
Datalog±: Its Languages and
Evaluation Issues

Leopoldo Bertossi1 & Mostafa Milani

Carleton University
Ottawa, Canada
(Faculty Fellow IBM CAS)

1Prepared while at LogicBlox, Atlanta, 2014.

2

Datalog± as an Ontological Framework

Datalog± is a family of extensions of classic Datalog, with new
kinds of rules and constraints

Its languages allow to represent ontological axioms and integrity
constraints that can not be expressed in Datalog

The idea is to extend Datalog with new constructs to gain
expressive power

While trying to keep the good properties of Datalog:

−→ declarativity, clear logical semantics,
effectiveness & efficiency

(as extensions of whatever available for Datalog)

3

Applications

• Express/represent ontologies that interact with data sources

• Represent conceptual data models, and semantic layers on top
of databases

• Ontology-Based Data Access (OBDA)

• Query a database through the ontology

• In the language of the ontology (better understood by- and
closer to the user)

• Automatically access the underlying data sources

• Get answers through Datalog evaluation

• Datalog± ontologies can represent: ER, Semantic Web
languages, UML with object classes, ... (classic Datalog not!)

• (Extended to Probabilistic Datalog± via MLNs)

4

Ontology-Based Data Access:

Data stay underneath, and may not represent the way the user
sees the business

Ontology is metadata or an explicit, formal ER model, etc.

ontology

data mappings

queries/answers

user

captures business
view/model of data

low-level data

Integration of data management with higher-level reasoning sys-
tems: intelligent information systems, knowledge bases, ontolo-
gies, semantic web, etc.

5

Ontology

translation
ER model

data

mappings

user

query

query

? ER model can be seen as
an extra, semantic layer

ER model closer to the user

Use ER to interact with DB

Higher-level layer has mapping to the DB, for data extraction
and query answering

ER is replaced by (reconstructed as) a symbolic ontology, i.e.
a logic-based knowledge base describing concepts and relation-
ships among them

The (reconstructed) ER model can be computationally pro-
cessed, e.g. for automated reasoning

6

More Specifically

A Datalog± program with a new kind of rules and classical ones
is combined with an extensional database (EDB)

EDB is considered to be incomplete, but extended through the
Datalog± programs

Generating new tuples for EDB predicates and full extensions
for intensional predicates

Depending on the kind of rules, possibly several extensions

We may want to materialize the extension(s) or keep them
virtual

And query them ...

7

D extensions via rules

Extensions are DBs that extend the EDB and satisfy the rules
as classical logical formulas

The chase (of the rules on the EDB) generates an instance that
extends the EDB and “represents” the whole class of extensions

Whatever is true in all extensions, i.e. certain, is true in (the
extension produced by) the chase, and viceversa

8

Most prominent new ingredients:

• Rules in Datalog± admit existentially quantified variables:

∃xP (x, y) ← R(y, z)

Can be seen as tuple-generating dependencies (TGDs)

• Negative Constraints (NCs): (in particular, denial
constraints)

⊥ ← P (x, y), R(y, z)

• Equality generating dependencies (EGDs):

y = z ← P (x, y), P (x, z)

In this case a key constraint (KC)

9

Main Issue

TGDs when applied forward (as usual in Datalog), with value
invention for existentials, may create non-terminating loops

This is the main part of the “chase procedure”

So, the chase may not terminate

Query answering may become undecidable

Idea: impose syntactic restrictions of Datalog± programs

To guarantee decidability of query answering

And hopefully efficient query answering ...

10

Example: An incomplete EDB D of employers and employees

• Impose on D the TGD (usually as an inclusion dependency):
“every manager is an employee”

Expressed by a Datalog rule: employee(x)← manager(x)

• Another TGD: “every manager supervises someone”

As a rule in Datalog±: ∃y supervises(x, y)← manager(x)

• Impose IC: “employees are not employers”

As a negative constraint (NC): ⊥ ← employee(x), employer(x)

• An EGD: “every employee is supervised by at most one
manager”

x = x′ ← supervises(x, y), supervises(x′, y)

11

Chase and Termination

We may reserve the term Datalog± for the “good” extensions
of Datalog

Each of those extensions (at least the TGD part) can be seen
as a syntactic fragment of Datalog[∃], the extension of Datalog
with unrestricted existential rules

Query answering under Datalog[∃] is undecidable
Related to (but not necessarily implied by) the fact that ...

The chase procedure for Datalog[∃] may not terminate, i.e. it
produces an infinite extension

Finite or infinite, we can query it ...

12

Example: Incomplete EDB D = {person(John)}
Set Σ of Datalog[∃] rules:

∃x father(x, y)← person(y)

person(x)← father(x, y)

The chase is a procedure that applies the TGDs in a forward
manner, generating new tuples

chase(D,Σ) = {father (z1, John), person(z1),
father (z2, z1), person(z2),

father (z3, z2), person(z3), ...}
(each zi is a labeled null value)

Even with infinite chase, things are not always hopeless ...

13

D chase(D,)

D chase(D,)

Q

• In first case, QA is obviously decidable

If the chase can be built in PTIME (in data), QA too

• In second case, QA may be (and sometimes is) undecidable

But also possibly decidable depending on the program (and
the class of queries, but we assume them conjunctive)

Good cases of programs that ensure decidability of QA?
And efficient QA?

14

Good alternatives considered for the second (infinite) case

Decidability of QA guaranteed by different syntactic conditions
on the set of rules

The idea is that, depending on the programs, QA can be cor-
rectly done by querying only a bounded, initial portion of the
chase

D chase(D,)

Q

bounded depth

query this portion Hopefully a “short
portion”

Two good cases:

15

(A) Bound independent from D (but dependent on Q,Σ):
BDDP(roperty) (bounded derivation depth)

In this case, FO query rewriting is possible (more on this below)

Instead of posing the query to the (infinite) chase, rewrite the
query Q into a new FO query Q′ (independently from D)

Query D with Q′ as usual

D chase(D,)

Q ?
X

Q’
rewriting

Definitely in PTIME in data

16

(B) Bound depends polynomially on (size of) D

• (A) is a particular case of (B)

• To achieve (B) (or (A)), different syntactic restrictions on
Datalog[∃] programs

• Identified various classes of Datalog± programs: linear,
guarded, sticky, weakly-sticky, ...

• For some of them, even (A) is possible

17

BDDP and FO-Rewritability

When a Datalog± program has BDDP, queries can be answered
on a portion of the chase with depth independent from D

D chase(D,)

Q

depth independent from D

For programs with BDP, conjunctive queries can be rewritten
and answered directly on the EDB

Rewriting via rules in the program

We’ll see classes of programs that enjoy this property ...

18

Linear and Sticky Datalog±

• Linear Datalog±: Only one atom in rule bodies

Example: D = {person(John)}, and set of rules Σ:

∃x father(x, y)← person(y)

person(x)← father(x, y)

Σ is a linear Datalog± program

Linear Datalog± enjoys BDDP

And then also FO-rewritability

19

• Sticky Datalog±:
Sticky programs enjoy BDDP (and then also FO-rewriting)

The chase has stickiness property (essentially, backward resolu-
tion terminates), which syntactically depends of whole program

Example: A non-linear program with the stickiness property

(repeated variables in the body
stick in the chase)

A non- sticky program:

20

Stickiness can be checked syntactically

A two-step marking procedure on a set of TGDs Σ

Example: ∃x, y, z emp(w, x, y, z) ← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v, w, x, y)

∃z external(z, y, x) ← runs(w, x),

in area(x, y)

1. Preliminary step : For each σ ∈ Σ and variable x ∈
body(σ), if there is an atom a ∈ head(σ) such that x does
not appear in a, mark each occurrence of x in body(σ)

∃x, y, z emp(w, x, y, z) ← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v, w, x, y)

∃z external(z, y, x) ← runs(w, x),

in area(x, y)

21

σ1: ∃x, y, z emp(w, x, y, z) ← dept(v, w)

σ2: ∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v, w, x, y)

σ3: ∃z external(z, y, x) ← runs(w, x),

in area(x, y)
2. Propagation step (until fixed point reached):

for each σ ∈ Σ, if a marked variable in body(σ) appears
at position p, then for every σ′ ∈ Σ (including σ), mark
each occurrence of the variables in body(σ′) that appear in
head(σ′) in same position p

σ2 : ← emp[1] : v
σ1 : emp[1] ← : w
σ1 : ← dept [2] : w

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v, w, x, y)

∃z external(z, y, x)← runs(w, x), in area(x, y)

Σ is sticky if no marked variable appears more than once in a
body(σ) This one is!

22

FO Rewriting-Based QA in Datalog±
Given: EDBD, a set of TGDs Σ (with BDDP), and conjunctive

query Q
(NCs and EGDs not considered here; see below)

• Construct FO rewriting QR of Q via Σ

It holds: QR(D) = ans(Q, D,Σ) (the certain answers)

• Evaluate QR over D

All this as long as:

• NCs hold, which can be checked separately by running as-
sociated conjunctive queries

• EGDs do not interact with TGDs (during the chase), a
separability property, which can be syntactically checked

23

A rewriting algorithm is proposed for Datalog± programs based
on the iteration of two steps: (Gottlob, Orsi, Pieris; ICDE’11)

• Basic rewriting using the rules (resolution)

• Minimization of the query obtained from rewriting step

QR is the union of resulting conjunctive queries from iterations
of the above

Example: (ex. in page 20 cont.) CQ Q
q(p)← in area(p, a), external(e, a, p)

Applying the TGD:

∃z external(z, y, x)← runs(w, x), in area(x, y)

basic rewriting step returns new CQQ1: (∗: don’t care symbol)

q(p)← in area(p, a), runs(∗, p), in area(p, a)

24

q(p)← in area(p, a), runs(∗, p), in area(p, a)

Minimization leads to new CQ Q2:

q(p)← runs(∗, p), in area(p, a)

The final result of the rewriting procedure is QR = Q∨Q2, i.e.

q(p)←in area(p, a), external(e, a, p)

q(p)←runs(∗, p), in area(p, a)

Notice that we need to keep the original query since external
may have initial partial data

The resolution looks for potential additional data for it

If a predicate in QR is not EDB, its extension in D is empty

25

Why Stickiness?

Stickiness for a set of TGDs guarantees that backward resolution-
based query rewriting terminates

Applying resolution with a TGD without repeated marked vari-
able, no new variable is introduced (only new don’t care symbols
might appear)

Example: Sticky set of TGDs:

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v, w, x, y)

∃z external(z, y, x)← runs(w, x), in area(x, y)

Query: q(p)← in area(p, a), external(e, a, p)

Applying last TGD: q(p)← in area(p, a), runs(∗, p), in area(p, a)

Variables are only inherited from the first query

26

Example: Modification of previous one, for non-sticky case

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v, w, x, y)

∃z, t external(z, y, t)← runs(w, x), in area(x, y)

(x marked and occurs twice in body of last TGD)

Same query: q(p)← in area(p, a), external(e, a, p)

Applying last TGD: q(p)← in area(p, a), runs(∗, r), in area(r, a)

Generates new, “relevant” variable r (in a join), not from the
original query

(“Do not care variables” can get values in isolation)

29

Weakly-Sticky Datalog±
Weakly-sticky (WS) Datalog± generalizes

• Sticky Datalog± (SD)

• Weakly-Acyclic (WA) sets of of TGDs as introduced in data
exchange

Accordingly, definition based on the marking procedure for SD,
and dependency graphs used to define WA

Intuitively, a set of TGDs Σ is WS if every marked variable ap-
pearing more than once in a rule body also appears in a position
that can take a finite number of values during the chase

The latter positions can be syntactically determined through the

Dependency graph: Directed dependency graph G(Σ):

• Nodes are positions of predicates in Σ (e.g. dept [2])

30

Example: ∃x, y emp(w, v, x, y)← dept(v, w)

∃z dept(w, z), runs(w, y)← emp(v, w, x, y)

project mgr(y, x)← runs(w, x), dept(w, y)

• For every σ ∈ Σ and (universal) variable x in head(σ) and in
position p in body(σ):

1. For each occurrence of x
in position p′ in head(σ),
create edge from p to p′

2. For each existential vari-
able z in position p′′ in
head(σ), create a special
edge from p to p′′

emp[1]

emp[2]

emp[3]

emp[4]

runs[1]

runs[2]

proj_mgr[1]

proj_mgr[2]

dep[1]

dep[2]

31

For a set of TGDs Σ:

• The rank of a position is the maximum number of spe-
cial edges over all (finite or infinite) paths ending at that
position

• ΠF (Σ): set of positions with finite rank

Π∞(Σ): set of positions with infinite rank

ΠF (Σ) captures positions where finitely many values may appear
during the chase

For those in Π∞(Σ), infinitely many fresh null values may occur
during the chase

G(Σ) can be introduced for any Datalog[∃] program, in a Datalog±
family or not

32

Example: (above)

ΠF (Σ) = {dept [1], emp[2], runs [1], . . .} Π∞(Σ) = ∅
A set of TGDs Σ is weakly-acyclic iff Π∞(Σ) = ∅
Weakly-Acyclic Datalog generalizes plain Datalog with limited
use of existentially quantified variables

For WA Datalog the chase terminates (unlike some Datalog±
programs)

33

Definition: A set of TGDs Σ is weakly-sticky (WS) if every
marked variable appearing more than once in a rule body, ap-
pears in that body at least once in a position in ΠF (Σ)

(Cali, Gottlob, Pieris; AIJ’12)

Example: Σ1 P (y) ← Q(x̂), R(x̂, y) (1)

Q(x) ← R(x̂, ŷ) (2)

∃z R(z, y) ← S(x̂, y) (3)

∃z S(z, y) ← T (x̂, y) (4)

Π∞(Σ1) = ∅ so Σ1 is weakly-
acyclic, and then also weakly-
sticky

Not sticky, due to (1)

Marking procedure as introduced for SD (hatted variables)

All repeated occurrences in (1) appear in positions in ΠF

(It could be, e.g. Q[1] ∈ ΠF , but R[1] /∈ ΠF , and still WS)

34

Due to the marking process, a repeated body variable is never
both marked and non-marked

All repetitions are marked, and one of them in a “finite” position
is good enough

Example: Modified set of TGDs Σ2

P (y) ← Q(x̂), R(x̂, y) (5)

∃x T (y, x) ← P (ŷ) (6)

P (x) ← T (ŷ, x) (7)

∃x R(x, y) ← Q(y) (8)

Π∞(Σ2) = {P [1], T [1], T [2]} ΠF (Σ2) = {Q[1], R[1], R[2]}

Σ2 is not sticky: In (5) marked x occurs twice in the body

Σ2 is not weakly-acyclic: Π∞(Σ2)
= ∅
Σ2 is WS: Variable x appears in positions in ΠF (Σ2)

36

Properties of Weakly-Sticky Datalog±

• For a WS program Σ it may be Π∞(Σ)
= ∅
• A WA set of TGDs is WS by definition

• A SD set of TGDs is WS (there is no repeated marked vari-
ables in any rule)

• QA in PTIME (in data) complexity

• QA can be done on an initial portion of the chase whose depth
polynomially depends on the EDB size

That is, a fixed polynomial that depends on the program, but is
the same for every query

• That portion may not be of constant depth

37

• WS Datalog± does not the have the BDDP

• QA is PTIME-complete (in data)

• WS Datalog± does not have FO-rewritability property

• Query rewriting algorithm above may not terminate

• There is a non-deterministic Boolean CQ answering algorithm
in PTIME in size of EDB

38

Some Technical Issues about WS Datalog±

• They allow to obtain the results mentioned before

• They are also important for other purposes (coming)

• We want to have a more clear pictures of the values that are
created and considered during the chase

We saw that the syntactic restrictions on WS programs impose
restrictions on the those values

• Given a set Σ of TGDs, its functional form, Σf :

In each σ ∈ Σ replace an existential variable at a position in
ΠF by a Skolem term fσ(x1, ..., xn) (x1, ..., xn are variables in
body(σ))

39

Example: Σ2 as above

P (y) ← Q(x̂), R(x̂, y)

∃x T (y, x) ← P (ŷ)

P (x) ← T (ŷ, x)

∃x R(x, y) ← Q(y)

Π∞(Σ2) = {P [1], T [1], T [2]} ΠF (Σ2) = {Q[1], R[1], R[2]}
Only existential in last rule is replaced

Σf
2 :

P (y) ← Q(x̂), R(x̂, y)

∃x T (y, x) ← P (ŷ)

P (x) ← T (ŷ, x)

R(f(y), y) ← Q(y)

40
• Given: Set of TGDs Σ, EDB D

Πf -terms of D and Σ:

1. Constants of adom(D) are Πf -terms of D

2. If g is an n-ary Skolem function symbol in Σf , and t1, ..., tn
are Πf -terms, then g(t1, ..., tn) is a Πf -term

Size of a term t in Πf -terms of D and Σ:

1. If t ∈ adom(D), size(t) = 0

2. If t = g(t1, ..., tn), then size(t) = 1 + Σi∈[1..n]size(ti)

Example: Previous example, D = {Q(a)}
f(a), f(f(a)), f(f(f(a))) are Πf -terms, with sizes 1, 2, and 3,
resp.

41

Lemma: For EDB D and set of TGDs Σ

For every Πf -term t that occurs in chase(D,Σf):

size(t) ≤
{

1 + w
Σ
× (k

Σ
− 1) when b

Σ
= 1

1 + w
Σ
× b

Σ
× (

(b
Σ
)kΣ−b

Σ

b
Σ
−1

) when b
Σ
> 1

with

• b
Σ
= max {|body(σ)| | σ ∈ Σ}

• k
Σ
= rank(GΣ) := maximum rank of the positions in ΠF

• w
Σ
is the maximum arity of predicate symbols in Σ

Notice that linear programs fall in the first case for size(t)

chase(D,Σf) could generate null values, because not all exis-
tentials are replaced by Skolem functions

42

Those labeled nulls never appear in the positions of ΠF , so
avoiding undecidability of QA

Example: WS Σ2 and EDB D = {Q(a)}
r1 : P (y) ← Q(x̂), R(x̂, y)

r2 : ∃x T (y, x) ← P (ŷ)

r3 : P (x) ← T (ŷ, x)

r4 : R(f(y), y) ← Q(y)

Q(a)

R(f(a),a) P(a) T(a,Z1) P(Z1) T(Z1,Z2) P(Z2)
r4

r1

r1 r2 r3 r2 r3

Only two Πf -terms (a and f(a)) appear in the chase, and in-
finitely many labeled nulls

43

Corollary: For Σ WS set of TGDs, there is a function f from
EDBs D to N that is PTIME computable in |adom(D)| such
that at most f(D) terms may appear at positions in ΠF in
chase(D,Σ)

The result stated in page 41 suggests that, given D and Σ, there
is a systematic way to generate from D all (or a superset of)
ΠF -terms of (D,Σ) that may appear in the chase

Particularly important for WS programs: only Πf -terms can
replace repeated marked variables during the chase

44

Idea we are investigating:

1. Start with a WS program

2. Replace repeated marked variables violating stickiness with
their possible ΠF -terms; this is a grounding process

3. Obtain a sticky program

4. Apply techniques for sticky programs, in particular, for QA

Motivated by our ongoing research on applications of Datalog±
to the specification of multidimensional contexts for data quality
assessment

