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Data Quality: An Activity in Flux

Data quality assessment (DQA) and data cleaning (DC) as
activities have been mostly:

• ad-hoc

• rigid

• vertical

• application-dependent

• mechanism-based

There has been a lack of fundamental research in DQA and DC
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Natural questions:

• Any general principles underlying DQA and DC?

• General methodologies?

• Parameterized generic methods to be instantiated
on different scenarios?

• Semantics behind solutions (if any)?

• Declarative solutions with a clear semantics?

• Scope of applicability of different solutions?

Things are starting to change ...
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Semantic Constraints for Data Quality

Recently, DQ constraints have been proposed and investigated

They provide generic languages for expressing quality concerns

Suitable for specifying adaptive and generic DQ/C mechanisms

• Conditional dependencies

• Matching dependencies

• ...

Similar to classical integrity constraints (ICs), but with DC in
mind

ICs have been around for a long time:
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• Capture the application semantics in the data model
and DB

• Studied in general and logical terms

• Have wide application in data management

• Large body of applied and fundamental research

• Methodologies for dealing with ICs are quite general
and have broad applicability

• Emphasis on:

– Correspondence between outside reality and the
model (the DB)

– Specify legal DB states and updates

– Metadata for Inter-operability

– Semantic query optimization
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More recently:

Database repairing and consistent query answering (CQA)

Newer use for ICs and a contribution to DQA and DC using
classical semantic constraints

Characterization of semantically correct data in a possibly
inconsistent DB

Obtain quality answers on-the-fly, at query answering time

Paradigm shift: Constraints on query answers instead of
on DB states

These are all cases of semantic information providing a context
for DQA and DC

We can go beyond ...
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Contexts and Data Quality

(Join work with Flavio Rizzolo)

A table containing data about the temperatures of patients at
a hospital

TempNoon
Patient Value Time Date

1 Tom Waits 38.5 11:45 Sep/5
2 Tom Waits 38.2 12:10 Sep/5
3 Tom Waits 38.1 11:50 Sep/6
4 Tom Waits 38.0 12:15 Sep/6
5 Tom Waits 37.9 12:15 Sep/7

Are these quality data?

If not, is there anything to clean? What?

We do not know ... It depends ...
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Actually the table is supposed/expected to contain

“temperature measurements for Tom taken at noon by a certi-
fied nurse with an oral thermometer”

We still do not know if these are quality data?

Questions about the quality of this data make sense in a broader
setting

The quality of the data depends on “the context”
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A context that allows us to:

• make sense of the data

• provide semantics to data

• logically and explicitly connect data with other, otherwise
implicit, data

• assess data

• support data cleaning

Our approach starts from the fact that quality of data cannot
be assessed without contextual knowledge about the production
or use of data

Context-based data quality assessment requires a formal model
of context
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Contexts: A General Vision

C

T mappings

(logical formulas putting T in context C)

• A logical theory T is the one that has to be “put in context”

For example, a relational database can be seen as a theory

• The context is another logical theory, C
For example, an ontology, a virtual data integration system

• T and C may share some predicate symbols

Connection between T and C is established through
(possibly shared) predicates and logical mappings
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In particular for applications in data management

In our data quality scenario: (VLDB’10 BIRTE WS, Springer LNBIP 48, 2011)
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• Database D can be a logical theory

E.g. Reiter’s logical reconstruction of a relational DB

• Context C can be a knowledge base, an ontology, another
database, ...
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More concretely:

(A) D expected to be
a footprint of contextual
data

C

T

D as a footprint of a (broader) contextual instance

D

Data in C (including D) are analyzed/assessed/cleaned

According to additional data available in or accessible from C;
and quality criteria defined in C

A new version of D is obtained
and can be compared with D
for quality assessment

C

T

D as a footprint of a (broader) contextual instance

D

D’
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(B) D in logical connec-
tion with contextual data C

T

D is mapped into a contextual ontology

D

In principle several versions of D can be obtained at the con-
textual level

Depending on the mapping, assumptions about the sources of
data (completeness?), availability of (partial) data at the con-
text, etc.
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Quality criteria are imposed at the contextual level as before

C
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Quality of D can be measured through a distance to a class D
of quality versions of it

Collection of instances on the RHS reflect “uncertainty” in D
due to dirtiness

This framework opens the ground for “quality query answering”
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Given a query Q posed to original, dirty D

Quality answers from D to Q are certain wrt class D

CD
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‘

‘

‘

Q

X

get certain answers

D

Issues:

• Data cleaning vs. quality query answering

• Reminiscent of CQA

• Computation of quality answers
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Multidimensional Contexts: The Idea

Temperature data at a hospital

Doctor requires temperatures
taken with oral thermometer

Doctor expects this to
be reflected in the table,
but the latter does not contain the information to make this
assessment

An external context can provide that information, making it
possible to assess the given data

The database under assessment is mapped into the context, for
further data quality analysis, imposition of quality requirements,
and cleaning
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We can see the context as an ontology, containing:

(A) A MD data model/instance

(B) Information such as a hospital guideline:

“Temperatures of patients in standard care units are taken with
oral thermometers”

In the form of a rule (hard or default) or a hard constraint

Can be taken advantage of after/through upward navigation
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• Contextual information is commonly of a multi-dimensional
nature

In the example, about the hierarchical hospital structure

Other dimensions could be easily considered, e.g. time

• Contextual, dimensional navigation for rolling-up/drilling-down
used to access and generate missing information at certain levels

•We embed Hurtado-Mendelzon (HM) MD data models/instances
in ontological contexts

A multidimensional context is generated for dimensional and
finer-granularity data quality assessment

• Dimensions had not been considered in contextual for data
quality analysis in [Bertossi et al. BIRTE’10]

Dimensions are naturally associated to contexts
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Contexts with Dimensions: Work in Progress
(Join work with Mostafa Milani and Sina Ariyan)

Basis: HM model [Hurtado & Mendelzon, 2005]

We extend the HM model [Maleki et al., AMW’12]

Informally, some of the new ingredients in MD contexts:

• Dimensions as in the HM

• Categorical relations: Generalize fact tables

Not necessarily numerical values, linked to different levels
of dimensions, possibly incomplete

• Dimensional rules: Generate data where missing

• Dimensional constraints

Constraints on (combinations of) categorical relations,
involve values from dimension categories
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Example:

Ward and Unit: categories of Hospital dimension

UnitWard(unit,ward): a parent/child relation

PatientWard: categorical relation with ward and day categorical
attributes taking values from dimension categories

Categorical relations are subject to dimensional constraints:
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• A referential constraint restricting units in PatientUnit
to elements in the Unit category, as a negative constraint

⊥ ← PatientUnit(u, d ; p),¬Unit(u)
• “All thermometers used in a unit are of the same type”:

t = t′ ← Thermometer(w , t ;n),Thermometer(w ′, t ′;n ′),
UnitWard(u,w),UnitWard(u,w ′) An EGD

Thermometer(ward , thermometertype; nurse) is categorical
relation, t, t′ variables for categorical attributes

• “No patient in intensive care unit on August /2005”:

⊥ ← PatientWard(w , d ; p),UnitWard(Intensive, w),

MonthDay(August/2005, d)

Dimensional rules:
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• Data in PatientWard generate data about patients for
higher-level categorical relation PatientUnit

PatientUnit(u, d ; p) ← PatientWard(w , d ; p),

UnitWard(u,w)

Since relation schemas “match”, no existential quantifier in the
head needed

Rule is used to navigate from PatientWard.Ward upwards to
PatientUnit.Unit via UnitWard

• Once at the level of Unit, it is possible to take advantage of
a guideline -in the form of a rule- stating that:

“Temperatures of patients in a standard care unit are taken with
oral thermometers”

Information about thermometers and patients at Unit level that
that can be used there and both at the Ward level
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• Data in categorical relation WorkingSchedules generate data
in categorical relation Shifts

WorkingSchedules

Unit Day Nurse Type

Intensive Sep/5 Cathy cert.

Standard Sep/5 Helen cert.

Standard Sep/6 Helen cert.

Standard Sep/9 Mark non-c.

↘

Shifts

Ward Day Nurse Shift

W4 Sep/5 Cathy night

W1 Sep/6 Helen morning

W4 Sep/5 Susan evening

∃z Shifts(w , d ;n, z ) ← WorkingSchedules(u, d ;n, t),

UnitWard(u,w)

Captures a guideline stating that: “If a nurse works in a unit
on a specific day, he/she has shifts in every ward of that unit on
the same day”

In second rule, head has existential variable z for missing values
for shift attribute

Rule can be used for downward navigation
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A unit may drill-down to more than one ward, e.g. Standard
unit is connected to wards W1 and W2, generating more than
one tuple in Shifts

A query to Shifts asks for dates when Mark was working in ward
W2

The query has no answer with the extensional data in Shifts

The last tuple in WorkingSchedules implies that Mark has shifts
in both W1 and W2 on Sep/9

This date would be an answer obtained via downward navigation
from the Standard unit to its wards (W1 and W2)

The example shows downward navigation is necessary for query
answering, by propagating data in WorkingSchedules (at the
unit level) down to Shifts (at the lower ward level)
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Datalog± as Representation Language

We use Datalog± as our representation language [Cali et al., 2009]

An extension of Datalog for ontology building with efficient
access to underlying data sources

An alternative (with additional positive features) to DL-Lite for
ontology-based access to databases

Our approach to representation of MD contexts is general and
systematic

It has the following general form:
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• Negative constraints capturing referential constraints from
categorical attributes to categories:

⊥ ← Ri(ēi; āi),¬K(e)

e, ēi stand for categorical attributes, Ri a categorical predicate,
and K a category predicate

• Dimensional constraints as EGDs or negative constraints:

x = x′ ← Ri(ēi; āi), ..., Rj(ēj ; āj),

Dn(en, e
′
n), ..., Dm(em, e

′
m)

⊥ ← Ri(ēi; āi), ..., Rj(ēj ; āj),

Dn(en, e
′
n), ..., Dm(em, e

′
m)

Di are parent-child predicates
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• Dimensional rules as TGDs:

∃āz Rk(ēk; āk) ← Ri(ēi; āi), ..., Rj(ēj ; āj),

Dn(en, e
′
n), ..., Dm(em, e

′
m).

Existential quantifiers (possibly not needed) over non-categorical
attributes, which may get labeled nulls as values

Join variables in bodies of TGDs only for categorical attributes

Upward or downward navigation captured by joins between cat-
egorical predicates and parent-child predicates in bodies
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Properties of MD Ontologies

• Datalog± is a family of languages with different syntactic re-
strictions on rules and their interaction to guarantee tractability

• Our Datalog±MD ontologies become weakly-sticky Datalog±
programs [Cali et al., AIJ’12]

It is crucial that join variables in TGDs are for categorical
attributes (a finite number of values can be taken by them,
the category members)

• The separability condition on the (good) interaction between
TGDs and EGDs becomes application dependent [Cali et al., ER’11]

However, if EGDs have categorical head variables, separability
holds (as on page 21)

Separability implies decidability of conjunctive query answering
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• The chase (that forwards propagates data through rules) may
not terminate

Weak Stickiness guarantees tractability of conjunctive query
answering (QA): only a “small”, initial portion of the chase
has to be inspected

Boolean conjunctive QA is tractable for weakly-sticky Datalog±
ontologies

The same applies to open conjunctive QA

• As opposed to sticky Datalog±, for weakly-sticky Datalog±
there is no general first-order query rewriting methodology

That is, rewriting of conjunctive queries into FO queries
in terms of underlying DB predicates
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Query Answering on MD Ontology

We have developed a deterministic algorithm DeterministicWS-
QAns for boolean conjunctive QA from MD ontologies

It is based on a non-deterministic P-time algorithmWeaklySticky-
QAns for weakly-sticky Datalog± [Cali et al., AIJ’12]

WeaklyStickyQAns:

• Builds an accepting resolution proof schema, a tree-like
structure

• It shows how query atoms are entailed from extensional
data

• Applies top-down backtracking for finding accepting reso-
lution proof schemas
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• Runs in polynomial time in the size of the extensional
database

• For MD ontologies that support only upward navigation
(which can be syntactically checked), we have a FO
rewriting methodology for conjunctive QA

In this case, the ontology may still not be sticky

Our algorithms are rather proofs of concept

Development of scalable polynomial time algorithms for open
conjunctive queries with massive data is ongoing work
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Downward Navigation and Categorical Attributes

TGDs as on pages 23 and 27 can be used for “deterministic”
downward navigation: only values for non-categorical attributes
are created, with determinism wrt. the categories involved

In some applications there may be incomplete data about the
categorical attributes

Existential quantifications over categorical variables may be needed
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Example: Categorical relation DischargePatients, linked to
Institution, with data about patients leaving the hospital

DischargePatients

Inst. Day Patient

H1 Sep/9 Tom Waits

H1 Sep/6 Lou Reed

H2 Oct/5 Elvis Costello

−→

Query on PatientUnit about the dates that ‘Elvis Costello’ was
in a unit at institution ‘H2’

No answer directly from PatientUnit (as derived from Patient-
Ward)

If each patient is in a (only one) unit, DischargePatient can
generate data downwards for PatientUnit
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Knowledge about the unit (a category value) at the lower level
is uncertain:

∃u InstitutionUnit(i , u),PatientUnit(u, d ; p) ←
DischargePatients(i , d ; p)

With rules of this kind, an MD ontology is still weakly-sticky:
no infinite loops, only a limited number of new nulls can be
generated with the chase

EGDs with only categorical attributes in heads do not guarantee
separability anymore, and becomes application dependent
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MD Contexts and Quality Query Answering: The Gist

The Datalog± MD ontology M becomes part of the context
for data quality assessment

The original instance D is to
be assessed or cleaned through
the context

By mapping D into the contex-
tual schema/instance C

In the context:

• Contextual predicates Ci

• Predicates Pi specifying single quality requirements

• Sq copy of schema S: Sq
i clean version of original Si,

specified using C,P andM
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Example: We want quality answers to the query about Tom’s
temperatures:

Q(t, p, v) ← Measurements(t , p, v), p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

Quality requirements are not captured by this query; we expect:

“Body temperatures of TomWaits for September 5 around noon
taken by a certified nurse with a thermometer of brand B1”

Table Measurements does not contain information about nurses
or thermometers

Contextual data must be taken into account, such as categorical
relation PatientUnit and the guideline

“Temperature measurement for patients in a standard care unit
are taken with thermometers of brand B1”



37

According to the general contextual approach DQA, table (or
better predicate) Measurement has to be logically connected to
the context

As a “footprint” of a “broader” contextual table that is given
or built in the context, in this case, one with information about
thermometer brands (b) and nurses’ certification status (y):

Measurement ′(t, p, v, y, b) ← Measurementc(t, p, v),

TakenByNurse(t, p, n, y),

TakenWithTherm(t, p, b)

Measurement c is contextual version of Measurement (e.g. the
latter mapped into the context)
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If we want quality measurements data, we impose the required
conditions:

Measurementq(t, p, v) ← Measurement ′(t, p, v, y, b),

y = Certified, b = B1

The auxiliary predicates above:

TakenByNurse(t, p, n, y) ← WorkingSchedules(u, d;n, y),

DayTime(d, t),PatientUnit(u, d; p)

TakenWithTherm(t, p, b) ← PatientUnit(u, d; p),

DayTime(d, t), b = B1, u = Standard

(DayTime is parent/child relation in Time dimension)

The second definition is capturing the guideline above
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To obtain quality answers to the original query, we pose to
the ontology the new query:

Qq(t, p, v) ← Measurements(t , p, v)q , p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

Answering it triggers dimensional navigation, when requesting
data for categorical relations PatientUnit and WorkingSched-
ules



40

Conclusions

We have described in general terms how to:

• Build contexts for data quality enforcement

• Extend them with dimensions via a MD ontology

• Specify MD ontologies in Datalog±

• Use query answering from those ontologies for quality
query answering

• MD Contexts are interesting and useful also outside data
quality concerns

• They are logical extensions of multidimensional databases
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We have identified some properties of MD ontologies:

• They fall into well-known and tractable syntactic classes of
Datalog±
• Query answering can be done in polynomial time in data

• For some classes of EGDs in the ontology, separability wrt.
TGDs holds

• For ontologies with some classes of TGDs, related to navi-
gation direction, FO query rewriting of conjunctive queries
is guaranteed

• They extend previous approaches to “dimensional query
answering”, e.g. to querying database with taxonomies

[Martinenghi & Torlone; ER’10]

Main ongoing task: Improvement of query answering algorithm


