
Using Answer Set Programs to Specify

Virtual Data Integration Systems:

Obtaining Consistent Query Answers

Leopoldo Bertossi

Carleton University

School of Computer Science

Ottawa, Canada

Joint work with:
Loreto Bravo (U. Concepcion, Chile) and Gayathri Jayaraman (CU)

2

Virtual Data Integration

1

3 3 3
2

2 2

4

mediator

data sources

We consider a mediated approach to data integration: data stay
at the sources, and a virtual integration system is created

Mediator: A software system that offers a common query inter-
face to a set of data sources (assume all schemas are relational)

3

• Data sources are heterogeneous and mutually independent

• Data kept at the local sources

Data extracted at the mediator’s request, at query time

Interaction with the mediator is through queries and answers

• Individual data sources are updated independently

Updates on data sources via the mediator not allowed

• System should allow sources to get in and out

Class of participating sources should be flexible and open

• Data sources have their own schema

Virtual database has its own global, unifying presentation schema

4

• Mediator has to know what kind of data is offered by the
sources and how they relate to the global schema

A problem of describing data and specifying mappings between
data schemas

A form metadata management

5

Example: Global schema for a DB “containing” information
about scientific publications:

Conference(Paper,Conference)
Year(Paper,Year)

Place(Conference,Year,Location)

Mediator

Global Schema

Sources

Query

Conference(Paper ,Conference), Year(Paper ,Year),
Place(Conference,Year ,Location)

User poses queries in terms of the relations in the global schema

6

Query about where conference PODS’89 was held:

Ans(x)←− Place(pods , 1989 , x)

Relationships between the global schema and local sources are
specified at the mediator level

This metadata determines how query plans are computed

The sources are described by means of database views

Global-as-View (GAV): Relations in the global schema are
described as views over the tables in the local schemas

Local-as-View (LAV): Relations in the local, source schemas
are described as views over the global schema

Each source relation is “put in correspondence” with a
query (view) over the global relations

7

S

P Q
R

T

mediator

GAV
LAV

8

Example: Global system G with global predicates P,R, and sour-
ces V1, V2 defined according to LAV by:

V1(x, y) ← P (x, z), R(z, y); v1 = {(a, b)}

V2(x, y) ← P (x, y); v2 = {(a, c)}

From the perspective of V2, there could be other sources contri-
buting with data of the same kind to P , actually so does V1

In this sense, information in V2 is incomplete wrt what G “con-
tains” (or might contain)

As usual, we assumed sources are incomplete (open)

Provisionally assume: There are no global integrity constraints,
i.e. constraints on (the combination of) P,R

9

When we pose queries to a VDIS, we expect to receive answers

What answers? What are the correct answers?

It depends on the semantics of the system

So, what are the semantically correct answers?

There is no global instance and no answer to a global query in
the classical sense

We have to indicate what are the intended global instances of G

The set of admissible, legal global instances will give a meaning
to the system

What global instances D if we decided to materialize global ins-
tances using the data at v1, v2? (usually we won’t)

At this point the openness of the sources is taken into account

10

Legal(G) := { global D | vi j Vi(D), i = 1, 2}

Vi(D): Contents of view Vi evaluated on global instance D

Example: (cont.)
V1(x, y) ← P (x, z), R(z, y); v1 = {(a, b)}

V2(x, y) ← P (x, y); v2 = {(a, c)}

The legal instances of G are all the supersets of instances of the
form: {P (a, c), P (a, z), R(z, b) | z ∈ Dom}

1. {P (a, c), R(c, b)} ∈ Legal(G)

A minimal legal instance: It is legal and any proper subset
is not legal

2. {P (a, c), P (a, e), R(e, b)} ∈ Legal(G)

Also a minimal legal instance

3. {P (a, c), R(c, b), P (e, e), R(e, a), R(d, d), R(a, c)} ∈ Legal(G)

Legal, but not minimal

11

4. {P (a, c), R(e, b)} /∈ Legal(G)

We have minimal legal instances that are incomparable under set
inclusion: 1. 6⊆ 2. and 2. 6⊆ 1.

MinLegal(G) denotes the class of minimal legal instances

MinLegal(G) $ Legal(G)

12

Global query: Q1 : Ans(x, y)← P (x, y)

What are the semantically correct answers?

The certain answers to a global query are those that can be
obtained from every legal global instance

Certain(Q) :=
⋂
{Q(D) | D ∈ Legal(G)}

Global Q1 : Ans(x, y)← P (x, y) Certain(Q1) = {(a, c)}

Global Q2 : Ans(x)← R(x, y) Certain(Q2) = {}

Global Q3 : Ans(y)← R(x, y) Certain(Q3) = {(b)}

We did not use any query plan to get them, only the semantics

Algorithms for computing certain answers?

Algorithms to produce query plans that eventually access the
sources?

13

Some Remarks:

• Monotone queries: D1 ⊆ D2 ⇒ Q(D1) ⊆ Q(D2)

• Conjunctive queries with built-ins, and disjunctions thereof are
monotone Negation spoils monotonicity

• Notion of certain answer (as defined above) is not adequate
for non-monotone queries

• Monotone queries Q can be correctly answered by restriction
to the minimal legal instances

Certain(Q) =
⋂
{Q(D) | D ∈ MinLegal(G)}

• We will provide an algorithm for computing the certain answers
to monotone queries

It is based on a specification of the minimal legal instances of G
(we’ll see another use of specification of minimal legal instances)

14

Specifying Minimal Legal Instances

Example: Global system G Dom = {a, b, c, . . . }

V1(x, y) ← P (x, z), R(z, y) v1 = {(a, b)}

V2(x, y) ← P (x, y) v2 = {(a, c)}

MinLegal(G) = { {P (a, c), P (a, z), R(z, b)} | z ∈ Dom}

Specification of minimal instances: logic program Π(G)

P (x, z) ← V1(x, y), F1(x, y, z) (*)

P (x, y) ← V2(x, y)

R(z, y) ← V1(x, y), F1(x, y, z) (**)

F1(x, y, z) ← V1(x, y), dom(z), choice((x, y), z) (***)

dom(a)., dom(b)., dom(c)., . . . , V1(a, b)., V2(a, c).

Specifies global predicates in terms of source relations!

15

Inspired by inverse rules algorithm for computing certain answers

choice((x, y)), z): non-deterministically chooses a unique value
for z for each combination of values for x, y

Programs with choice operator can be transformed into (usual)
programs with stable models semantics

1-1 correspondence between stable models of Π(G) and minimal
instances

16

Rules (*) and (**) come from the same view definition, and the
functional predicate F1 is used instead of symbolic functions

Instead of using a function symbol f(x, y) for z, we make z to
take values according to the functional predicate F1

Rule (***) defines the functional predicate: picking values from
V1,Dom makes the rule safe

F1 is a functional predicate, whose functionality on the second
argument is imposed by the choice operator

(Giannotti, Pedreschi, Sacca, Zaniolo; DOOD 91)

The choice operator has to be defined, with something like this:

... ←− V1(x, y), dom(z), chosenv1z (x, y, z)

chosenv1z (x, y, z) ←− V1(x, y), dom(z), not diffchoicev1z (x, y, z)

diffchoicev1z (x, y, z) ←− chosenv1z (x, y, U), dom(z), U 6= z

17

Normal program with recursion via negation, not stratified; se-
veral stable models, due to the different possible choices:

Mb = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice
1
(a, b, a),

chosen1(a, b, b), diffChoice1
(a, b, c), F1(a, b, b), R(b, b),

P (a, b)}

Ma = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), chosen1(a, b, a),
diffChoice

1
(a, b, b), diffChoice

1
(a, b, c), F1(a, b, a),

R(a, b), P (a, a)}

Mc = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice
1
(a, b, a),

diffChoice
1
(a, b, b), chosen1(a, b, c), F1(a, b, c), R(c, b)} · · ·

1-1 correspondence between stable models and minimal instances

18

Remarks:

• In the general case, it holds:

MinLegal(G) ⊆ StableMod(Π(G)) ⊆ Legal(G)

• In consequence, the program can be used to compute the
certain answers to monotone queries

More general than any other algorithm for LAV and open sources

• The program can be refined to compute all and only the
minimal legal instances

Refinement not relevant to compute certain answers to monoto-
ne queries

• The program can be adapted in order to deal with combina-
tions of open, closed and clopen sources

Cf. Bertossi, L. and Bravo, L. “Consistent Query Answers in Virtual Data Inte-

gration Systems”. Springer LNCS 3300, 2004, pp. 42-83.

19

Now, if we have a global query, say Q2 : Ans(x)← R(x, y)

Combined program Π′ := Π(G) ∪ {Ans(x)← R(x, y)}

Evaluate Π′ under the skeptical stable model semantics

It makes true what is true of all stable models

That is, the certain answers are those in the intersection of
the extensions of the Ans predicate on all stable models

Certain(Q2) =
⋂
{Ans(M) | M is a stable model of Π′}

The same program Π(G) can be used with all the queries

Systems like DLV can be used for program evaluation

For a query only the portion of program Π(G) that is relevant
can be built and used

20

Data Integration and Consistency

Still many scientific and technical issues in virtual data integra-
tion (among others):

Uncertain data

Quality data, preferences, provenance, etc.

Inconsistent data

Consistency: Two sources may be individually consistent, but
taken together, possibly not

E.g. Same ID number may be assigned to different people in
different sources

Existing mediated integration systems (MISs) offer almost no
support for consistency handling

(Even commercial DBMSs for stand alone databases offer limited
general purpose support)

21

Mediated systems have no global IC maintenance mechanism

No guarantee that global ICs hold

In the virtual approach to data integration, one usually assumes
that certain ICs hold at the global level

A possible approach: Consistent Query Answering!

Do not try to enforce the consistency of the data “contai-
ned” in the integration system

Better deal with the problem at query time

When a query is are posed to the system, retrieve only those
answers from the global database that are “consistent with”
the global ICs

Obtain semantically correct answers on-the-fly!

Cf. Bertossi, L. “Consistent Query Answering in Databases”. ACM Sigmod Re-

cord, June 2006, 35(2):68-76.

22

DBMS

Global Query (SQL):

 SELECT ...

 FROM ...

 WHERE ...

 CONSISTENT WITH

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query

Plan

ENHANCED

MEDIATOR

global

ICs

23

Obviously, this requires some precisions and formalizations

What is a consistent answer to a query?

Consistency or IC satisfaction applies to the whole DB

However, most likely most of the data in DB is still “con-
sistent”

When DB is queried, we want only the “consistent ans-
wers”, a local notion ...

We need a precise definition of consistent answer to a query
in an inconsistent DB

We need to develop mechanisms for computing consistent
answers, hopefully querying the only available, possibly in-
consistent DB

24

Example: System G1 with sources

V1(x, y) ← R(x, y), v1 = {(a, b), (c, d)}

V2(x, y) ← R(x, y), v2 = {(c, a), (e, d)}

D = {R(a, b), R(c, d), R(c, a), R(e, d)} and its supersets are the
legal instances

Global query Q: R(x, y)?

Certain(Q) = {(a, b), (c, d), (c, a), (e, d)}

What if we had a global functional dependency R : X → Y ?

Global FD not satisfied by D, nor by its supersets

Only (a, b), (e, d) should be consistent answers

25

A Formalization of- and An Algorithm for Consistent Answers:

Specify the minimal legal instances of the system

For that use the refined program mentioned above

Why?: Minimal legal instances do not contain unnecessary
information; that could, unnecessarily, violate global ICs

Minimal instances could violate the global ICs

Specify the “repairs” of the minimal instances

Logic programs can be used to specify them

A repair of an instance D wrt a set IC of ICs is an instance
D′ that satisfies IC and minimally differs from D (under
set inclusion)

The consistent answers to a global query wrt IC are those
obtained from all the repairs wrt IC of all the minimal legal
instances

26

Example: (cont.) For G1:

The only minimal legal instance violates the FD R : X → Y

D = {R(a, b), R(c, d), R(c, a), R(e, d)}

Two repairs wrt FD:

D1 = {R(a, b), R(c, d), R(e, d)}

D2 = {R(a, b), R(c, a), R(e, d)}

Consistent answers to query Q: R(x, y)?

Only {(a, b), (e, d)}

Those that are answers to original query in every repair!

Here we proceeded semantically ...

Computation?

27

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

Combine in one single program the programs that specify:

The minimal legal instances

The repairs of minimal legal instances wrt the global ICs

The global query to be consistently answered (as before)

28

Example: (cont.) G1

V1(x, y) ← R(x, y), v1 = {(a, b), (c, d)}

V2(x, y) ← R(x, y), v2 = {(c, a), (e, d)}

And global FD R : X → Y

Query: Ans(x, y)←R(x, y)

The three layers of the combined program follow

First Layer: Spec. minimal legal instances

Facts: V1(a, b). V1(c, d). V2(c, a). V2(e, d).

R(x, y) ←− V1(x, y)

R(x, y) ←− V2(x, y)

29

Second Layer: Spec. Repairs of Minimal Instances

R(x, y, f) ∨ R(x, z, f) ←− R(x, y), R(x, z), y 6= z

R(x, y, s) ←− R(x, y), not R(x, y, f)

Intended semantics of annotations:

f : Made false, deleted from database

s : Stays in the stable model (repair)

We have disjunctive programs with stable model semantics

Third Layer: Spec. of Global Query

Ans(x, y) ←− R(x, y, s)

The program composed by the three layers is run under the skep-
tical stable model semantics of disjunctive programs

30

Example: System G3 with

V1(x) ←− P (x, y) v1 = {(a)}

V2(x, y) ←− P (x, y) v2 = {(a, c)}

IC : ∀x∀y(P (x, y)→ P (y, x))

Only minimal instance: {P (a, c)} (inconsistent)

31

First Layer: The refined program for minimal instances

dom(a). dom(c). ... V1(a). V2(a, c).

P (x, y) ←− P (x, y, v1)

P (x, y) ←− P (x, y, to)

P (x, y, nv1) ←− P (x, y, to)

addV1(x) ←− V1(x), not auxV1(x)

auxV1(x) ←− P (x, z,nv1)

fz (x, z) ←− addV1(x), dom(z), chosenv1z (x, z)

chosenv1z (x, z) ←− addV1(x), dom(z), not diffchoicev1z (x, z)

diffchoicev1z (x, z) ←− chosenv1z (x, U), dom(z), U 6= z

P (x, z, v1) ←− addV1(x), fz (x, z)

P (x, y, to) ←− V2(x, y)

(atoms in red are the input for next layer)

32

Second Layer: The program that specifies the repairs

P (x, y, f) ∨ P (y, x, t) ←− P (x, y), not P (y, x)

P (x, y, s) ←− P (x, y, t)

P (x, y, s) ←− P (x, y), not P (x, y, f)

Disjunctive rules capture repair process (the head) given an IC
violation (the body)

Annotation t used for tuple insertion

Atoms P (x, y, s) feed the next layer

Third Layer: A query, e.g.

Ans(x) ←− P (x, y, s)

33

Specifying Metadata for a LAV MIS

XML Schema

Validator

Berkeley DB XML

XMLContainer XQilla
Metadata

Parser

DLVDB

DB1

User Query
Extract Relevant

Information

Combine with

Logic Program

Program for

Minimal Instances

ODBC ODBC ODBC

DB2 DB3

Architecture of VISS

34

The mediator requires information about:

Participating sources, their schemas, and

How they relate to the global schema

This metadata has to be represented at the mediator level, con-
sidering the following issues:

Sources have possibly very different schemas

They will differ in terms of predicate names, names and
number of attributes, data types, etc.

As a whole, this is unstructured (meta)data

Mediators might want to easily and seamlessly share meta-
data

35

We may want a vendor-independent representation

So that the metadata can be easily processed by any DBMS
that the mediator may want to use (if any)

Commercial DBMSs differ in the way the capture, store,
and provide access to metadata

Mappings are also metadata, that has to be represented

Keeping track of their syntactic structure and subformulas
is crucial (e.g. to build inverse rules)

Particularly important under LAV

On this basis, we use a combination of

XML (in native form)

RuleML, actually also a standardized XML representation

XQuery, to query the former

36

Example: Two sources, AnimalKingdom and AnimalHabitat,
with the following relations, resp.

V1 Name Class Food

dolphin mammal fish
camel mammal plant
shark fish fish
frog amphibian insect

nightingale bird insect

V2 Name Habitat

dolphin ocean
camel desert
frog wetlands

Global schema G: Animal(Name, Class, Food),Vertebrate(Name),
Habitat(Name, Habitat)

V1 and V2 are defined as a views over G:

V1 (Name,Class ,Food) ← Animal(Name,Class ,Food),

Vertebrate(Name)

V2 (Name,Habitat) ← Animal(Name,Class ,Food),

Habitat(Name,Habitat)

37

In an XML document we represent database schemas:

Source names

DBMS at each source

Database names at each source

Access information for each DB

Relation names and their schemas at each source

Global predicates and their schemas

38

<V i r I n t>
<Schema>

<Loca l>
<Source name=”animalk ingdom”>

<Type>s q l e x p r e s s</Type>
<Hostname>animalk ingdom</Hostname>
<Databasename>animalk ingdom</Databasename>
<User id>t e s t</Use r id>
<Password>t e s t</Password>
<Atom>

<Rel>V1</Rel><Var>Name</Var><Var>Class</Var><Var>Food</Var>
</Atom>

</Source>
<Source name=”an ima l h a b i t a t”>

<Type>mysql</Type>
<Hostname>an ima l h ab i t a t</Hostname>
<Databasename>an ima l h ab i t a t</Databasename>
<User id>t e s t 1</Use r id>
<Password>t e s t 1</Password>
<Atom>

<Rel>V2</Rel><Var>Name</Var><Var>Habi ta t</Var>
</Atom>

</Source>
</Loca l>
<Globa l>

<Atom>
<Rel>Animal</Rel><Var>Name</Var><Var>Class</Var><Var>Food</Var>

</Atom>
<Atom>

<Rel>Habi ta t</Rel><Var>Name</Var><Var>Habi ta t</Var>
</Atom>
<Atom>

<Rel>Ve r t eb ra t e</Rel><Var>Name</Var>
</Atom>

</Globa l>
</Schema>
</V i r I n t>

39

Next we have to represent the mappings

We use RuleML

It was developed for rule representation and exchange in
the context of the semantic web

It is based on XML

The right XML schemas have to be invoked

We partially used it in the specification of schemas above

We are able to specify the syntactic components of the
mapping, for further processing

They are represented as implications of heads by bodies,
etc.

40
<RuleML xmlns : r u l e=”ht tp ://www. r u l em l . org /0 .91/ xsd ”
xmlns : x s i=”ht tp ://www.w3 . org /2001/XMLSchema−i n s t a n c e ”
x s i : s chemaLocat ion=”ht tp ://www. r u l em l . org /0 .91/ xsd
f i l e :///C: / t h e s i s /VDI/ da t a l o g . xsd”>

<Asse r t>
<Imp l i e s>

<head>
<Atom>

<Rel>V1</Rel><Var>Name</Var><Var>Class</Var><Var>Food</Var>
</Atom>

</head>
<body>

<And>
<Atom>

<Rel>Animal</Rel><Var>Name</Var><Var>Class</Var><Var>Food</Var>
</Atom>
<Atom>

<Rel>Ve r t eb ra t e</Rel><Var>Name</Var>
</Atom>
</And>

</body>
</Imp l i e s>
<Imp l i e s>

<head>
<Atom>

<Rel>V2</Rel><Var>Name</Var><Var>Habi ta t</Var>
</Atom>

</head>
<body>

<And>
<Atom>

<Rel>Animal</Rel><Var>Name</Var><Var>Class</Var><Var>Food</Var>
</Atom>
<Atom>

<Rel>Habi ta t</Rel><Var>Name</Var><Var>Habi ta t</Var>
</Atom>
</And>

</body>
</Imp l i e s>

</As se r t>
</RuleML>

41

In order to compute the certain answers to a global
monotone query Q, e.g.

Ans(Name,Habitat) ← Animal(Name,Class ,Food),
Habitat(Name,Habitat)

The right fragment of the specification Π(G) of minimal
legal instances has to be built

The one relative to global predicates Animal ,Habitat

Query the XML and RuleML representations of metadata
to obtain the pieces needed

In order to identify the sources and the relations therein
that are relevant to Q

Those are the source predicates that are defined in terms
of global relations that are mentioned by Q

This is good enough: No global ICs (cf. later)

XQuery is used

42f o r $n i n c o l l e c t i o n (’ mapp ingAl i a s ’) / V i r I n t r e t u r n
<r u l e s>

{ f o r $x i n $n/RuleML/ As s e r t / Imp l i e s
where d i s t i n c t−v a l u e s ($x/body /And/Atom/Re l) =
(” Animal ” , ” Hab i t a t ”)
r e t u r n
<r u l e>
{ f o r $d i n $x r e t u r n

<head r1=’{$d/head/Atom/Re l}’>
{ f o r $v i n $x/head
where $v/Atom/Re l=$d/head/Atom/Re l
r e t u r n

concat ($d/head/Atom/Rel , ’ (’ ,
s t r i n g−j o i n ($v/Atom/Var , ’ , ’) , ’) ’)

}
</head>

}
{ f o r $b i n d i s t i n c t−v a l u e s ($x/body/And/Atom/Re l)
r e t u r n

<body r1=’{$b}’>
{ f o r $m i n $n/Schema/ G l oba l /Atom
where $m/Re l=$b
r e t u r n concat ($b , ’ (’ ,
s t r i n g−j o i n ($m/Re l / f o l l ow i n g−s i b l i n g : : Var , ’ , ’) , ’) ’)
}
</body>

}
<body r1=’’>

{ f o r $q i n d i s t i n c t−v a l u e s ($x/body /And/Atom/ Ind)
l e t $ l as xs : i n t e g e r := index−o f ($x/body/And/Atom/∗ , $q)−1
l e t $ r := $x/body /And/Atom/ Ind / p re c ed i ng−s i b l i n g : : Re l / t e x t ()
l e t $s := $n/Schema/G l oba l /Atom/Re l [t e x t ()= $r] / . . / Var [$ l]
r e t u r n
i f ($q != ’ ’) then
(concat (’ (’ , $s , ’= ’ , $q , ’) ’ , ’ , ’))
e l s e ()
}

</body>
</ru l e>
}

</r u l e s>

43

The query first identifies the source predicates that are
defined in terms of global relations Animal ,Habitat that appear
in the query

For each of them, it identifies the parts of the bodies of their
definitions, including built-ins (the last part)

The following view definitions are used later to built Π(G)

<rules xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

xsi:noNamespaceSchemaLocation=’mappingrule.xsd’>

<rule>

<head r1="V1">V1(Name, Class, Food)</head>

<body r1="Animal">Animal(Name, Class, Food)</body>

<body r1="Vertebrate">Vertebrate(Name)</body>

</rule>

<rule>

<head r1="V2">V2(Name, Habitat)</head>

<body r1="Animal">Animal(Name, Class, Food)</body>

<body r1="Habitat">Habitat(Name, Habitat)</body>

</rule>

</rules>

44

This result is used to:

Build Π(G) as required by DLV

Identify via XQuery sources that are relevant to the query

For the later appropriate data import commands are gene-
rated and added to Π(G)

DLV uses them to retrieve the facts directly from the data
sources via ODBC

45

#import (animalk ingdom , ” t e s t ” , ” t e s t ” , ”SELECT ∗ FROM V1” , V1 ,
type : Q CONST, Q CONST, Q CONST) .

#import (a n ima l h ab i t a t , ” r o o t ” , ” r o o t ” , ”SELECT ∗ FROM V2” , V2 ,
type : Q CONST, Q CONST) .

Animal (Name , C las s , Food) :− V1(Name , C las s , Food) .
Animal (Name , C las s , Food) :− V2(Name , Hab i t a t) ,

f 1 (Name , Hab i ta t , C l a s s) , f 2 (Name , Hab i ta t , Food) .
f 1 (Name , Hab i ta t , C l a s s) :− V2(Name , Hab i t a t) , dom(C l a s s) ,

chosen1 (Name, Hab i ta t , C l a s s) .
chosen1 (Name , Hab i ta t , C l a s s) :− V2(Name , Hab i t a t) , dom(C l a s s) ,

not d i f f c h o i c e 1 (Name , Hab i ta t , C l a s s) .
d i f f c h o i c e 1 (Name , Hab i ta t , C l a s s) :− chosen1 (Name, Hab i ta t , U) ,

dom(C l a s s) , U != C l a s s .
f 2 (Name , Hab i ta t , Food) :− V2(Name , Hab i t a t) , dom(Food) ,

chosen2 (Name, Hab i ta t , Food) .
chosen2 (Name , Hab i ta t , Food) :− V2(Name , Hab i t a t) , dom(Food) ,

not d i f f c h o i c e 2 (Name , Hab i ta t , Food) .
d i f f c h o i c e 2 (Name , Hab i ta t , Food) :− chosen2 (Name, Hab i ta t , U) ,

dom(Food) , U != Food .

Hab i t a t (Name , Hab i t a t) :− V2(Name, Hab i t a t) .

Run with DLV:

dl.exe -silent -cautious test2.dlv

dolphin, ocean

camel, desert

frog, wetlands

46

With Global ICs

If there are global ICs:

Global ICs can also be represented with RuleML

Dependencies between global predicates may appear

This may add new relevant sources for a global query

Those that become indirectly relevant to the query

Inconsistencies may arise

In this case a relevant fragment of the refined version of
Π(G) has to be used (as a first layer)

Repair programs have to be built on top

Everything is run with DLV as before

47Conclusions

We have presented a general methodology for computing
certain answers to monotone relational queries from a vir-
tual data integration system under the LAV approach

It is based on a declarative specification in answer set pro-
gramming of the (minimal) legal instances of the system

Programs like this can be evaluated using, e.g. DLV

In order to enforce -at query answering time- global ICs,
the repairs of the minimal legal instances are specified by
means of answer set programs

The combined program is queried

Evaluation can be highly optimized by means of “magic
sets” for ASP cf. (Caniupan & Bertossi; SUM 07)

XML and RuleML techniques can be used to represent, co-
llect and compose the integration system’s metainforma-
tion; to provide an input to DLV

