
From Consistent Query
Answering to Query

Rewriting:
A Detour around Answer Set Programs

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

Consistent Query Answering

3

Why Consistent Query Answering?

A (relational) database instance D may be inconsistent

It does not satisfy a given set of integrity constraints IC : D 6|= IC

D is a FO structure, that is identified with a finite set of ground
atoms of the FO language associated to the relational schema

However, we do not throw D away

Most of the data in it is still consistent, i.e. intuitively and in-
formally, it does not participate in the violation of IC

We can still obtain meaningful and correct answers from D

4

Initial motivation for the research in “Consistent Query Answer-
ing” (CQA) was to:

Characterize in precise terms the data in D that is consis-
tent with IC

Develop mechanisms for computing/extracting the consis-
tent information from D

More specifically, obtain answers to queries from D that
are consistent with IC

This research program was explicitly started in this form in
(Arenas, Bertossi, Chomicki; Pods 1999)

5

Along the way and with collaborators and by other authors sev-
eral problems were attacked and many research issues raised:

Extensions of mechanisms proposed in (Arenas et al.; Pods 1999)

Computational complexity analysis of CQA

Alternative (but similar in spirit) characterizations of con-
sistent answer

Implementations efforts

Conceptual/theoretical applications to data integration, peer
data exchange, etc.

Logical formalization of reasoning with consistent data wrt
inconsistent databases

Understanding the “logical laws” of consistent query an-
swering in databases

6

Consistent Answers and Repairs

Example: Database instance D and FD : Name → Salary

Employee Name Salary
Page 5K
Page 8K
Smith 3K
Stowe 7K

D violates FD through the tuples with Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

Repairs D1, resp. D2

7

Employee Name Salary

Page 5K
Smith 3K
Stowe 7K

Employee Name Salary

Page 8K
Smith 3K
Stowe 7K

(Stowe, 7K) persists in all repairs, and it does not participate
in the violation of FD ; it is invariant under these minimal ways
of restoring consistency

(Page, 8K) does not persist in all repairs, and it does partici-
pate in the violation of FD

Fixed: DB schema with (infinite) domain; and a set of first order
integrity constraints IC

8
Definition: (Arenas et al.; Pods 1999)

A repair of instance D is an instance D′

over the same schema and domain

satisfies IC : D′ |= IC

Makes ∆(D, D′) minimal wrt set inclusion

Definition: (Arenas et al.; Pods 1999)

Tuple of constants t̄ is a consistent answer to query Q(x̄) in D
iff

t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |=
IC
Q(t̄) :⇐⇒ D′ |= Q(t̄) for every repair D′ of D

A model-theoretic definition ...

9

Example: (continued)

D |=
FD

Employee(Stowe, 7K)

D |=
FD

(Employee(Page, 5K) ∨ Employee(Page, 8K))

D |=
FD
∃xEmployee(Page, x)

Example: D = {P (a, b), Q(c, b)}, IC :∀x∀y(P (x, y) → Q(x, y))

The repairs are:

D1 = {Q(c, b)} with ∆(D, D1) = {P (a, b)}
D2 = {P (a, b), Q(a, b), Q(c, b)} with ∆(D, D2) = {Q(a, b)}

But not D3 = {P (a, b), Q(a, b)}, because
∆(D, D3) = {Q(a, b), Q(c, b)} % ∆(D, D2)

10

Computing Consistent Answers

We want to compute consistent answers, but not by computing
all possible repairs and checking answers in common

Retrieving consistent answers via explicit and material compu-
tation of all database repairs may not be the right way to go

Example: An inconsistent instance wrt FD : X → Y

D X Y

1 0
1 1
2 0
2 1
· ·
n 0
n 1

It has 2n possible repairs!

Try to avoid or minimize computation of repairs ...

11

FO Query Rewriting (sometimes)

First-Order queries and constraints

Approach: Transform the query and keep the database instance!

Consistent answers to Q(x̄) in D?

Rewrite query: Q(x̄) 7−→ Q′(x̄)

Q′(x̄) is a new FO query

Retrieve from D the (ordinary) answers to Q′(x̄)

12
Example: D = {P (a), P (b), Q(b), Q(c)}
IC : ∀x(P (x) → Q(x))

Q(x): P (x)? (consistent answer should be (b))

If P (x) holds, then Q(x) must hold

An answer t to P (x) is consistent if t is also answer to Q(x)

Rewrite Q(x) into Q′(x) : P (x)∧Q(x) and pose it to D

Q(x) is a residue of P (x) wrt IC

Residue obtained by resolution between query literal and IC

Posing new query to D (as usual) we get only answer (b)

13
Example: (continued) Same FD :

∀xyz (¬Employee(x, y) ∨ ¬Employee(x, z) ∨ y = z)

Q(x, y): Employee(x, y)

Consistent answers: (Smith, 3K), (Stowe, 7K)
(but not (Page, 5K), (Page, 8K))

Can be obtained via rewritten query:

T (Q(x, y)) := Employee(x, y) ∧
∀z (¬Employee(x, z) ∨ y = z)

... those tuples (x, y) in the relation for which x does not have
and associated z different from y ...

In general, T has to be applied iteratively

14

Example:

IC : {R(x) ∨ ¬P (x) ∨ ¬Q(x), P (x) ∨ ¬Q(x)}
Q(x): Q(x)

T 1(Q(x)) := Q(x) ∧ (R(x) ∨ ¬P (x)) ∧ P (x)

Apply T again, now to the appended residues

T 2(Q(x)) := Q(x) ∧ (T (R(x)) ∨ T (¬P (x))) ∧ T (P (x))

T 2(Q(x)) = Q(x) ∧ (R(x) ∨ (¬P (x) ∧ ¬Q(x))) ∧ P (x)∧
(R(x) ∨ ¬Q(x))

And again:

15

T 3(Q(x)) := Q(x) ∧ (R(x) ∨ (¬P (x) ∧ T (¬Q(x)))) ∧
P (x) ∧ (T (R(x)) ∨ T (¬Q(x)))

Since T (¬Q(x)) = ¬Q(x) and T (R(x)) = R(x), we obtain

T 3(Q(x)) = T 2(Q(x)) A finite fixed point!

Does it always exist?

In general, an infinitary query:

T ω(Q(x)) :=
⋃
n<ω

{T n(Q(x))}

Is T ω sound, complete, finitely terminating?

16

Several sufficient and necessary syntactic conditions on ICs and
queries have been identified for these properties to hold

(Arenas et al.; Pods 1999)

For the sake of this presentation, we can mention that iterative
application of T is correct and semantically finitely terminating
when (sufficient):

Each element of IC is simultaneously

• Universal: universal closure of disjunctions of literals

• Binary: at most two database literals plus built-ins

• Uniform: every variable in a literal appears in some
other literal

Queries are projection-free conjunctions of literals

17

Example:

IC = {∀xy(P (x, y) → R(x, y)), ∀xy(R(x, y) → P (x, y)),
∀xyz(P (x, y) ∧ P (x, z) → y = z)}

Q(x, y) : R(x, y) ∧ ¬P (x, y)

18

Some Limitations

CQA based on first-order query rewriting has provable intrinsic
limitations (cf. later)

In particular, T ω does not work for full FO queries and ICs

T is defined and works for some special classes of queries
and integrity constraints

ICs are universal, which excludes referential ICs

T does not work for disjunctive or existential queries, e.g.
∃y Employee(Page, y)?

Other approaches to FO query rewriting are in principle possible
(cf. later)

19

What Kind of Logic for CQA?

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)

• Derive algorithms for consistent query answering

Notice ...

20

Example: Database D and FD : Name → Salary

Employee Name Salary
Page 5K
Smith 3K
Stowe 7K

It holds: D |=
FD

Employee(Page, 5K)

However
D ∪ {Employee(Page, 8K)}6|=

FD
Employee(Page, 5K)

Consistent query answering is non-monotonic

A non-monotonic semantics for Spec and its logic is ex-
pected

What other logical properties of CQA reasoning/entailment?

21

Disjunctive Logic Programs for CQA

22

Specifying Database Repairs

The class of all database repairs can be represented in a compact
form

This class can be specified using logic programs

Use disjunctive logic programs with stable model semantics
(a.k.a. Answer Set Programs) (Gelfond, Lifschitz; NGC 1991)

Here we use the ASPs essentially introduced in
(Barcelo, Bertossi; PADL 2003)

Repairs correspond to distinguished models of the program,
namely to its stable models

The programs use annotation constants in an extra attribute in
the database relations

23

To keep track of the atomic repair actions, i.e. insertions
or deletions of tuples (t, f)

To give feedback to the program in case additional changes
become necessary due to interacting ICs (t?)

To collect the tuples in the final, repaired instances (t??)

Annotation Atom The tuple P (ā) is ...

d P (ā,d) fact in original database

t P (ā, t) made true (inserted)
f P (ā, f) made false (deleted)

t? P (ā, t?) true or made true

t?? P (ā, t??) true in the repair

24
Example: IC : ∀xy(P (x, y) → Q(x, y))

D = {P (c, l), P (d,m), Q(d,m), Q(e, k)}
Repair program Π(D, IC):

1. Original data facts: P (c, l,d), etc.

2. Whatever was true or becomes true, is annotated with t?:

P (x̄, t?) ← P (x̄,d)

P (x̄, t?) ← P (x̄, t) (the same for Q)

3. There may be interacting ICs (not here), and the repair
process may take several steps, changes could trigger other
changes

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), Q(x̄, f)

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), not Q(x̄,d)

25
P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), Q(x̄, f)

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t?), not Q(x̄,d)

Two rules per IC; that says how to repair the IC (c.f. the
head) in case of a violation (c.f. the body)

Passing to annotation t? allows to keep repairing the DB
wrt to all the ICs until the process stabilizes

4. Repairs must be coherent: Program denial constraints
prune undesirable models

← P (x̄, t), P (x̄, f)

← Q(x̄, t), Q(x̄, f)

5. Annotations constants t?? are used to read off the atoms
in a repair

P (x̄, t??) ← P (x̄, t)

P (x̄, t??) ← P (x̄,d), not P (x̄, f) Etc.

26

The program has two stable models (and two repairs):

M1 = {P (c, l,d), ..., P (c, l, t?), Q(c, l, t), P (c, l, t??),

Q(c, l, t?), P (d,m, t??), Q(d,m, t??), . . . ,Q(c, l, t??)}
≡ {P (c, l), Q(c, l), P (d,m), Q(d,m), Q(e, k)}

... insert Q(c, l)!!

M2 = {P (c, l,d), ..., P (c, l, t?), P (d,m, t??), Q(d,m, t??),

. . . , P (c, l, f), ...}
≡ {P (d,m), Q(d,m), Q(e, k)}

... delete P (c, l)!!

One-to-one correspondence between repairs and stable models
of the program

27

Consistent Query Answering

To obtain consistent answers to a (FO) query:

1. Transform or provide the query as a logic program (a standard
process)

1. Q(· · ·P (ū) · · ·) 7−→ Q′ := Q(· · ·P (ū, t??) · · ·)
2. Q′(x̄) 7−→ (Π(Q′), Ans(X̄))

Π(Q′) is a query program, a third layer on top of the DB and
the repair program

Ans(X̄) is a query atom defined in Π(Q′)

28

2. Run the query program together with the specification pro-
gram under the skeptical or cautious stable model semantics

It sanctions as true of a program what is true of all its stable
models

“Run” Π := Π(Q′) ∪ Π(D, IC)

3. Collect ground atoms

Ans(t̄) ∈ ⋂{S | S is a stable model of Π}

29

Example: (continued)

Consistent answers to Q(x, y) : P (x, y)

Run repair program Π(D, IC) together with query program

Ans(x̄) ← P (x̄, t??)

The two previous stable models become extended with ground
Ans atoms

M′
1 = M1 ∪ {Ans(c, l), Ans(d,m)}

M′
2 = M2 ∪ {Ans(d, m)}

Then the only answer is (d,m)

30
Discussion

• ASPs can be used to provide declarative and executable spec-
ifications of database repairs

• ASP based specification of repairs and CQAs as consequences
from a program provide some sort of logic for CQA

A non-classical logic though ...

• ASPs extended with query programs provide a form of query
rewriting: D,Q 7→ Π(D, IC) ∪ Π(Q)

Leaving aside database (program facts), this is query rewriting

In a language that is more expressive than FOL ...

• The same repair program can be used with all queries, the
same applies to the computed stable models

The query at hand adds a final layer on top

31

• For existential ICs, like referential ICs (RICs), there are alter-
natives

The setting in (Arenas et al.; Pods 1999) allows for introduction
of arbitrary constants from the database domain

Studied in (Cali, Lembo, Rosati; PODS 2005)

Only tuple deletions to satisfy RICs are allowed

Studied in (Chomicki, Marcinkowski; Inf.&Comp. 2005)

Use a notion of repair that allows for the introduction of
null values or cascaded deletions

Nulls do not propagate, creating new inconsistencies

Nulls as in a “logical reconstruction” of their use and IC
satisfaction in presence of nulls in SQL

There are corresponding repair programs in this case (acyclic
RICs) (Bravo, Bertossi; IIDB 2006)

32

• Use of DLP is a general methodology that works for universal
ICs and referential ICs, general FO queries (and beyond)

• Complete computation of all the stable models is undesirable

Better try generation of less and/or “partial” repairs

• Compute repairs wrt ICs and data that are relevant to the
query

And efficient and compact (DB) encoding of the collection of
stable models

Optimization of the access to DB and relevant portions of it
(Eiter, Fink, G.Greco, Lembo; ICLP 03), (Caniupan, Bertossi; SUM 2007)

33

• Query evaluation based on skeptical stable model semantics
should be guided by the query and its relevant information in
the database

Magic sets for evaluating ASPs can be used for CQA
(Caniupan, Bertossi; SUM 2007)

• In some situations, doing CQA via repair programs is most
natural, at least conceptually

For example, in virtual data integration systems and P2P data
exchange

Mappings and legal instances can be specified with LPs that can
be coupled with repair programs

(Bravo, Bertossi; IJCAI 2003), (Bertossi, Bravo; LPAR 2007)

34
Example: Data integration system G under LAV and open sources

S1(X, Y) ← R(X,Y) with s1 = {(a, b), (c, d)}
S2(X, Y) ← R(Y,X) with s2 = {(c, a), (e, d)}

Consistent query answering wrt global schema?

Want to impose on G, at query time, the FD: R : X → Y

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

35

% subprogram minimal legal instances:

domd(a). domd(b). domd(c).

domd(d). domd(e). v1(a,b).

v1(c,d). v2(c,a). v2(e,d).

R(X,Y,d) :- v1(X,Y).

R(Y,X,d) :- v2(X,Y).

% repair subprogram:

R(X,Y,f) v R(X,Z,f) :- R(X,Y,d), R(X,Z,d), Y!=Z,

domd(X),domd(Y),domd(Z).

R(X,Y,t**) :- R(X,Y,d), domd(X), domd(Y), not R(X,Y,f).

% query program:

Ans(X,Y) :- R(X,Y,t**).

36

Complexity of CQA

37

Some Immediate Results

• When a FO query rewriting approach works (e.g. correct and
finitely terminating in case of T ω), consistent answers to FO
queries can be computed in PTIME in data

That is, for fixed queries and ICs, but varying database instances
(and their sizes)

• The problem of CQA is a decision problem:

CQA(Q(x̄), IC) := {(D, t̄) | D |=IC Q(t̄)}
Query answering from disjunctive logic programs under skeptical
stable models semantics is ΠP

2 -complete in data
(Dantsin, Eiter, Gottlob, Voronkov; ACM CSs 2001)

This provides an upper bound for data complexity of CQA

38
• The problem of repair checking is

RCh(IC) := {(D, D′) | D′ is a repair of D wrt IC}
Complexity of checking if a subset of HB is a stable model of a
program is coNP-complete in data

This provides an upper bound for repair checking

• There are classes of disjunctive programs for which these de-
cision problems have lower complexity

The head-cycle free programs (HCF): defined in terms of a di-
rected graph G(Π)

Each (ground) literal is a node

Arch from A to A′ iff there is a rule in which A appears
positive in the body and A′ in the head

39

Π is HCF iff G(Π) has no cycles with two literals belonging
to the head of the same rule

Π is HCF if its ground version is HCF

In this case, Π can be transformed into a (non-disjunctive)
normal program with the same stable models

For HCF programs, query answering under skeptical semantics
becomes coNP-complete; and stable model checking in PTIME

For some classes of ICs, repair programs become HCF

For sets IC of denial constraints, Π(D, IC) is HCF

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z 6= y)

And we have better upper bounds for the two decision problems
above

40

Closing and Understanding the Gap

The complexity bounds above leave plenty of room for a poten-
tially lower data complexity

First explicit analysis of complexity of CQA was done for atomic
scalar aggregate queries and FDs (not given here)
(Arenas, Bertossi, Chomicki; ICDT 2001)

Graph-theoretic methods were applied

Given a set of FDs FD and an instance D, the conflict graph
CGFD(D) is an undirected graph:

Vertices are the tuples R(t̄) in D

Edges are of the form {R(t̄1), R(t̄2)} for which there is
a dependency in FD that is simultaneously violated by
R(t̄1), R(t̄2)

41

Example: Schema R(A,B) FDs : A → B and B → A

Instance D = {R(a1, b1), R(a1, b2), R(a2, b2), R(a2, b1)}

(a1, b1) (a1,b2)

(a2, b1) (a2, b2)

Repairs: D1 = {(a1, b1), (a2, b2)} and D2 = {(a1, b2), (a2, b1)}
Each repair of D corresponds to a maximal independent set in
CGFD(D)

Each repair of D corresponds to a maximal clique in the com-
plement of CGFD(D)

42

This graph-theoretic analysis was applied to the complexity of
FO conjunctive queries and FDs

And also to denial constraints; actually using conflict hyper-
graphs (Chomicki et al.; I&C 2005)

R(7,1)

S(1,3)

T(7,3)

A hyper-edge connecting three
simultaneously conflicting tuples

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ x > 5 ∧ z 6= y)

Vertices are the DB tuples, and their simultaneous semantic
conflicts under denial ICs are the hyperedges

As before, repairs correspond to set-theoretically maximal inde-
pendent sets

43

In a series of papers and using graph-theoretic methods, PTIME
algorithms for CQA were provided

Graph-theoretic methods applied to repairs (conflict graphs or
hypergraphs) or to syntactic structure of queries

In all those cases, the query was also FO rewritable for CQA

In those cases where CQA can be solved in PTIME, repair check-
ing can be solved in PTIME too

1. FDs and projection-free conjunctive queries

Also some conjunctive queries with limited projection

Also: Repair checking is PTIME for arbitrary FDs and acyclic
inclusion dependencies
(deletion-based repair semantics) (Chomicki et al., I&C 2005)

44

2. Key Constraints (KCs) and some syntactic classes of con-
junctive queries with restricted projection
(Fuxman, Miller; ICDT 2005)

Classes defined by the graph-theoretic syntactic structure
of the query and its interaction with the KCs

Actually, for every query Q in their class, Cforest , there is a
FO rewriting Q′ for CQA

Q : ∃x∃y∃z(R(x, z) ∧ S(z, y)) 7→
Q′ : ∃x∃z′(R(x, z′) ∧ ∀z(R(x, z) → ∃yS(z, y)))

3. As in 2., but extending the class of queries (rooted queries)

Same property of FO rewritability (Wijsen; DBPL 2007)

Classes of queries above are rather sharp, i.e. not satisfying some
of their syntactic conditions increases complexity

45

What about lower bounds?

• For arbitrary FDs and inclusion dependencies (deletions only)
(Chomicki et al., I&C 2005)

Repair checking becomes coNP-complete

CQA becomes ΠP
2 -complete

• For KCs and conjunctive queries (with some forms of projec-
tion) CQA becomes coNP-complete

Q : ∃z∃y∃z(R(x, z) ∧ S(y, z))

(Chomicki et al.; I&C 2005), (Fuxman et al.; ICDT 2005), (Wijsen; DBPL 2007)

46

• For arbitrary FDs and inclusion dependencies (including RICs),
CQA becomes undecidable (Cali et al.; Pods 2005)

Issues:

Inclusion dependencies repaired through insertions

Infinite underlying domain that can be used for insertions

Cycles in the set of inclusion dependencies

• However, for arbitrary universal ICs and RICs (even cyclic),
CQA becomes ΠP

2 -complete if RICs are repaired with non prop-
agating SQL nulls (Bravo, Bertossi; IIDB 2006)

47

Other Complexity Results

• FO Rewriting vs. PTIME

There are sets of KCs K and conjunctive queries Q for which
CQA is in PTIME, but there is no FO rewriting of Q for CQA

Q : ∃x∃y∃z(R(x, z) ∧R(y, z) ∧ x 6= y)

Reduction techniques (Fuxman, Miller; IIWeb 2003)

Q : ∃x∃y(R(x, y) ∧R(y, c))

Using Ehrenfeucht-Fraisse games (Wijsen; DBPL 2007)

48

• Not Only Data Complexity (Arenas, Bertossi; unpublished)

Relational schema S, IC finite set of ICs, D database instance,
Q a boolean query:

d -CQA(IC ,Q) = {D | D |=IC Q}
ic-CQA(D,Q) = {IC | D |=IC Q}
q-CQA(D, IC) = {Q | D |=IC Q}

There are S, D,Q with ic-CQA(D, Q) undecidable

Reduction from SAT c for finite structures

Negative literal query; ICs in correspondence with FO sen-
tences checked for non-satisfaction

For any schema S with domain N, there are schema S ′ ⊃ S
with same domain and <, D over S ′, and IC in L(S ′), with
q-CQA(D, IC) undecidable

Reduction from SAT to q-CQA(D, IC)c

49

There are schema S, with domain containing N and <,
IC , and query Q with d -CQA(IC , Q) undecidable

Encode halting problem for Turing machines

ICs are universal

For finite, universal and domain independent IC and do-
main independent FO queries Q(x̄): easily ...

CQA := {(IC , D,Q(x̄), t̄) | D |=IC Q(t̄)} is decidable

An extreme “combined” case of CQA; naive algorithm is
exponential

50

There are S,Q such that, for domain independent universal
ICs ϕ, the combined problem

(d, ic)-CQA(Q) := {(D, {ϕ}) | D |={ϕ} Q}
is coNEXP-complete

Reduction from SAT for Bernays-Schoenfinkel’s class of
FO sentences to CQA(Q)c

(Actually, a subclass with same lower bound that allows for
specification of bounded tiling problems)

51

Getting More from ASPs

52

• Complexity of query evaluation from disjunctive logic programs
(DLPs) coincides with the complexity of CQA

• However, for some classes of queries and ICs, CQA has a lower
complexity, e.g. in PTIME

• The landscape between FO rewritable cases and ΠP
2 -completeness

for CQA still not quite clear

• Results obtained in the middle ground are scattered, isolated,
and rather ad hoc

• The “logics” of CQA is not fully understood yet

Some natural questions arise ...

53

• Can we identify classes of ICs and queries for which repair
programs can be automatically “simplified” into queries of lower
complexity?

Can we reobtain previous classes?

Can we identify new ones?

Can we obtain new complexity results?

• Can we better understand the logic of CQA through the anal-
ysis of repair programs?

• Can we take advantage of results about updates of LPs to deal
with the problem of CQA under updates? (almost untouched
problem)

Some progress in this research program ...

54

Repair Programs and Circumscription

Example: P (X, Y) : X → Y
D = {P (a, b), P (a, c), P (d, e)}

Repair program:

P (x, y, f) ∨ P (x, z, f) ← P (x, y,d), P (x, z,d), y 6= z

P (x, y, t∗∗) ← P (x, y,d), not P (x, y, f)

P (a, b,d). P (a, c,d). P (d, e,d).

This program can be seen as a FO specification (forget about
the stable model semantics), i.e. a FO conjunction Ψρ of

P (x, y) ∧ P (x, z) ∧ y 6= z → Pf (x, y) ∨ Pf (x, z)

P (x, y) ∧ ¬Pf (x, y) → P??(x, y)

P (a, b) ∧ P (a, c) ∧ P (d, e)

55

Quite recently a stable model semantics has been introduced for
any FO sentence (Ferraris, Lee, Lifschitz; IJCAI 2007)

Ψ 7→ Ψ′ and Ψ′ is a SO sentence (same signature)

The stable models of Ψ are the Herbrand models of Ψ′ (the
stable sentence)

For DLPs, this “stable semantics” coincides with their original
stable model semantics

56

In our case:

• The stable sentence for a repair program (as FO sentence Ψρ)
is always a circumscription

Parallel circumscription of all the predicates in the program

• Given the structure of the repair program (also including the
query program), the circumscription becomes a prioritized cir-
cumscription

In the example, minimize predicates in this order: database
predicates, predicates annotated with f , predicates annotated
with t??, the Ans predicate

• Most complex is minimization of predicates defined by dis-
junctive rules (those associated to the ICs)

For all the others we can apply predicate completion

57
In the example, Ψ′

ρ becomes

∀xy(P (x, y) ≡ (x = a ∧ y = b) ∨ (x = a ∧ y = c) ∨ (x = d ∧ y = e))

∧ ∀xy((P (x, y) ∧ ¬Pf (x, y)) ≡ P??(x, y)) ∧
∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z → (Pf (x, y) ∨ Pf (x, z)) ∧
¬∃U((U < Pf) ∧ ∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z →

(U(x, y) ∨ U(x, z))) (∗)
Predicate Pf minimized via the last conjunct (*) of Ψ′

ρ

U < Pf stands for
∀xy(U(x, y) → Pf (x, y)) ∧ ∃xy(Pf (x, y) ∧ ¬U(x, y))

Consistent query answering? Q(x, y) : P (x, y)

Ψ′
ρ ∧ ∀x∀y(Ans(x, y) ≡ P??(x, y))

?

|= Ans(x, y)

Classical logical entailment! Anything else?

58
Eliminate SO quantifiers from Ψ′

ρ ...
(Doherty, Lukaszewicz, Szalas; JAR 1997)

Let κ(x, y, z) stand for P (x, y) ∧ P (x, z) ∧ y 6= z

The negation of (*) is logically equivalent to

∃st∃f∃U∀x∀r(∀x1y1z1(¬κ(x1, y1, z1)∨f(x1, y1, z1) = ∨(y1, z1))
∧ ∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z)∨U(x, r)))
∧ ∀uv(¬U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ ¬U(s, t)))

(t = ∨(t1, t2) stands for t = t1 ∨ t = t2)

Now we are ready to apply Ackermann’s lemma

The formula is of the form

∃st∃f∃U∀x∀r((A(x, r) ∨ U(x, r)) ∧B(¬U 7→ U)) (**)

B(¬U 7→ U) is formula B with predicate U replaced by ¬U

59

A(x, r) : ∀yz(∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z))

B(U) : ∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1)) ∧
∀uv(U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ U(s, t)))

B is positive in U

The subformula in (**) starting with ∃U can be equivalently
replaced by B(A(x, r) 7→ U), eliminating U :

∃st∃f(∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1)) ∧
∀uv(∀yz(¬κ(u, y, z) ∨ v 6= f(u, y, z) ∨ Pf (u, v)) ∧

(Pf (s, t) ∧ ∀y1z1(¬κ(s, y1, z1) ∨ t 6= f(s, y1, z1)))

Unskolemizing:

∃st∀xyz∃w((¬κ(x, y, z) ∨ w = ∨(y, z)) ∧ (¬κ(x, y, z) ∨ Pf (u,w))
∧ (Pf (s, t) ∧ (x 6= s ∨ ¬κ(x, y, z) ∨ t 6= w)))

Its negation is equivalent (via other conjuncts in page 57) to

60

∀st(Pf (s, t) → ∃xyz∀w(κ(x, y, z)∧
(Pf (x,w) → (x = s ∧ t = w)))),

which can be replaced for (*) in page 57, obtaining an equivalent
FO specification of predicate Pf ... and a FO theory Ψ′′

ρ to do
CQA with

Q(x, y) : P (x, y)

Ψ′′
ρ ∧ ∀xy(Ans(x, y) ≡ P??(x, y))

?

|= Ans(x, y)

Classical FO entailment!

In this case, by simple logical transformation, equivalent to

D |= P (x, y) ∧ ¬∃z(P (x, z) ∧ z 6= y)

Reobtaining the original FO rewriting!

61

Final Remarks and Ongoing Research

• For FDs (and KCs), this methodology provably works

Has to be exploited now ...

• FO rewritings in (Arenas et al.; 1999) mentioned before can be
reobtained

• The query is posed on top of a FO specification of repairs

The database (its completion) lies at the bottom

Like doing query answering in DBs with complex, expressive FO
views

• Interesting to investigate the kind of FO theories obtained

62

• The FO specification of repairs can be used to reobtain FO
and other new rewritings for CQA

• Use FO theory to analyze complexity of CQA

• Ackermann’s Lemma can be extended and SO quantifier elim-
ination produces a Fixpoint formula (Nonnengart, Szalas; 1998)

Relevant cases in CQA?

Relevant for PTIME vs. FO rewriting?

• A lot of fun to come ...!

THE END

