Carleton

UNIVERSITY

From Hilbert to Turing
and beyond ...

Leopoldo Bertossi

Carleton University
School of Computer Science
Ottawa, Canada

An Old Problem Revisited

yes?

X2 +2XYA3 -4YMSZ -3
=0

solution in Z.?

yes

X2 +Y"2-2=0

no

Example: Hilbert's 10th problem (1900): Is there a general me-
chanical procedure to decide if an arbitrary diophantine equation
has integer roots?

David Hilbert (1862 - 1943)

It was an open problem to Hilbert's time

Mathematische Probleme.

Vortrag, gehalten auf dem internationalen Mathematiker- Kongrefls
zu Paris 1900.

Von D. HILBERT in Go&ttingen.

Aus den Nachrichten der K. Gesellschaft der Wissenschaften zu Géttingen.
Math.-phys. Klasse. 1900. Heft 3. Mit Zusitzen des Verfassers.

Wer von uns wiirde nicht gern den Schleier liiften, unter dem die
Zukunft verborgen liegt, um einen Blick zu werfen auf die bevor-
stehenden Fortschritte unserer Wissenschaft und in die Geheimnisse
ihrer Entwickelung wihrend der kiinftigenm Jahrhunderte! Welche be-
sonderen Ziele werden es sein, denen die fiihrenden mathematischen
Geister der kommenden Geschlechter nachstreben? Welche neuen Me-
thoden und neuen Thatsachen werden die neuen Jahrhunderte entdecken
— auf dem weiten und reichen Felde mathematischen Denkens?

Die Geschichte lehrt die Stetigkeit der Entwickelung der Wissen-
schaft. Wir wissen, dafs jedes Zeitalter eigene Probleme hat, die das
kommende Zeitalter 16st oder als unfruchtbar zur Seite schiebt und
durch mneue Probleme ersetzt. Wollen wir eine Vorstellung gewinnen
von der mutmalfslichen Entwickelung mathematischen Wissens in der
nichsten Zukunft, so miissen wir die offenen Fragen vor unserem Geiste
passieren lassen und die Probleme tiberschauen, welche die gegenwiirtige
Wissenschaft stellt, und deren L&sung wir von der Zukunft erwarten.
Zu einer solchen Musterung der Probleme scheint mir der heutige Tag,
der an der Jahrhundertwende liegt, wohl geeignet; denn die grolsen
Zeitabschnitte fordern wuns mnicht blofs auf zu Riickblicken in die Ver-
gangenheit, sondern sie lenken unsere Gedanken auch auf das unbekannte
Bevorstehende. '

Die hohe Bedeutung bestimmter Probleme fiir den Fortschritt der
mathematischen Wissenschaft im allgemeinen und die wichtige Rolle,
die sie bei der Arbeit des einzelnen Forschers spielen, ist unleugbar.
Solange ein Wissenszweig Uberflufs an Problemen bietet, ist er lebens-
kraftig; Mangel an Problemen bedeutet Absterben oder Aufhdren der

216 D. HvueeErT:

9. Beweis des allgemeinsten Reziprozititsgesetzes im beliebigen
Zahlkdrper.

Fir einen beliebigen Zahlkorper soll das Reziprozildtsgesetz der
1 ten Potenzreste bewiesen werden, wenn [eine ungerade Primzahl be-
deutet, und ferner, wenn [eine Potenz von 2 oder eine Potenz einer
ungeraden Primzahl ist. Die Aufstellung des Gesetzes, sowie die wesent-
lichen Hilfsmittel zum Beweise desselben werden sich, wie ich glaube,
ergeben, wenn man die von mir entwickelte Theorie des Kiorpers der
I ten Einheitswurzeln'!) und meine Theorie?®) des relativ-quadratischen
Korpers in gehbriger Weise verallgemeinert.

10. Entscheidung der Ldsbarkeit einer diophantischen Gleichung.

Eine diophantische Gleichung mit irgend welchen Unbekannten
und mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt: man soll
ein Verfahren angeben, nach welchem sich wmittelst einer endlichen Anzalil
von Operationen entscheiden ldfst, ob die Gleichung in ganzen rationalen
Zahlen losbar ist.

11. Quadratische Formen mit beliebigen algebraischen
Zahlenkoeffizienten.

Unsere jetzige Kenntnis der Theorie der guadratischen Zahl-
korper?®) setzt ums in den Stand, die Theorie der gquadratischen Formen
mit beliebig wvielen Variabeln wund beliebigen algebraischen Zahlen-
koeffizienten erfolgreich in Angriff zu nehmen. Damit gelangen wir
insbesondere zu der interessanten Aufgabe, eine vorgelegte quadratische
Gleichung beliebig vieler Variabeln mit algebraischen Zahlenkoeffi-
zienten in solchen ganzen oder gebrochenen Zahlen zu l&sen, die in
dem durch die Koeffizienten bestimmten algebraischen Rationalitits-
bereiche gelegen sind.

1) Bericht der Deutschen Mathematiker-Vereinigung iiber die Theorie der
algebraischen Zahlkérper 4, 1897. Fiinfter Teil.

2) Mathematische Amnnalen 51 wund Nachrichten der K. Ges. d. Wiss. zu
Gottingen 1898 Vgl ferner die demni#ichst erscheinende Inauguraldissertation von
G. Riickle Gottingen 1901.

3) Hilbert: UUber den Dirichletschen bigquadratischen Zahlenk&rper, Mathe-
matische Annalen 45; {Tber die Theorie der relativ-quadratischen Zahlkdrper,
Berichte der Deutschen Mathematiker - Vereinigung 1897 wund Mathematische
Annalen 51; Uber die Theorie der relativ-Abel'schen Koérper, Nachrichten
der K. Ges. d. Wiss. zu Gittingen 1898; Grundlagen der Geometrie, Festschrift

zar Enthiillung des Gauls-Weber- Denkmals in Gbttingen, Leipzig 1899,
Kapitel VIII § 83.

6

Hilbert does not use the word “algorithm™, but procedure (Ver-
fahren) with the usual requirements

He does use explicitly “decision” (Entscheidung)
There had been “algorithms” since long before, e.g. for the gcd
Even decision algorithms, e.g. deciding if a number is prime

However, the term comes from the name of the Persian sci-
entist and mathematician Abdullah Muhammad bin Musa al-
Khwarizmi (9th century)

In the 12th century one of his books was translated into Latin,
where his name was rendered in Latin as “Algorithmi”

His treatise “al-Kitab al-mukhtasar fi hisab al-jabr wal-mugabala”
was translated into Latin in the 12th century as "Algebra et Al-
mucabal” (the origin of the term algebra)

And Even More Hilbert ...

In the context of his far reaching program on foundations of
mathematics, Hilbert identifies the following as crucial:

Das Entscheidungsproblem: (The Decision Problem)

Determine if the set of all the formulas of first-order logic that
are universally valid (tautological) is decidable or not

Vx(P(x) — P(c))and (P(c) — JxP(x)) are valid (always true)
Vady(Q(x) A P(z,y)) is not (it is false in some structures)

Explicitly formulated in the 20's in the the context of the “engere
Funktionenkalkil” (the narrower function calculus)

Hilbert, D. and Ackermann, W. “Grundzuge der Theoretischen Logik",
Springer, 1928.

r

72 Der engere Funktiomenkalkiil.

Durch Umbenennung der Variablen erhilt man aus den beiden
Voraussetzungen:

1. (Ew)D(u, v, w).
2. (D(x, v,) & D(u, v, w) & DV, v, 2)) » B(x, w, 2).

Wendet man auf die zweite Voraussetzung die Regel VII, S. 28 an,
so kann man sie umformen zu:

D1, v, w) > [(D(x, u, v) & D(y, v, z)) — D(x, w, z)].

Unter Benutzung der zu Formel (34) gehérigen Regel kann man daraus
ableiten:
(Ew) D(u, v, w) > (Ew) [(D(x, v, v) & D(y, v, z)) > B(x, w, 2)].

Da nun (Ew)d®d(u, v, w) als richtig angenommen wurde, so ergibt sich

weiter
(Ew)(D(x, 2, vy & D(v, v, 2) —~ D(x, w, 2)).

Daraus ergibt sich die Behauptung, indem man nach Regel 3 die All-
zeichen (#) und (v) vorsetzt.

§ 11. Das Entscheidungsproblem im Funktionenkalkiil und
seine Bedeutung.

Nach der durch die letzten Beispiele gekennzeichneten Methode
kann man den Funktionenkalkiil insbesondere zur axiomatischen Be-
handlung von Theorien verwenden. Fiir diesen Zweck ist der Kalkiil
sehr geeignet. Infolge der streng formalen Behandlungsweise wird
ndmlich verhiitet, da3 bei der Ableitung aus den Axiomen versteckte
Voraussetzungen mitbenutzt werden.

Die mathematische Iogik leistet aber noch mehr als eine Ver-
schirfung der Sprache durch die symbolische Darstellung der SchluB3-
weisen. Nachdem einmal der logische Formalismus feststeht, kann man
erwarten, daB eine systematische, sozusagen rechnerische Behandlung
der logischen Formeln méglich ist, die etwa der Theorie der Gleichungen
in der Algebra entsprechen wiirde.

Eine ausgebildete ,,Algebra der ILogik‘* begegnete uns im Aus-
sagenkalkill (man vgl. insbesondere § 4 — 9 des I. Kapitels). Die
wichtigsten der dort erwdhnten und gelésten Probleme waren das der
Aligemeingiiltigkeit und der Erfillbarkeit eines logischen Ausdrucks.
Beide Probleme zusammen pflegt man auch kurz als das Entscheidungs-
prodlems zu bezeichnen.

Bei dem Problem der Allgemeingiiltighkest handelt es sich um die
folgende Frage: Wie kann man bei einem beliebigen vorgelegten logischen
Awusdruck, der keine individuellen Zeichen enthiilt, feststellen, 0b der Awus-

§ 11. Das Entscheidungsproblem im Funktionenkalkil. 73

druck bei belicbigen FEinsetzungen [iir die vorkommenden Variablen eine
rvichtige Behauptung darstellt oder nicht?

Bei dem Problem der Evrféllbarkeit handelt es sich um die Frage,
0b es dberhaupt eine Einsetzung fiir die Variablen gibt, so dafi durch den
betreffenden Awusdruck eine richiige Behauptung dargestellt wird.

Beide Probleme sind zueinander dual. 1Ist ein Ausdruck nicht
allgemeingiiltig, so ist das Gegenteil erfiillbar und umgekehrt.

Das Entscheidungsproblem 143t sich nun auch fiir den Funktionen-
kalkiil aufwerfen. Zu den Aussagenvariablen treten hier die Funktions-
variablen hinzu. Die Individuenvariablen wollen wir uns hier immer
durch vorgesetzte Klammerzeichen gebunden denken. Man kann sich
iibrigens auf den Fall beschrinken, dal3 die Aussagenvariablen fehlen.
Diese lassen sich nidmlich nach den in § 8 des I. Kapitels gemachten
Bemerkungen immer eliminieren.

Ein Beispiel fiir eine allgemeingiltige Formel des Funktionen-
kalkiils 1st die folgende Formel:

(x)(F(x) v F(x)).
Diese ist richtig, welches Pradikat auch fiir # cingesetzt wird. Die
Formel (E %) F ()

ist zwar nicht allgemeingiiltig, aber erfiillbar. Wir brauchen hier ja
nur das Pridikat ,,mit sich selber identisch sein‘‘ zu nehmen. Dieses
trifft nicht nur auf einen, sondern sogar auf alle Gegenstiande zu. Daraus
ergibt sich, daf3 auch
(%) I (x)

einen erfiillbaren Ausdruck darstellt. Weitere Beispiele fiir allgemein-
gultige Formeln sind

() (Ey)(R(x, x) v R(%,),
(Ex) (W (R(x, x) v Ry(¥v, ¥) v Ry(x, ¥))

sowie alle Formeln, die sich aus den logischen Axiomen ableiten lassen,
z. B. unsere fritheren Formeln (21)—(36). Nicht allgemeingiiltig ist
dagegen
(%) £ (%, x},
nicht erfiullbar
(Ex) (W)(F (%, x) & F(x, ¥)).

Das Enischetdungsproblem ist geldst, wenn man ein Verfahven kenmnt,
das bei eimnem vorgelegten logischem Ausdruck durch endlich viele Ope-
rationen die Enischeidung iiber die Allgemeingiiltigkest bzw. Erfiillbarkeit
eriaubt.

Die Lisung des Entscheidungsproblemns ist fiir die Theovie aller Ge-
btete, deven Sditze tiberhaupt etner logischen Emntwickelbarkeit awus endiich

10

§ 12. Ldsungen des Entscheidungsproblems fiir besondere Spezialfalle. 777

keine allgemeingiiltige logische Formel ist. Ahnliche Uberlegungen
gelten natiirlich fir jedes beliebige Axiomensystem. Die fundamentale
Bedeutung, die das Entscheidungsproblem besitzt, durfte damit ge-
niigend illustriert scin; das Entscheidungsproblems muf3 als das Haupt-
problem der mathematischen Logik bezeichnet werden.

§ 12. Lésungen des Entscheidungsproblems fiir besondere
Spezialfille.

Wiahrend im Aussagenkalkiil das Entscheidungsproblem unschweor
zu 1dsen war, bildet im Funktionenkalkil die Auffindung eines all-
gemeinen Entscheidungsverfahrens ein noch ungeldstes schwieriges
Problem. Fur gewisse einfache Fille ist es jedoch gelungen, ein der-
artiges Verfahren anzugeben. Der ecinfachste Fall, der sich hier dar-
bietet, ist der folgende:

Es sollew in den logischen Ausdriicken nuy Funktionsvariable wmit
einem Argument, also Prddikate im engerven Sinne, vorkommen, die mehr-
gliedrigen Pradikate werden also ausgeschlossen. Die grundsitzliche Mog-
lichkeit der Entscheidung in diesem Bereich ist zuerst von L. Lowen-
heim erkannt worden!. Ein ibersichtliches Entscheidungsverfahren ist
von H. Behmann gegeben worden2. ILoéwenheim und Behmann nehmen
iibrigens zu den wvariablen Pradikaten noch die Identitiat als indivi-
duelle Relation hinzu.

Der Bereich der zugelassenen Formeln entspricht dem Bereiche,
der durch Kombination des Aussagen- und Klassenkalkiils entsteht,
also dem Bereiche der Kantisch-Aristotelischen Logik.

Wir kénnen uns auf elementarem Wege von der Entscheidbarkeit
in dem angegebenen Bereiche iberzeugen.

Es liege eine Formel aus diesem Bereich vor. Es sei k£ die An-
zahl der verschiedenen in der betrachteten Formel vorkommenden
Funktionszeichen 4, B ... K. Wir behaupten nun: Wenn die Formel
in allen Fdillen, wo der Individuenbeveich aus hichstens 2k Gegenstinden
besteht, imsmer richtige Aussagen (Aurch Einsetzung bestimmter Pradikate
an Stelle von A, B, ... K) liefert, so liefert sie diberhaupt immer richtige
Aussagen. 7

7Zum Beweise nehmen wir an, dafl3 die betrachtete Formel fir ein
gewisses System von mehr als 2F Individuen bei Ersetzung der
Funktionszeichen A, B, ... K durch die bestimmten Priadikate Ag,
B, ... K, eine falsche Aussage ergibe. Wir wollen dann aus dieser
Aussage eine andere falsche Aussage ableiten, die ebenfalls durch

1 1. Léwenheim: Uber Méglichkeiten im Relativkalkil. Math. Ann. Bd. 76.
2 Ff. Behmann: Beitrige zur Algebra der Logik und zum Entscheidungs-
problem. Math. Ann. Bd. 86.

11

124 THE RESTRICTED PREDICATE CALCULUS

sion concerning universal validity by the above methods. For all
other prefixes we can actually find formulas which are univer-

sally valid in any finite domain of individuals, but not in infinite
domains.®

Results by A. Church based on papers by K. Godel show that
the quest for a general solé&tion of the decision problem must be
regarded as hopeless.? We cannot report on these researches
in detail within the limits of this book. We shall only remark
that a general method of decision would consist of a certain
recursive procedure for the individual formulas which would
finally yield for each formula the value truth or the value false-
hood. Church’s work proves, however, the non-existence of such a
recursive procedure; at least, the necessary recursions would not
£all under the general type of recursion set up by Church, who
has given to the somewhat vague intuitive concept of recursion
a certain precise formalization.

To avoid misunderstanding, it should be noted that the im-
possibility of a general decision procedure does not mean that
we can find definite formulas whose universal validity has been
proved not to be decidable. To assume the existence of such a
proof would in fact lead to an immediate contradiction. From
such a proof it would follow that the formula would not be
deducible from the axiom system of § 5. But by the completeness
theorem of § 10, the satisfiability of the contradictory of the for-
mula could then be proved. Thus the universal validity would be
decided after all, viz. in the negative. In any case, therefore, the
task of extending the class of formulas for which the decision
is solved, remains rewarding and significant.

1 Cf. the first paper by K. Schiitte cited in footnote 2, p. 123.

: A. Church, An unsolvable problem of elementary number theory. Am. J.
of Math. Vol. 58 (1936),—A note on the Entscheidungsproblem ; Correction
to a note on the Entscheidungsproblem, J. Symb. Logie. Vol. 1 (1936).

——

E v trans\ ke
L 2nd Gerwien
e Al TV, S pau g

(133

12

13

Tackling the Problems

To give a positive answer, it was good enough to exhibit the
decision algorithm (and prove that it works)

To give a negative answer, quite a different approach was nec-
essary

How could it be possible to show that there was no such algo-
rithm?

It's a universal quantification over the class of all algorithms:
none of them should work ...

It was impossible to settle the problem in the negative without
a mathematical characterization or formalization of the notion
of algorithm (or the class of algorithms)

14

With that mathematical definition we would know what class of
objects (the algorithms) we are talking about

To Hilbert's time there was no mathematical formalization of
algorithm yet

To Hilbert's time there was only an intuitive notion:
= A specified discrete process that follows a finite and fixed
set of rules

= Follows the same steps with the same input (determinism)

Hilbert himself talked about a “mechanical procedure”

15

So, what is an algorithm?
A first attempt could be as follows:

An algorithm is what can be programmed in (computed, calcu-
lated, ... with) a model X of computation ...

What model X of computation?

It was necessary to wait for the introduction and development of
the first mathematical model (actually, models) of computation

This happened in the mid 30's

A model that could be accepted by the scientific community as a
good formalization of the intuitive notion of a computing device
(and indirectly of algorithm)

16

This acceptance criterion is not something that can be settled
in mathematical terms

What is a good model (of anything)?

It can be judged by its (internal) mathematical correctness, the
intuitions that it captures, its results, e.g. predictions, etc.

We will have to come back to this ...

In between, Hilbert's problems were still waiting ...

17

Turing Machines

A Turing machine (TM) is a computational model introduced
by Alan Turing around 1936

The idea behind was to capture the so far only intuitive notions
of: computational device, computational procedure, algorithm,
computable function, etc.

One can safely say that computer science has it origins in the
work by Turing (and by others around the same time and on the
same subject)

The inception of the new discipline was started and motivated
by the work and problems of mathematical logicians

In particular, Hilbert's Entscheidungsproblem was a crucial mo-
tivation

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurING.

Reprinted with the kind permission of the London Mathematical Society from the
Proceedings of the London Mathematical Society. ser. 2, vol. 42 (1936-7), pp. 230-

265; corrections, Ibid, vol 43 (1937) pp. 544-546.

The ‘computable’” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper 1is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number i1s computable
if its decimal can be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of pumbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers 7, e, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf. These results

+ Godel, <« Uber formal unentscheidbare Satze der Principia Mathematica und ver-
want der Systeme, 1°°, Monatshefte Math. Phys., 38 (1931), 173-198%

have wvaluable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Church+t has introduced an idea of “‘effective
calculability >, which is equivalent to my ‘ computability >, but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblemi. The proof of equivalence between ‘“computa-
bility >’ and <‘effective calculability >’ is outlined in an appendix to the
present paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. TFor the present I shall only say that the j ustification
lies in the fact that the human memory is necessarily limited.

We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions ¢, 92, ---> 9r
which will be called ‘“m-configurations’’. The machine is supplied with a
<“tape’’ (the analogue of paper) running through it, and divided into
sections (called ‘‘squares’) each capable of bearing a *f symbol’’. At
any moment there is just one square, say the 7-th, bearing the symbol &(7)
which is ““in the machine’’. We may call this square the ¢ scanned
square >’. The symbol on the scanned square may be called the <“scanned
svmbol’>. The <scanned symbol’’ is the only one of which the machine
is, so to speak, ‘“directly aware’>. However, by altering its m-configu-
ration the machine can effectively remember some of the symbols which
it has ‘‘seen’’ (scanned) previously. The possible behaviour of the
machine at any moment is determined by the m-configuration g, and the
scanned symbol &(r). This pair g,,, S(r) will be called the ‘¢ configuration’’ :
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (z.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or leff. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

4+ Alonzo Church, ¢ An unsolvable problem of elementary number theory®, American
J. of Math., 58 (1938), 345-363.%

t Alonzo Church, ‘“ A note on the Entscheidungsproblem *’, J. of Symbeolic Logic, 1
(1938), 40—41.%

19

20

Turing is famous for (among other achievements):

= Having proposed a mathematical model of a computer, of
algorithm, etc.

= Applying the model to the study of solvability of certain
problems using computers (and algorithms)

= Establishing the first results about the unsolvability of cer-
tain problems by means of computers

And then, establishing limits on what computers can do ...

= [ntroducing the idea of a universal machine that can sim-
ulate any other machine

This idea was crucial for the later development of machines
that could store programs (by John von Neumann and oth-

ers)

21

= The Turing's Test in Al

= Breaking the cryptographic communication code of the
German navy during the 2nd World War

22

Alan Turing (1912-1954)

The most important award in computer science research is named
after him: the ACM Turing Award

(ACM: Association for Computing Machinery)

23
A Turing Machine M:

X

............. alb| a
-« —

edja|lb |[+1|el
el el| b|| b | +1] €2
e0| bj| b | +1] el
ed el e2|afla |+1]|e2
e2 +1| e2
el|la|| a|+1|e4

e2

lt haS: hardware software

= A control unit consisting of a finite set of states
= A finite alphabet X

= An infinite tape in two directions with cells
We can think the cells as numbered: ..., -2, —-1,0,1,2,...

= A reading/writing head that moves along the tape

24
= A transition function 0,7, the “software”

It can be represented as a finite table

The function may be partial, i.e. 05y may not be always
defined

If M reaches a configuration (e, a) for which §,; is unde-
fined, M stops (halts)

Notice that a TM is a mathematical object: a finite number of
finite set-theoretic objects

25

TM can be used to compute functions, e.g. the usual arithmeti-
cal functions

And many other functions on natural numbers ...
E.g. Is there a TM that computes the factorial function?

F': N — N, that is usually defined by recursion:

F0) = 1
Fin+1) = F(n)x(n+1)

TMs can be used to solve decision problems

For solving decision problems with a TM, one usually assumes
that there are states gy, gy for Yes!, No!, resp.

At them, the TM stops and the answer is read from the corre-
sponding state

26

Decision Problems

D - win D

Algorithm (for any w)

w in L?

Start from a domain of instances D and a subset L
Is there an algorithm to decide membership to L7

More precisely, we search for a general algorithm that takes
inputs w € D, and answers Yes! or No! depending on whether
w belongs to L or not

27

Usually the problem is characterized in terms of finite words over
a finite alphabet ¥: L S D C 3¥*

We are confronted to decision problems, and we look for algo-
rithms to solve them

Given a decision problem, with L C D:

L is decidable (or solvable) if there is an algorithm AL that for
any w € D, AL answers Yes! if w € L and No! if w & L

There are many natural and common decision problems

28
Example: D is the set of all propositional formulas in “con-
junctive normal form” (CNF) over a certain set of propositional

variables, say py, po, p3, . ..

The formulas in D are conjunctions of disjunctions of “literals”,
I.e. propositional variables or negations thereof,

D = {p1, =2, p3 A=pa, p1 A=p1, (P1V—P2) A(p2VP3V=p1), . . .}

L := SAT, the subset of D containing the formulas that are
satisfiable

E.g. pi A (p2V —py) is satisfiable, but p; A (=p1 V pg) A —ps
IS not

All these formulas can be encoded (represented) as words over
a finite alphabet

Is SAT decidable? l.e. is there a decision algorithm for it?

29

An algorithm to decide membership to SAT":

Given an arbitrary formula ¢ € D, construct and check the
truth table of ; if the final column has a 1 (T'), answer
Yes! otherwise No!

We can say SAT is (computationally) decidable or solvable

30

Example: Is there an algorithm to decide if an arbitrary planar
undirected (finite) graph (or map) G is colorable with 3 colors?
(in such a way that vertices connected by an edge have different
colors)

No!
map graph

Yes!

Here: D is the set of (encodings of) graphs
3G (' is the set of all graphs than can be colored with 3 colors

A solvable decision problem: Try the finitely many possible col-
orations with three colors and check if one works

31

Notice that a decision problem can be formulated as a problem
of computing a function

D
wel?
W—
Consider the characteristic function of L:
. 1 if weL
chy, : D — {0, 1}, defined by chy(w) := { 0 ifwe DL

L is decidable iff the function ch; is computable (i.e. there is
an algorithm that computes it)

32

Algorithms

We proposed the TM as a model of computation

TMs seem to be powerful enough to compute what we consider
to be computable

We haven't defined “algorithm” yet

We can make at this stage a commitment and give a precise
definition

Definition: An algorithm is a procedure that can be programmed
in (as) a TM (or computed with a TM)

This makes the notion of algorithm precise from the mathemat-
ical point of view

From a mathematical point of view it is O.K.

33

But is it a good definition?
It cannot be judged mathematically

We need a different kind of support for this definition

= |t seems to capture the intuitions behind and practice of
computation and use of algorithms

= People who have tried to program their favorite (intuitive)
algorithms in (as) a TM have succeeded

= Alternative notions of algorithm that have been proposed
have turned out to be equivalent in terms of computational
power to TMs

If we accept this definition, we obtain right away the other char-
acterizations missing:

34
Definition:

(a) A decision problem L (C D) is (computationally) solvable
if there is TM that solves it

That is, the TM halts with every input from D by reaching
either gy or gy, but gy iff the input belongs to L

(b) A function f : (X*)" — (X*)™ is computable iff it can be
computed by means of a TM

We should say “Turing-decidable”™ and “Turing-computable”

In particular, this applies to functions of natural numbers

For example, Sum : ({0,1}*)* — {0, 1}* is computable

Here the number are represented in, say binary notation

39
We accept that this is the right definition of computable func-
tion, i.e. we accept the so-called

Church’s Thesis: The class of computable functions coincides
with the class of Turing-computable functions

This thesis cannot be mathematically proved, we accept it or
not (on other grounds)

It is impossible to mathematically prove a statement that says
that two classes of objects coincide when one of them is math-
ematically defined, but not the other

(“Turing-computable” has a mathematically precise meaning:
computable by means of a TM)

36

Well, we are lying a bit ...

Church presented his own model of computation (or of com-
putable function) a little before Turing, in a 1936 paper

Again, the Entscheidungsproblem at the very origin ...

Not everybody convinced that Church captured the essence of
computable function, e.g. Goedel ...

Turing shows in his 1936/37 paper that the classes of Church-
computable functions and Turing-computable functions coincide

After that Goedel was convinced!

The Turing model is such a natural model ...

37

Alonzo Church (1903-1995)
Today, Church’s thesis is widely accepted

Church was one of those who at that time proposed a (super-
ficially) different model of computation: the “lambda calculus”
(A-calculus), that is at the root of some modern (functional)
programming languages like Lisp and Scheme

A NOTE ON THE ENTSCHEIDUNGSPROBLEDM *>**
Alonzo Church

In a recent paper1 the author has proposed a definition of
the commonly used term ‘“‘effectively calculable’ and has shown
on the basis of this definition that the general case of the Ent-
scheidungsproblem is unsolvable in any system of symbolic
logic which is adequate to a certain portion of arithmetic and
is w-consistent. The purpose of the present note is to outline
an extension of this result to the engere Funktionenkalkiil of
Hilbert and Ackermann. 2

In the author’s cited paper it is pointed out that there can be
associated recursively with every well-formed formula® a re-
cursive enumeration of the formulas into which it is convert-
ible.? This means the existence of a recursively defined function
a of two positive integers such that, if ¥ is the Godel repre-
sentation of a well-formed formula Y then a(x.y) is the Godel
representation of the xth formula in the enumeration of the
formulas into which Y is convertible.

Consider the system L of symbolic logic which arises from
the engere Funktionenkalkiil by adding to it: as additional un-
defined symbols, a symbol 1 for the number 1 (regarded as an
individual), a symbol = for the propositional function = (equal—
ity of individuals), a symbol 8 for the arithmetic function x+1.

*Reprinted from the Journal of Symbolic Logic vol. 1 no. 1 (1936) and vol. 1
no. 3 (1936), by kind permission of the author, the Journal of Symbolic Logic an:
the Association for Symbolic Logic Inc.

**Received April 15, 1936. Correction received August 13, 1936.

1. "An unsolvable problem of elementary number theory. " American Journal

of Mathematics. vol. 58 (1936)7

2. Grundzuge der Theoretischen Logik. Berlin, 1928.

3. Definitions of the terims “well-formed formula” and “convertible’ are
given in the cited paper.

38

39

Now, with a precise mathematical definition of algorithm it be-
comes possible to prove that some (decision) problems are un-

decidable

That is unsolvable by algorithmic means, i.e. unsolvable by means
ofa TM

Are there any?

40
Undecidable Problems, Universal TMs

We will concentrate on X = {0, 1, #}

With this alphabet we can represent, among other things, nat-
ural number, e.g. in binary notation

>* Is infinite, but countable: It can be put in one-to-one corre-
spondence with the set of natural numbers

In consequence, P(X*) is uncountable

The set of languages over X is uncountable!

Now, let us consider TMs over alphabet X

How many TMs can we have?

41

Every machine is a finite device: it depends on a finite set of
states, the finite alphabet , the finite transition function, ...

So, we cannot generate (produce, describe, define) more than
an infinite, but countable set of TMs

The set 7 of TMs over alphabet X is infinite and countable
That is, there is a bijective function e:7 — N
Fora TM M, e(M) is the natural number associated to M

Since e(M) is a number, it has a representation in {0,1}, e.g.
the binary representation of number e(M)

42

e(M) is the encoding of machine M as a binary string, i.e.
e(M) €10, 1}"

The existence of such a numerical encoding of TMs follows from
a simple cardinality analysis

However, it is possible to give effective and explicit encodings
of TMs as binary strings

We will not do this here, but just use the encoding

43

We have also obtained: The set of TMs is strictly smaller that
the set of languages over X

Every decidable language over X requires the existence of a TM
that decides it

Then, there cannot be more decidable languages than TMs:

The set of decidable languages over X is strictly smaller than
the set of languages over X

Thus: There are languages over . that are undecidable!

A concrete undecidable problem? A first undecidable problem?

It will be related to the intimate nature of TMs

44

We recall that every TM M can be encoded as a binary string
e(M)

Actually, this encoding is invertible, and it is possible (not done
here) to effectively reobtain the components of M from e(M)

In particular, a TM could take the encoding of another TMs as
input, “deconstruct” the encoding, reobtain the encoded ma-
chine, and simulate its behavior

We can go a bit further and consider also inputs for the machines
that are being simulated

45

Consider the following algorithm U

1.

AR

It takes inputs of the form e(M)#w, with e(M) the en-
coding of a machine M over 3 and w € {0, 1}*
(at least these are the interesting inputs)

Obtain from e(M) the components of M to ...
Simulate the run of machine M with input w
(If M stops with gy, return Yes!)

(If M stops with ¢x -or whatever different from gy, return
No!)

. (If M does not stop, do not stop)

This is clearly an algorithm, an informal one

46
Appealing to Church’s thesis, thereisa TM TV for this algorithm

So, TV on inputs e(M),w simulates the computation of ma-
chine M with input w

This is a universal Turing machine

The existence of such a universal machine was obtained from
Church’s thesis

However, it is possible to give an effective and explicit universal
machine TY (this was done by Turing himself)

This machine is obviously interesting per se
We will also use it later on

And the idea behind will be inspiring now ...

47
A First Undecidable Problem: The Halting Problem

Is it possible to decide if a TM with a certain input halts or not?

More precisely, is there a Turing machine M to decide if any
TM machine M, encoded as e(M), with an input w € {0,1}*
halts or not?

We are considering the decision problem

Ly ={e(M)#w | e(M) is the encoding of a TM M that,
with input w, halts}

o H.

Machine M ?

' .
i Yes! M halts with w

™ Nol Mdoes not halt with w

48

No!: There is no such a machine M
Theorem: Ly, the halting problem for TMs, is undecidable

The computational problem of deciding by means of computers
if a Turing machine halts with a given input or not is unsolvable
by means of computers

“Modern version”: There is no program in Java that can be
used to verify if an arbitrary program in Java stops or not)

Thus, there are provable limits on what computers can do ...

How can we prove the theorem?

49

A. Turing first proved that a special version of the halting prob-
lem is unsolvable:

Is there a TM M that decides if an arbitrary TM M fed with
is own code e(M) as input stops or not?

| "
Y Yes! M halts with input e(M)

No! M does not halt with input e(M|

Machine M ?

Lsy :={w € {0,1}* | w is code e(M) of a machine M and M
with input e(M) halts}

Lemma: The “special halting problem”™ Lgy is unsolvable

50

This is a special case of the halting problem Ly, and is already
unsolvable ...

Why this one?

It exploits the idea of self-reference or of a “diagonal construc-
tion" that is quite useful in mathematics

Lsy is our first unsolvable decision problem (or undecidable
problem)

511
Proof of the lemma: Assume, by contradiction, that there is
such a machine M

For it it holds then: M(e(M)) answers Yes! iff M (e(M)) halts
(M (w) denotes the computation of M with input w, etc.)

Now, build a new machine M’ that uses M as a subroutine:

oo) Yes! if M(w) says No!
Mi(w) := { oo loop if M(w) says Yes!

Let us feed M’ with its own code

M'(e(M")) halts <= M’ (e(M)) answers Yes!
< M(e(M’)) answers No!
— M'(e(M')) does not halt

A contradiction!

02

Now we can prove that the (general) halting problem is unde-
cidable

It should be easy ...

Intuitively, Ly is more general than Lgy so it should be unde-
cidable too

More precisely: Assume, by contradiction, that Ly is decidable

Then there is a TM M that decides it: M(e(M),w) answers
Yes! iff M (w) halts

We can use M to decide Lgy as follows: For arbitrary TM M,
just run M(e(M),e(M))

This decides if M(e(M)) halts

A contradiction!

53

In the proof of the undecidability of Ly we used the idea of
reducing a problem to another

We reduced the special halting problem to the general halting
problem

We can exploit this technique to show that:

= Certain problems are decidable given that others are
= Certain problems are undecidable given that others are
Since we already have our first two undecidable problems, we

can use this technique to establish that other problems are also
undecidable

Two simple results are useful in this direction

54

Proposition: Let L, D be a decision problem, L. € D. L is
decidable iff its complement D ~ L is decidable

L is decidable <= (D ~ L) is decidable

By the contrapositive implication:

L is undecidable <= (D ~ L) is undecidable

Proof: (=) Use a TM M for
D deciding L as a subroutine for
WC(D\L)’) a machine M€ for deciding D~
L: When M answers Yes!
M¢ answer No!

D\ When M answers Nol,
M€ answer Yes!

Again the idea of reduction (of D ~\. L to L)

55)
Now we make the notion of reduction precise

Definition: Let Dy, L1 and D5, Lo decision problems

L1 is reducible to Lo if there is a function f : D; — D5, such
that

= f is computable (by a TM)

= Forevery w € Dy, w e Ly <= f(w) € Ly

computable

@ | @
D1 D2

w in D1 > f(w) in D2

win LI <==> f(w)in L2

(preserves membership)

56
Proposition: If L is reducible to Lo, then

m [, decidable — L decidable

= [, undecidable =— L, undecidable

The second implication is just the contrapositive of the first one
Proof: If Ly is decidable, then it has a decision algorithm AL,

If L, is reducible to Lo, there is a reduction function f that can
be computed by an algorithm ALy

We use both as subroutines for an algorithm for deciding L;:
1. Given arbitrary w € Dy (w € Ly7)
2. Using ALy compute f(w), that belongs to D
3. Use AL; to decide if f(w) € Lo

4. From the answer returned by AL read the answer for w

57

Notation: L{ < L, denotes that L is reducible to Lo

Example: As expected, Lgy < Lpg
In fact, the following function works h : e(M) +— e(M)#e(M)

= When ¢(M) is an input for the special halting problem,
h(e(M)) is an input for the (general) halting problem

= N is clearly computable

» e(M) € Lsg < h(e(M)) € Ly

Notice: L1 S LQ # LQ S L1

We have a powerful technique to prove many undecidability re-
sults

o8

Proposition: Deciding if two TMs (over the same alphabet) com-
pute the same (possibly partial) function is unsolvable

Ly :=A{e(My)#e(Ms) | ... and for every w, M;(w) = My(w)}
(M (w): result at end of computation or oo if no stop)
Proof: We cantry Ly < Ly

That is, we want to answer if a machine stops using an answer
about machines computing the same function

f: e(M)#w — 77
We have to come up with the right question on the RHS
It has to be of the form of an input for L

Which M;, M, above? Two machines, depending upon M, w

59

Machine M;: 0 if M(w) halts

Mw(u) = { oo loop if M(w) does not halt

This is a constant function, with value always 0 or always unde-
fined

The other machine, Ms, is the one that computes: O : u+— 0
This is constant and always takes value 0
M,, and @ compute the same function iff M halts with w
fooe(M)ffw — e(My)#e(0)

= On the RHS we have an input for L

= The pair e(M,,)#e(Q) can be computed from M, w

= M halts with w iff M, and O compute the same function,
i.e. e(M)#w € Ly iff e(M,)#e(Q) € Ly

60

Proposition: The problem of deciding if a machine with the emp-
ty tape (as input) halts is undecidable

Proof: It holds Ly < L. := {e(M) | M(¢) halts}

In fact, given M and w, build a new machine M,,:

1. Erases whatever is on the tape as input (if any)
2. Writes w on the tape
3. Behaves as M (with input w)

Clearly M, (and e(M,,)) is computable

It holds: M halts with input w iff M, halts with empty input

61

Recursively Enumerable Languages

We introduce a natural notion that is a weaker version of decid-

ability

Intuitively, L C >* is recursively enumerable (r.e.) if there is
an algorithm (TM) that, once started, lists one-by-one all and
only the elements of L, with repetitions allowed, and in no pre-

specified order

Al

wi

w2
w3

The condition about the order
IS Important

If we impose an order, we could
decide about membership just
by looking at the order in which
elements are displayed

62
This i1s a useful characterization

However, it is possible to give a more precise definition and
equivalent characterization

Definition: L C ¥* is r.e. iff it is the language L(M) accepted
by some TM M, where

L(M) :={w € X* | M with input w halts at state gy }

The machine M, for inputs w € (3* \. L), may reach ¢y or not
halt

So, M may not be (implement) a decision algorithm for L

(Hence the difference between a language being “decided” and
“accepted” by a TM: in the former case, the machine must
always halt at ¢y or qn)

63

However, it is obvious from the definition that

Proposition: Every decidable language is also r.e.

The definition can be made relative to a decidable domain D,
with L C D C >*

Requiring that D is decidable is natural: we should be able to
decide if an input is legitimate

Recursively enumerable languages are also called semi-decidable,
partially decidable, Turing-recognizable, etc.

64

What is the connection with the initial intuition?

» |f L is recursively enumerated by an algorithm
AL: wq,wy, ws, ...,

the following algorithm M is a semi-decision algorithm, i.e.
M accepts L:

For an arbitrary input w € ¥*, turn on AL and wait to see
If w appears

If yes, answer Yes! (or go to a state gy)
Every w € L eventually appears and gets answer Yes!

No element of (3* . L) will get answer Yes!

65

= If L = L(M) according to the definition of r.e., the fol-
lowing is an intuitive enumeration algorithm for L

Systematically simulate the

| WIW2ZW3 w4 ~ computations with M for all
" the elements of >X*, but not

s | S the whole computations (we
: v/ might not stop with a par-
: ticular one), but in parallel,
l‘g ’ step by step as in the figure
3 T Output w whenever gy is

qY o0 reached

Some of the vertical computations may be infinite, but we
will not get stuck at any of them

Only and all elements of L will be displayed

66
Just to become familiar with the use of the informal character-
ization of r.e. languages, we prove again

Proposition: Every decidable language is r.e.
Proof: An enumeration algorithm for a decidable L

Start systematically generating elements of >*, one after the
other, each time one, say w, is generated, internally decide if
w e L

If Yes!, return w; otherwise (i.e. No!), hide w and continue with
the following element ...

So, we have: L decidable =— L r.e.
However: L r.e. #*= L decidable

That is, r.e. is a provably a weaker notion than decidability

67

Any counterexample?
Proposition: Ly is r.e.

Proof: Use the universal TM TV, that, on input e(M)#w sim-
ulates the computation of machine M with input w (steps 1.-3.
on page 45)

Extend steps 1.-3. with

4. TY halts with Yes! iff M halts with input w (at q{‘? or q%)

5. TY runs forever if M (w) does

Thus, L(TY) = {e(M)#w | M with input w halts}

That is, Ly is the language accepted by a TM

68

In the following, we denote with L¢ the complement of L, i.e.
it is D ~. L (for a decidable D C »*)

Proposition: (S. Kleene)
L and L¢ bothre. = L (and L¢) decidable

In order to decide if w € L,
] Lc D turn on algorithms for L and
L€, and wait to see here w ap-
pears
wi wr’ 2 welL?

w2

: It has to appear in one and only
w

one of the two lists

Corollary: L$ = {e(M)#w | ... M does not halt with w} is
not r.e. (and, of course, L§; is also undecidable)

69

PROERA 28 _ S
Stephen Kleene (1909-1994)

Kleene introduced another mathematical model of computable
function; the “general recursive functions” (1936)

70

Recursively enumerability naturally appears in different situa-
tions

It is implied by decidability, but usually r.e. appears on its own

Example: Consider the language of propositional logic based on
the set of propositional variables P = {p1,po,...}

For example, (p3 A—p2), —ps, (p2 — pg), - - . are elements of this
language

Let D be the domain containing all these legitimate proposi-
tional formulas

Consider the language

TAUT :={p € D | ¢ is a tautology, i.e. true for every truth
valuation }

71
E.g. (psV —ps), (ps — ps) € TAUT

TAUT is r.e.

This follows from the decidability of TAUT (to decide, just build
the truth table of the formula and check)

However, there is a natural and common algorithm for r.e.:

It is known from mathematical logic that there is a deductive
calculus that can be used to (syntactically) derive all the for-
mulas that are logical consequences of a given set of premises
(other formulas)

The elements of TAUT are those formulas that can be derived
from the empty set of premises; i.e. they are unconditionally true

A possible deductive calculus is the following; it consists of log-
ical axioms and one deduction rule:

AL ¢ — (¥ — o) &
A2. (¢ = (¥ —=x)) = (¢ = ¥) = (¢ = X))

A3. (¢ —) — (¥ —)

Ad (o ANY) — ¢

AS. (o ANY) =2

A6. (¢ =) = (¢ = x) = (¢ = (VAX)))

AT. o — (o V)

A8. ¢ — (¢ V)

A9. (p—x) = (¥ —x) = ((¢VY) = X))

MP. The “modus ponens’ rule: (¢ —)

Y

(2

Each axiom is a pattern for a certain class of tautologies, and the
“metaformulas” in the axioms can be replaced by any concrete
propositional formulas

E.g. in Al. we can make ¢ = ——p,, and ¥ = (ps A —pg):

——py — ((p2A—pg) — ——ps) is a (concrete, specific) tautology

73
A derivation of a formula (from the empty set of premises) is a
finite sequence of formulas

Each of them is an instance of one of the axioms (or (meta)tautologies)
or can be obtained by MP from previous formulas in the sequence

A derivation of the (meta) tautology ¢ — ¢:

Lp—=(e—=9)—=9) = (= (=) = (@ —)

(A2. with ¢, (¢ —), ¥)
2. (p—= ((p = ») — p)) (AL with @, (¢ — ©))
3. (p—=(p—9) = (p—) (MP with 1. and 2.)
4. ¢ — ((¢ — ») (AL)
b. ¢ — (MP. with 3. and 4.)

With this deductive calculus all the tautologies can be derived

74

What about the r.e. of TAUT?

Use “systematically” the logical axioms and the MP rule to start
deriving one after the other all and only tautologies

(A similar reasoning can be applied to languages generated by
context-free grammars)

This procedure captures the positive. i.e. Yes!, cases, but not
the negative, i.e. No!, cases

So, it is only a semi-decision algorithm for a decidable problem

75

The Entscheidungsproblem Revisited

Theorem: (A. Church) The set of all valid sentences of a
language L(S) of first-order predicate logic (FOL) is undecid-
able, i.e.

VAL := {p € L(S) | ¢ is a sentence and = ¢}

Is undecidable!

= ¢ means () &= ¢, i.e. v is consequence of the empty set of
axioms, I.e. unconditionally true, i.e. always true

(S with at least one binary predicate plus equality)

76

Proof: (sketch) We know that deciding if an arbitrary Turing
machine with an arbitrary input stops is unsolvable (undecidable
problem)

FOL is expressive enough to describe how an arbitrary Turing
machines operates

In particular, with the existential quantifier it is possible to ex-
press that “there is a halting state”

More precisely, to every machine M with input w, it Is possible
to effectively associate a sentence 0" such that

M with input w halts < | oMV

This reduction shows that the problem on the RHS cannot be
solvable (otherwise, the one on the LHS would be solvable)

77
Hilbert’s 10th Problem Revisited

With a precise, mathematical definition of algorithm and de-
cidability, it became possible to attack Hilbert's problem (in its
negative direction)

Theorem: (Y. Matiyasevich, 1970) Hilbert's 10 Problem is un-
decidable, i.e. there is no algorithm to decide if an arbitrary
diophantine equation has roots in the set Z of the integer num-
bers

78
This result relies in the following main technical result

It was obtained by extending previous work and concluding the
line of attack first proposed and followed by Julia Robinson,
Hilary Putnam and Martin Davis

Theorem: (Matiyasevich) Every r.e. relation over natural num-
bers is diophantine

Martin Davis Hilary Putnam

Juflia Robinson

What is a diophantine relation over natural numbers?

79

Let R C N"”, i.e. an n-ary relation over naturals

R is diophantine iff there is a polynomial p(x1, ..., T, Y1, -, Ym)
with coefficients in Z, such that, for all a4,...,a, € N:

(a1,...,a,) ER < Fyr - Iymplar, ..., 0, Y1, Ym) =0
is true in N (also quantifiers over N)

For example, the unary relation “being a perfect square” (PSq C
N1) is diophantine: for all « € N

PSq(a) < Jy(a —y*) =0
Here the polynomial is p(z,y) : = — y?

Proving that every r.e. set (relation) of natural numbers is dio-
phantine is the difficult part (we do not give the proof)

(Proving that every diophantine relation is r.e. is easy)

80

Robinson, Davis, Putnam proved this result but their “diophan-
tine polynomials” had the exponential function (z¥), so they were
not exactly polynomials, but “almost” ...

Something like p(z,y, z) : x*y—xy? is not exactly a diophantine
polynomial

So, it was left open how to get rid of the exponentiation, re-
placing it by polynomial expressions

This was achieved by Matiyasevich

The polynomial p can be effectively obtained from the r.e. rela-
tion R

That is, it can be computed (from the TM that provides the
recursive enumeration algorithm for R)

81

That every r.e. relation can be expressed by a diophantine poly-
nomial is initially surprising

However, the recognizing machine can be “arithmetized":
= \We have seen already that the machine can be encoded as

a number

= |ts operation or dynamic can also be captured by numerical
functions that turn out to be polynomial

82

Before proving that the last theorem implies the undecidability
of Hilbert's problem, a useful remark:

If HP(Z), i.e. Hilbert's problem asking for existence of roots in
Z, is solvable, then it is also solvable when asking for roots in N

This can be obtained by reduction from HP(N) to HP(Z)

Using the fact that every natural number is the sum of 4 squares,
l.e. we use the reduction

pl,..)=0 — pl@i+ai+as+ay,...)=0

In this way every negative root in Z for the RHS can be replaced
by its positive version (the sign disappears anyway due to the
square)

Thus, it is good enough to prove that HP(N) is unsolvable

83
Let prove that

Every r.e. relation is diophantine = HP(N) unsolvable
In fact: Consider Lp, the halting problem, which is r.e.

Ly can be seen as a 2-ary relation over natural numbers, i.e.
Ly C N?%: Its inputs are binary strings, i.e. natural numbers in
binary representation

Then, there is a polynomial p¥ (z,y, 21, . . ., ;) with coefficients
In Z, such that

(e(M),w) € Ly < 3z -3z, pY(e(M),w, z1,...,2,) =0

Here, w Is the number represented in binary by the binary string

The quantifiers on the RHS are over N

84

If it were possible to decide the RHS, it would be possible to
decide membership to Ly

Then, HP(N) is unsolvable

In this proof we used again a reduction: Ly < HP(N)
It was achieved via the polynomial p¥ for Ly

This is a “universal diophantine equation™, considering that Ly
is recursively enumerated by the universal TM TV

85

Conclusions

All this is at the very root of our discipline

At the rise of computer science

Computation is investigated in terms of mathematical models
and mathematical “techniques”

Limits on what computation can do were established

Problems of mathematical logic and the work of mathematical
logicians were the basis for further developments

Among many others:

= Non-determinism in computation and non-deterministic TMs

Seminal work on non-deterministic automata by M. Rabin
and D. Scott, logicians again ...

86

= Study the complexity of decision problems
Setting quantitative limits on their solvability
In terms of temporal, spatial, ... resources
= Most prominently, the work by S. Cook on the dichotomy

between solvability in polynomial time vs. non-deterministic
polynomial time

?
P S NP
A million dollar problem ... Open since 1971 ...

= |n this case SAT, i.e. satisfiability of propositional logical
formulas, was the protagonist

It became the first candidate to be in NP ~ P if they are
different ...

