effective and explicit universal
machine TU (this was done by Turing himself)

This machine is obviously interesting per se

We will also use it later on

And the idea behind will be inspiring now ...

47

A First Undecidable Problem: The Halting Problem

Is it possible to decide if a TM with a certain input halts or not?

More precisely, is there a Turing machine M to decide if any
TM machine M , encoded as e(M), with an input w ∈ {0, 1}?

halts or not?

We are considering the decision problem

LH = {e(M)#w | e(M) is the encoding of a TM M that,
with input w, halts}

e(M)#w

Machine M ?

Yes! M halts with w

No! M does not halt with w

48

No!: There is no such a machine M
Theorem: LH , the halting problem for TMs, is undecidable

The computational problem of deciding by means of computers
if a Turing machine halts with a given input or not is unsolvable
by means of computers

“Modern version”: There is no program in Java that can be
used to verify if an arbitrary program in Java stops or not)

Thus, there are provable limits on what computers can do ...

How can we prove the theorem?

49

A. Turing first proved that a special version of the halting prob-
lem is unsolvable:

Is there a TM M that decides if an arbitrary TM M fed with
is own code e(M) as input stops or not?

e(M)

Machine M ?

Yes! M halts with input e(M)

No! M does not halt with input e(M)

LSH := {w ∈ {0, 1}? | w is code e(M) of a machine M and M
with input e(M) halts}

Lemma: The “special halting problem” LSH is unsolvable

50

This is a special case of the halting problem LH , and is already
unsolvable ...

Why this one?

It exploits the idea of self-reference or of a “diagonal construc-
tion” that is quite useful in mathematics

LSH is our first unsolvable decision problem (or undecidable
problem)

51
Proof of the lemma: Assume, by contradiction, that there is
such a machine M
For it it holds then: M(e(M)) answers Yes ! iff M(e(M)) halts

(M(w) denotes the computation of M with input w, etc.)

Now, build a new machine M′ that uses M as a subroutine:

M′(w) :=

{
Yes ! if M(w) says No!
∞ loop if M(w) says Yes !

Let us feed M′ with its own code

M′(e(M′)) halts ⇐⇒M′(e(M′)) answers Yes !

⇐⇒ M(e(M′)) answers No!

⇐⇒ M′(e(M′)) does not halt

A contradiction!

52

Now we can prove that the (general) halting problem is unde-
cidable

It should be easy ...

Intuitively, LH is more general than LSH so it should be unde-
cidable too

More precisely: Assume, by contradiction, that LH is decidable

Then there is a TM M that decides it: M(e(M), w) answers
Yes ! iff M(w) halts

We can use M to decide LSH as follows: For arbitrary TM M ,
just run M(e(M), e(M))

This decides if M(e(M)) halts

A contradiction!

53

In the proof of the undecidability of LH we used the idea of
reducing a problem to another

We reduced the special halting problem to the general halting
problem

We can exploit this technique to show that:

Certain problems are decidable given that others are

Certain problems are undecidable given that others are

Since we already have our first two undecidable problems, we
can use this technique to establish that other problems are also
undecidable

Two simple results are useful in this direction

54
Proposition: Let L, D be a decision problem, L ⊆ D. L is
decidable iff its complement D r L is decidable

L is decidable ⇐⇒ (D r L) is decidable

By the contrapositive implication:

L is undecidable ⇐⇒ (D r L) is undecidable

D

L

w (D \ L)?
w

D \ L

Proof: (⇒) Use a TM M for
deciding L as a subroutine for
a machine M c for deciding Dr
L: When M answers Yes !,

M c answer No!

When M answers No!,
M c answer Yes !

Again the idea of reduction (of D r L to L)

55
Now we make the notion of reduction precise

Definition: Let D1, L1 and D2, L2 decision problems

L1 is reducible to L2 if there is a function f : D1 → D2, such
that

f is computable (by a TM)

For every w ∈ D1, w ∈ L1 ⇐⇒ f(w) ∈ L2

L1 L2
f

computable

D1 D2

w in D1 f(w) in D2

w in L1 f(w) in L2

(preserves membership)

56

Proposition: If L1 is reducible to L2, then

L2 decidable =⇒ L1 decidable

L1 undecidable =⇒ L2 undecidable

The second implication is just the contrapositive of the first one

Proof: If L2 is decidable, then it has a decision algorithm AL2

If L1 is reducible to L2, there is a reduction function f that can
be computed by an algorithm ALf

We use both as subroutines for an algorithm for deciding L1:

1. Given arbitrary w ∈ D1 (w ∈ L1?)

2. Using ALf compute f(w), that belongs to D2

3. Use AL2 to decide if f(w) ∈ L2

4. From the answer returned by AL2 read the answer for w

57

Notation: L1 ≤ L2 denotes that L1 is reducible to L2

Example: As expected, LSH ≤ LH

In fact, the following function works h : e(M) 7→ e(M)#e(M)

When e(M) is an input for the special halting problem,
h(e(M)) is an input for the (general) halting problem

h is clearly computable

e(M) ∈ LSH ⇐⇒ h(e(M)) ∈ LH

Notice: L1 ≤ L2 6=⇒ L2 ≤ L1

We have a powerful technique to prove many undecidability re-
sults

58

Proposition: Deciding if two TMs (over the same alphabet) com-
pute the same (possibly partial) function is unsolvable

Lsf := {e(M1)#e(M2) | ... and for every w, M1(w) = M2(w)}
(M(w): result at end of computation or ∞ if no stop)

Proof: We can try LH ≤ Lsf

That is, we want to answer if a machine stops using an answer
about machines computing the same function

f : e(M)#w 7→ ??

We have to come up with the right question on the RHS

It has to be of the form of an input for Lsf

Which M1,M2 above? Two machines, depending upon M,w

59
Machine M1:

Mw(u) :=

{
0 if M(w) halts
∞ loop if M(w) does not halt

This is a constant function, with value always 0 or always unde-
fined

The other machine, M2, is the one that computes: O : u 7→ 0

This is constant and always takes value 0

Mw and O compute the same function iff M halts with w

f : e(M)#w 7→ e(Mw)#e(O)

On the RHS we have an input for Lsf

The pair e(Mw)#e(O) can be computed from M,w

M halts with w iff Mw and O compute the same function,
i.e. e(M)#w ∈ LH iff e(Mw)#e(O) ∈ Lsf

60

Proposition: The problem of deciding if a machine with the emp-
ty tape (as input) halts is undecidable

Proof: It holds LH ≤ Lε := {e(M) | M(ε) halts}
In fact, given M and w, build a new machine Mw:

1. Erases whatever is on the tape as input (if any)

2. Writes w on the tape

3. Behaves as M (with input w)

Clearly Mw (and e(Mw)) is computable

It holds: M halts with input w iff Mw halts with empty input

61

Recursively Enumerable Languages

We introduce a natural notion that is a weaker version of decid-
ability

Intuitively, L ⊆ Σ? is recursively enumerable (r.e.) if there is
an algorithm (TM) that, once started, lists one-by-one all and
only the elements of L, with repetitions allowed, and in no pre-
specified order

Al

w1

w2

w3

.

.

.

L

The condition about the order
is important

If we impose an order, we could
decide about membership just
by looking at the order in which
elements are displayed

62

This is a useful characterization

However, it is possible to give a more precise definition and
equivalent characterization

Definition: L ⊆ Σ? is r.e. iff it is the language L(M) accepted
by some TM M , where

L(M) := {w ∈ Σ? | M with input w halts at state qY }

The machine M , for inputs w ∈ (Σ?rL), may reach qN or not
halt

So, M may not be (implement) a decision algorithm for L

(Hence the difference between a language being “decided” and
“accepted” by a TM: in the former case, the machine must
always halt at qY or qN)

63

However, it is obvious from the definition that

Proposition: Every decidable language is also r.e.

The definition can be made relative to a decidable domain D,
with L ⊆ D ⊆ Σ?

Requiring that D is decidable is natural: we should be able to
decide if an input is legitimate

Recursively enumerable languages are also called semi-decidable,
partially decidable, Turing-recognizable, etc.

64

What is the connection with the initial intuition?

If L is recursively enumerated by an algorithm

AL: w1, w2, w3, ...,

the following algorithm M is a semi-decision algorithm, i.e.
M accepts L:

For an arbitrary input w ∈ Σ?, turn on AL and wait to see
if w appears

If yes, answer Yes ! (or go to a state qY)

Every w ∈ L eventually appears and gets answer Yes !

No element of (Σ? r L) will get answer Yes !

65

If L = L(M) according to the definition of r.e., the fol-
lowing is an intuitive enumeration algorithm for L

steps

* w1 w2 w3 w4
c

o
m

p
u

ta
ti

o
n

s
 w

it
h

 M

. . . .

. . . .

. . . .

. qN . .

. qY .

qY .

Systematically simulate the
computations with M for all
the elements of Σ?, but not
the whole computations (we
might not stop with a par-
ticular one), but in parallel,
step by step as in the figure

Output w whenever qY is
reached∞

Some of the vertical computations may be infinite, but we
will not get stuck at any of them

Only and all elements of L will be displayed

66
Just to become familiar with the use of the informal character-
ization of r.e. languages, we prove again

Proposition: Every decidable language is r.e.

Proof: An enumeration algorithm for a decidable L

Start systematically generating elements of Σ?, one after the
other, each time one, say w, is generated, internally decide if
w ∈ L

If Yes !, return w; otherwise (i.e. No!), hide w and continue with
the following element ...

So, we have: L decidable =⇒ L r.e.

However: L r.e. 6=⇒ L decidable

That is, r.e. is a provably a weaker notion than decidability

67

Any counterexample?

Proposition: LH is r.e.

Proof: Use the universal TM TU , that, on input e(M)#w sim-
ulates the computation of machine M with input w (steps 1.-3.
on page 45)

Extend steps 1.-3. with

4. TU halts with Yes ! iff M halts with input w (at qM
Y or qM

N)

5. TU runs forever if M(w) does

Thus, L(TU) = {e(M)#w | M with input w halts}
That is, LH is the language accepted by a TM

68
In the following, we denote with Lc the complement of L, i.e.
it is D r L (for a decidable D ⊆ Σ?)

Proposition: (S. Kleene)

L and Lc both r.e. =⇒ L (and Lc) decidable

L Lc

w1

w2

w3

.

.

.

w1’

w2’

w3’

.

.

.

w L ?
?

?

D

In order to decide if w ∈ L,
turn on algorithms for L and
Lc, and wait to see here w ap-
pears

It has to appear in one and only
one of the two lists

Corollary: Lc
H = {e(M)#w | ... M does not halt with w} is

not r.e. (and, of course, Lc
H is also undecidable)

69

Stephen Kleene (1909-1994)

Kleene introduced another mathematical model of computable
function; the “general recursive functions” (1936)

70

Recursively enumerability naturally appears in different situa-
tions

It is implied by decidability, but usually r.e. appears on its own

Example: Consider the language of propositional logic based on
the set of propositional variables P = {p1, p2, . . .}
For example, (p3∧¬p2),¬p5, (p2 → p6), . . . are elements of this
language

Let D be the domain containing all these legitimate proposi-
tional formulas

Consider the language

TAUT := {ϕ ∈ D | ϕ is a tautology, i.e. true for every truth
valuation}

71
E.g. (p6 ∨ ¬p6), (p8 → p8) ∈ TAUT

TAUT is r.e.

This follows from the decidability of TAUT (to decide, just build
the truth table of the formula and check)

However, there is a natural and common algorithm for r.e.:

It is known from mathematical logic that there is a deductive
calculus that can be used to (syntactically) derive all the for-
mulas that are logical consequences of a given set of premises
(other formulas)

The elements of TAUT are those formulas that can be derived
from the empty set of premises; i.e. they are unconditionally true

A possible deductive calculus is the following; it consists of log-
ical axioms and one deduction rule:

72A1. ϕ → (ψ → ϕ)

A2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

A3. (¬ϕ → ¬ψ) → (ψ → ϕ)

A4. (ϕ ∧ ψ) → ϕ

A5. (ϕ ∧ ψ) → ψ

A6. (ϕ → ψ) → ((ϕ → χ) → (ϕ → (ψ ∧ χ)))

A7. ϕ → (ϕ ∨ ψ)

A8. ψ → (ϕ ∨ ψ)

A9. (ϕ → χ) → ((ψ → χ) → ((ϕ ∨ ψ) → χ))

MP. The “modus ponens” rule: (ϕ → ψ)
ϕ

ψ

Each axiom is a pattern for a certain class of tautologies, and the
“metaformulas” in the axioms can be replaced by any concrete
propositional formulas

E.g. in A1. we can make ϕ = ¬¬p2, and ψ = (p2 ∧ ¬p8):

¬¬p2 → ((p2∧¬p8) → ¬¬p2) is a (concrete, specific) tautology

73
A derivation of a formula (from the empty set of premises) is a
finite sequence of formulas

Each of them is an instance of one of the axioms (or (meta)tautologies)
or can be obtained by MP from previous formulas in the sequence

A derivation of the (meta) tautology ϕ → ϕ:

1. (ϕ → ((ϕ → ϕ) → ϕ)) → ((ϕ → (ϕ → ϕ)) → (ϕ → ϕ))
(A2. with ϕ, (ϕ → ϕ), ϕ)

2. (ϕ → ((ϕ → ϕ) → ϕ)) (A1. with ϕ, (ϕ → ϕ))

3. (ϕ → (ϕ → ϕ)) → (ϕ → ϕ) (MP with 1. and 2.)

4. ϕ → ((ϕ → ϕ) (A1.)

5. ϕ → ϕ (MP. with 3. and 4.)

With this deductive calculus all the tautologies can be derived

74

What about the r.e. of TAUT?

Use “systematically” the logical axioms and the MP rule to start
deriving one after the other all and only tautologies

(A similar reasoning can be applied to languages generated by
context-free grammars)

This procedure captures the positive. i.e. Yes !, cases, but not
the negative, i.e. No!, cases

So, it is only a semi-decision algorithm for a decidable problem

75

The Entscheidungsproblem Revisited

Theorem: (A. Church) The set of all valid sentences of a
language L(S) of first-order predicate logic (FOL) is undecid-
able, i.e.

VAL := {ϕ ∈ L(S) | ϕ is a sentence and |= ϕ}
is undecidable!

|= ϕ means ∅ |= ϕ, i.e. ϕ is consequence of the empty set of
axioms, i.e. unconditionally true, i.e. always true

(S with at least one binary predicate plus equality)

76

Proof: (sketch) We know that deciding if an arbitrary Turing
machine with an arbitrary input stops is unsolvable (undecidable
problem)

FOL is expressive enough to describe how an arbitrary Turing
machines operates

In particular, with the existential quantifier it is possible to ex-
press that “there is a halting state”

More precisely, to every machine M with input w, it is possible
to effectively associate a sentence ϕM,w such that

M with input w halts ⇐⇒ |= ϕM,w

This reduction shows that the problem on the RHS cannot be
solvable (otherwise, the one on the LHS would be solvable)

77
Hilbert’s 10th Problem Revisited

With a precise, mathematical definition of algorithm and de-
cidability, it became possible to attack Hilbert’s problem (in its
negative direction)

Theorem: (Y. Matiyasevich, 1970) Hilbert’s 10 Problem is un-
decidable, i.e. there is no algorithm to decide if an arbitrary
diophantine equation has roots in the set Z of the integer num-
bers

78

This result relies in the following main technical result

It was obtained by extending previous work and concluding the
line of attack first proposed and followed by Julia Robinson,
Hilary Putnam and Martin Davis

Theorem: (Matiyasevich) Every r.e. relation over natural num-
bers is diophantine

Julia Robinson

Hilary Putnam Martin Davis

What is a diophantine relation over natural numbers?

79

Let R ⊆ Nn, i.e. an n-ary relation over naturals

R is diophantine iff there is a polynomial p(x1, . . . , xn, y1, . . . , ym)
with coefficients in Z, such that, for all a1, . . . , an ∈ N:

(a1, . . . , an) ∈ R ⇔ ∃y1 · · · ∃ymp(a1, . . . , an, y1, . . . , ym) = 0
is true in N (also quantifiers over N)

For example, the unary relation “being a perfect square” (PSq ⊆
N1) is diophantine: for all a ∈ N

PSq(a) ⇔ ∃y(a− y2) = 0

Here the polynomial is p(x, y) : x− y2

Proving that every r.e. set (relation) of natural numbers is dio-
phantine is the difficult part (we do not give the proof)

(Proving that every diophantine relation is r.e. is easy)

80

Robinson, Davis, Putnam proved this result but their “diophan-
tine polynomials”had the exponential function (xy), so they were
not exactly polynomials, but “almost” ...

Something like p(x, y, z) : x2y−xyz is not exactly a diophantine
polynomial

So, it was left open how to get rid of the exponentiation, re-
placing it by polynomial expressions

This was achieved by Matiyasevich

The polynomial p can be effectively obtained from the r.e. rela-
tion R

That is, it can be computed (from the TM that provides the
recursive enumeration algorithm for R)

81

That every r.e. relation can be expressed by a diophantine poly-
nomial is initially surprising

However, the recognizing machine can be “arithmetized”:

We have seen already that the machine can be encoded as
a number

Its operation or dynamic can also be captured by numerical
functions that turn out to be polynomial

82

Before proving that the last theorem implies the undecidability
of Hilbert’s problem, a useful remark:

If HP(Z), i.e. Hilbert’s problem asking for existence of roots in
Z, is solvable, then it is also solvable when asking for roots in N

This can be obtained by reduction from HP(N) to HP(Z)

Using the fact that every natural number is the sum of 4 squares,
i.e. we use the reduction

p(x, . . .) = 0 7→ p(x2
1 + x2

2 + x2
3 + x2

4, . . .) = 0

In this way every negative root in Z for the RHS can be replaced
by its positive version (the sign disappears anyway due to the
square)

Thus, it is good enough to prove that HP(N) is unsolvable

83
Let prove that

Every r.e. relation is diophantine =⇒ HP(N) unsolvable

In fact: Consider LH , the halting problem, which is r.e.

LH can be seen as a 2-ary relation over natural numbers, i.e.
LH ⊆ N2: Its inputs are binary strings, i.e. natural numbers in
binary representation

Then, there is a polynomial pU(x, y, z1, . . . , zm) with coefficients
in Z, such that

(e(M), w) ∈ LH ⇔ ∃z1 · · · ∃zm pU(e(M), w, z1, . . . , zm) = 0

Here, w is the number represented in binary by the binary string
w, ...

The quantifiers on the RHS are over N

84

If it were possible to decide the RHS, it would be possible to
decide membership to LH

Then, HP(N) is unsolvable

In this proof we used again a reduction: LH ≤ HP(N)

It was achieved via the polynomial pU for LH

This is a “universal diophantine equation”, considering that LH

is recursively enumerated by the universal TM TU

85

Conclusions

All this is at the very root of our discipline

At the rise of computer science

Computation is investigated in terms of mathematical models
and mathematical “techniques”

Limits on what computation can do were established

Problems of mathematical logic and the work of mathematical
logicians were the basis for further developments

Among many others:

Non-determinism in computation and non-deterministic TMs

Seminal work on non-deterministic automata by M. Rabin
and D. Scott, logicians again ...

86

Study the complexity of decision problems

Setting quantitative limits on their solvability

In terms of temporal, spatial, ... resources

Most prominently, the work by S. Cook on the dichotomy
between solvability in polynomial time vs. non-deterministic
polynomial time

P
?

$ NP

A million dollar problem ... Open since 1971 ...

In this case SAT, i.e. satisfiability of propositional logical
formulas, was the protagonist

It became the first candidate to be in NP r P if they are
different ...

