
Datalog Extensions as Ontology
Representation Languages and their

Applications

Leopoldo Bertossi
�

Carleton University
School of Computer Science

Ottawa, Canada

�: Faculty Fellow of the IBM Center for Advanced Studies

2
A Start: Metadata in Data Management

• Metadata (MD) is data about data

An upper layer that gives information about a lower layer

For example, about the data in relational tables

• We already know about MD in relational DBs: schemas, data types
and domains, integrity constraints (ICs)

• If ICs are satisfied by the DB (as expected, but not always true), they
provide synthetic, higher-level knowledge

• ICs capture semantics (meaning) of data [3, 11]

• By filtering out inadmissible (inconsistent) instances, the spectrum
of possible instances is narrowed down

By doing so, better targeting the intended meaning

• Decreasing uncertainty

3relational schemarelational schema
Student(Name, Number)

possible worlds
(i)

+ ICs

(DB instances)

john NULL
john
john

100
200

+ ∀xy(Student(x, y) → y �= NULL) + ∀xyz(Student(x, y) ∧ Student(x, z) → y = z)

(capturing semantics via ICs, eliminating possible worlds)

• ICs tell us something about the stored data, still not much though

• ICs can be used, e.g. at query answering time

For semantic query optimization

• ICs are also useful for interoperability purposes

When data systems have to interact and possibly be integrated

They tell us something about what’s stored in the data source

4

Why not going beyond in terms of MD?

What else do we know or have after having created a relational DB?

5

Recovering ER models as Metadata

• When creating a database, we usually start from en entity-relationship
(ER) model

• An ER model represents an external, data-related reality

For example, a model of a business environment

The model is given as an ER diagram (UML diagram)

• The ER model is closer to the reality than the relational DB to be
(which is also a model)

• The ER model is usually forgotten after the DB is created

• The ER model could be used as metadata!

6

• When creating a relational database, we usually start from an outside
reality (OR), e.g. a company, a university, etc.

We want to model that OR, i.e. produce an abstract,
simplified description or representation of OR (leaving aside non-
relevant, contingent aspects and details)

• A model can be an ER model, in terms of entities and relationships
between them

OR

Student Takes Course[2,8]

StNum CCode Level
Character

ER Model

(*)

7

• For the model to be a good model of OR, it must have a semantics or
meaning that corresponds to OR

... and keeps the correspondence (*) in place (semantically correct)

• That is why we impose in the model some semantic constraints, like
those in red in it

• A student must take between 2 and 8 courses

• The course code is a key for the entity: If two objects in Course
coincide in their values for CCode, then their other attribute values
must coincide too

• Without those constraints, there could be too many possible ORs that
conform to the ER model

The model becomes too ambiguous or uncertain

8

• Imposing semantic constraints eliminates unintended ORs

... by narrowing down meaning and filtering out undesirable ORs
(other than the intended one)

We want the ER model to be as close as possible to the initial OR

• The usual next step is producing a relational model from the ER
model

OR

Student Takes Course[2,8]

StNum CCode Level
Character

ER Model

(*)

(**)

Relational Schema: Student(StNum,Address), Course(CCode,Level,MaxReg),
Takes(StNum,CCode,Character) + ICs

Relational Model

• The relational model is also a model of OR

9

• Now a logical model that uses the languages of predicate logic and
set theory

• The relational ICs become part of the model, and are also semantic
constraints

Some of them come from the original ER model with its semantics
constraints

• As mentioned above, the ER model may be discarded (or not used)
after the relational DB is created and populated

But the ER model contains much semantic information

It could be put to good use: It could become metadata

A semantic layer -that can be used with the DB- and is closer to OR
and what the user understands

10

How to combine a diagrammatic model with a logical model?

How to realize the integration?

So that a computer system can take advantage of the combination ...

We could borrow languages that have been designed for- or applied to
the Semantic Web (SW) initiative [2, 16, 12]

Some of those languages are being used to express ontologies as
metadata for data sources

11

ER Models as Ontologies and OBDA

Logical languages to express metadata can interact with the logical data
model (database)

Being the ER model a diagrammatic model, it can be reconstructed as
a symbolic and logic-based ontology

In general, an ontology is a (logical) description of a set of concepts and
their relationships [9]

The ontology becomes metadata, now an explicit and formal ER model

The ontology (ex ER model) -being closer to the user or business reality-
can be used to query the DB

Querying data sources through ontologies is an active research area

OBDA: Ontology-based data access [14]

12

Ontology

translation
ER model

data

mappings

user

query

query

? ER model is replaced by
(reconstructed as) a symbolic,
logical ontology

For example, for the following
entities/relationship

Employee EmployeeManage
bossOf

(0,N)

reportsTo

(0,1)

Introduce basic predicates for the ontology:

• Unary predicates for concepts: Employee(·)
• Binary predicates for roles: BossOf (·, ·), ReportsTo(·, ·)

Symbolic statements go into the ontology

E.g. to capture the (0, 1) constraint on the ER’s reportTo: “Every
employee reports to at most one employee” :

13

∀x(Employee(x)→ ∃≤1y(Employee(y) ∧ ReportsTo(x, y))1

A symbolic, machine-processable sentence ...

Back to OBDA ...

Query language is the language of
the ontology

Data stay underneath

Ontology

translation
ER model

data

mappings

user

query

query

?

Ontology queries are internally “translated” into DB queries

For that, use the mappings between the ontology and the underlying
database (data source)

1I.e., ∀x(Employee(x)→∀x∀y1y2((Employee(y1)∧ReportsTo(x, y1)∧Employee(y2)∧
ReportsTo(x, y2)) → y1 = y2). If the ER constraint were (1, 1), it would be: ∀x(Employee(x)→
∃y(Employee(y) ∧ ReportsTo(x, y)) ∧∀x∀y1y2((Employee(y1) ∧ ReportsTo(x, y1) ∧
Employee(y2) ∧ ReportsTo(x, y2)) → y1 = y2)

14

Just for the gist:

The link between AdvCourse

and Course is an IS-A link

As an ontology written in
Description Logic (DL)

Entities become DL-concepts; ER
links become DL-roles (binary
predicates)

DL is at the basis of SW
languages, such as OWL

(� is⊆ or→; � is ∩ or ∧; − denotes the

inverse role (predicate); original constraints in red)

Teaching Professor

Student

GradStudent

Course

AdvCourse

Enrolling

TeachOf

(1,1)

TaughtBy

(1,inf)

EnrOf

(3,6)

EnrIn

(10,50)

Degree (string)

An ER Model

Teaching � ∀TeachOf .Course � ∃=1TeachOf �
∀TaughtBy .Professor � ∃=1TaughtBy

Enrolling � ∀EnrIn.Course � ∃=1EnrIn �
∀EnrOf .Student � ∃=1EnrOf

Course � ∀TeachOf −.Teaching � ∃=1TeachOf − �
∀EnrIn−.Enrolling � ∃≥10EnrIn− � ∃≤50EnrIn−

AdvCourse � Course

Professor � ∀TaughtBy−.Teaching

Student � ∀EnrOf −.Enrolling � ∃≥3EnrOf − � ∃≤6EnrOf −

GradStudent � Student � ∀Degree.String � ∃=1Degree

15

The mappings are between unary and binary predicates in the ontology
and database predicates (tables), which can be of any arity

The restricted syntax of DL makes automated reasoning feasible,
and sometimes, also efficient

Notice that full classical predicate logic of which (most of the variants
of) DL is a (are) fragment(s) is provably undecidable

The DL ontology above could be written in OWL

(Above, ER constraints captured in red in the ontology)

By reasoning we can infer that constraints that apply to Course also
apply to AdvCourse

And less direct logical consequences from the ontology

16

Ontologies can be more expressive than ER models

We could start directly with/from an ontology (not necessary coming
from an ER model)

ontology

data mappings

queries/answers

user

captures business
view/model of data

low-level data

Their logic-based languages have precise syntax and semantics

The ontology can be used to capture more semantics

... in declarative, precise, and executable terms ...

It is possible to do automated reasoning from those ontologies

17

Via extra logical conditions
(constraints) unintended
possible worlds that make
the ontology true (satisfy
the ontology) can be
filtered out (cf. page 3)

+ t i t

outside reality (ER Model)
ontology
(knowledge base)

+ constraints

y (ER Model) (knowledge base)

X X
capturing semantics by narrowing
down set of possible worlds

alternative worlds
(that make the ontology true)

This ontology-based approach enables conceptually simpler and more
flexible integration of data management with higher-level reasoning
systems

Those ontologies can be useful for interoperability and integration
purposes [15]

18

The Virtual Data Integration Connection

Other data sources could be
added under an ontology

Integrating data sources through
the same ontology

Data source integration is a crucial
problem in business applications,
bioinformatics, etc.

A classical virtual approach to data
integration is via a mediator [17]

SW system offering DB-like
schema interface

ontology

data mappings

data sources

data sources

mediator

19

User queries the mediator, and data stay at the sources

Mappings allow meadiator to send ad hoc queries to sources

Example: Want to virtually integrate CU and OU DBs

Sources: Carleton U. Ottawa U.

CUstudents Number Name OUstudents Number Name

101 john 103 claire

102 mary 101 peter

SpecialCU Number Field SpecialOU Number Field

101 alg 101 db

102 ai

Single global relation schema at mediator:
Students(Number ,Name,Univ ,Field)

User queries in terms of Students

Mappings between the source schemas and the mediated schema?

20

The mappings above are stored at- and managed by the mediator

The logical part (the non-procedural components) of the mediator could
be conceived as an ontology

A logical schema mapping: (uses two Datalog rules for view definitions)

CUstudents(x, y), SpecialCU (x, z)→ Students(x, y, ‘cu’, z)

OUstudents(x, y), SpecialOU (x, z)→ Students(x, y, ‘ou’, z)

Students becomes a view defined as a disjunction of two conjunctive
queries

Global relation as a view of source relations (not the only possibility)

(Can be put as a view defined in relational calculus:

∀xyuz[(CUstudents(x, y) ∧ SpecialCU (x, z) ∧ u = ‘cu’) ∨
(OUstudents(x, y)∧ SpecialOU (x, z)∧ u = ‘ou’)→ Students(x, y, u, z)]

21

What Languages for ODBA?

• We saw that dialects of DL could be such ontological languages

• Something closer to database practice?

• Datalog has been around for some years in the DB community

As a query and view definition language for relational DBs

As opposed to relational algebra/calculus and older versions of SQL,
Datalog provides recursion

Ancestor(x, y) ← Parent(x, y)

Ancestor(x, z) ← Ancestor(x, y),Parent(y, z)

Parent A1 A2

juan pablo

adam cain
adam abel

eve cain
pablo luis

• Datalog has many nice properties and implementations, but also
limited expressive power

22

• Can we extend Datalog to make it more expressive while keeping
most of its nice properties?

23

Datalog± as an Ontological Framework

• Datalog± is a family of extensions of classic Datalog, with new kinds
of rules and constraints [5, 8]

• Its languages allow to represent ontological axioms and integrity
constraints that cannot be expressed in Datalog

• The idea is to extend Datalog with new constructs to gain
expressive power

• While trying to keep the good properties of Datalog:

−→ declarativity, clear logical semantics,
effectiveness & efficiency

(as extensions of whatever available for Datalog)

24

Most prominent new ingredients: (the “+” in Datalog±)

• Rules in Datalog± admit existentially quantified variables:

∃xP (x, y) ← R(y, z)

Can be seen as tuple-generating dependencies (TGDs)

• Negative Constraints (NCs): (in particular, denial
constraints)

⊥ ← P (x, y), R(y, z)

• Equality generating dependencies (EGDs):

y = z ← P (x, y), P (x, z)

In this case, a key constraint (KC)

25

Example: An incomplete EDB D of employers and employees

• Impose on D the TGD (usually as an inclusion dependency):

“every manager is an employee”

Expressed by a Datalog rule: employee(x)← manager(x)

• Another TGD: “every manager supervises someone”

As a rule in Datalog±: ∃y supervises(x, y)← manager(x)

• Impose IC: “employees are not employers”

As negative constraint (NC): ⊥ ← employee(x), employer(x)

• An EGD: “every employee is supervised by at most one manager”

x = x′ ← supervises(x, y), supervises(x′, y)

26

Several applications:

• Express/represent ontologies that interact with data sources

• Represent conceptual data models, and semantic layers on top of
databases

• Datalog± ontologies can represent: ER [7], Semantic Web
languages/ontologies [4, 1], UML with object classes [6], ...
(but not possible in classical Datalog!)

• Ontology-Based Data Access (OBDA)

• Query a database through the ontology

• In the language of the ontology (better understood by- and closer
to the user)

• Automatically access the underlying data sources

• Get answers through Datalog evaluation

27

• Representation of- and navigation in multidimensional data
models for data quality assessment and cleaning [13]

Properties & issues:

• The “−” in Datalog± refers to syntactic restrictions we impose on
the rules and their (syntactic) interactions

• This limits the gained expressive power

• We can still use Datalog± to express ER models and much more

• It can be used as an ontological language

• It captures and extends the expressive power of light-weight DLs
used for OBDA

28
• The mappings are part of the program

They do not have to point to unary/binary ontological predicates only

Predicates of arbitrary arity at the ontological level

• Seamless integration of source and ontological predicates in the
Datalog± ontology

• Datalog± can be used as a language to extend incomplete DBs

E.g. in page 25 we may have only extensional data for manager

• The syntactic restrictions ensure that query evaluation (QE) becomes
feasible and sometimes efficient

(Without them, QE under Datalog± can be undecidable/non-computable)

• Datalog± is still declarative and has a precise and clean semantics

• QE can be implemented

29

Towards Good Members of the Datalog± Family

• A Datalog± program with a new kind of rules and classical ones is
combined with an extensional database (EDB)

• EDB is considered to be incomplete, but extended through the Datalog±
programs

Generating new tuples for EDB predicates and full extensions for
intensional predicates

• Depending on the kind of rules, possibly several extensions

• We may want to materialize the extension(s) or keep them virtual

And query them ...

30

D extensions via rules

Extensions are DBs that extend
the EDB and satisfy the rules as
classical logical formulas

Whatever is true in all extensions,
i.e. certain

The chase (of the rules on the EDB) generates an instance that extends
the EDB and “represents” the whole class of extensions

It turns out that what is certain is what is true in (the extension produced
by) the chase

31

Example: Incomplete EDB D = {person(John)}
TGDs applied forward (as usual in Datalog), with value invention for
existentials

This is the main part of the “chase procedure”

Set Σ of Datalog[∃] rules:
∃x father(x, y)← person(y)

person(x)← father(x, y)

The chase is a procedure that applies the TGDs in a forward manner,
generating new tuples

chase(D,Σ) = {father (z1, John), person(z1),
father (z2, z1), person(z2),

father (z3, z2), person(z3), ...}
(each zi is a labeled null value)

32

• Chase may create non-terminating loops

So, the chase may not terminate

Query answering may become undecidable

• Related to (but not necessarily implied by) the fact that ...

The chase procedure for Datalog[∃] may not terminate, i.e. it
produces an infinite extension

Finite or infinite, we may still query it ...

• Query answering under Datalog[∃] is indeed undecidable

• Even with infinite chase, things are not always hopeless ...

33

• Idea: impose syntactic restrictions of Datalog± programs

To guarantee decidability of query answering

And hopefully efficient query answering ...

• We may reserve the term Datalog± for the “good” extensions of
Datalog

Each of them (at least the TGD part) can be seen as a syntactic
fragment of Datalog[∃] (the extension of Datalog with unrestricted
existential rules)

34

D chase(D,)

D chase(D,)

Q

• In first case, QA is obviously decidable

If the chase can be built in PTIME (in data), QA too

• In second case, QA may be (and sometimes is) undecidable

But also possibly decidable depending on the program (and the class
of queries, but we assume them conjunctive)

• Good cases of programs that ensure decidability of QA?

And efficient QA?

35

• Well-behaved classes of Datalog[∃] programs have been considered
for the second (infinite) case

• Decidability of QA guaranteed by different syntactic conditions on the
set of rules

• The idea is that, depending on the programs, QA can be correctly
done by querying only a bounded, initial portion of the chase

D chase(D,)

Q

bounded depth

query this portion Hopefully a “short
portion”

Two good cases:

36

(A) Bound independent from D (but dependent onQ,Σ):

BDDP: bounded derivation
depth property

D chase(D,)

Q

depth independent from D

• In this case, FO query rewriting is possible (more on this below)

Rewriting via rules in the program

• Instead of posing the query to the (infinite) chase, rewrite the query
Q into a new FO queryQ′ (independently from D)

• Query D withQ′ as usual

• Definitely in PTIME in data

37

D chase(D,)

Q ?
X

Q’
rewriting

(B) Bound depends polynomially on (size of) D

• (A) is a particular case of (B)

• To achieve (B) (or (A)), different syntactic restrictions on Datalog[∃]
programs

• Identified various classes of Datalog± programs: linear, guarded,
sticky, weakly-sticky, ...

• For some, even (A) is possible, e.g. sticky Datalog± programs

38
Sticky Datalog±

• Sticky programs enjoy BDDP (and then also FO-rewriting)

• The chase has stickiness property, which syntactically depends on
the whole program

Example: A program with the stickiness property

(repeated/join variables in a body
stick in the chase)

A non- sticky program:

39

• In sticky programs, join variables recursively stick to their
consequences

• Stickiness can be checked syntactically, through a two-step marking
procedure on a set of TGDs Σ

Example: ∃x, y, z emp(w, x, y, z) ← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v, w, x, y)

∃z external(z, y, x) ← runs(w, x), in area(x, y)

1. Preliminary step: For each σ ∈ Σ and variable x ∈ body(σ), if
there is an atom a ∈ head(σ) such that x does not appear in a,
mark each occurrence of x in body(σ)

∃x, y, z emp(w, x, y, z) ← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v, w, x, y)

∃z external(z, y, x) ← runs(w, x), in area(x, y)

40
σ1: ∃x, y, z emp(w, x, y, z) ← dept(v,w)

σ2: ∃z dept(w, z), runs(w, y), in area(y, x) ← emp(v,w, x, y)

σ3: ∃z external(z, y, x) ← runs(w, x), in area(x, y)

2. Propagation step (until fixed point reached): For each σ ∈ Σ, if a
marked variable in body(σ) appears at position p, then for every
σ′ ∈ Σ (including σ), mark each occurrence of the variables in
body(σ′) that appear in head(σ′) in same position p

σ2 : ← emp[1] : v
σ1 : emp[1] ← : w
σ1 : ← dept [2] : w

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v, w, x, y)

∃z external(z, y, x)← runs(w, x), in area(x, y)

• Σ is sticky if no marked variable appears more than once in a
body(σ) This one is!

41

Revisiting FO Rewriting-Based QA in Datalog±

• Given: EDB D, a set of TGDs Σ (with BDDP), and conjunctive
queryQ (NCs and EGDs not considered here; see below)

• Construct FO rewritingQR ofQ via Σ

It holds: QR(D) = ans(Q, D,Σ) (the certain answers)

• EvaluateQR over D

• All this as long as:

• NCs hold, which can be checked separately by running associated
conjunctive queries

• EGDs do not interact with TGDs (during the chase), a separability
property, which can be syntactically checked

42

• A rewriting algorithm is proposed for Datalog± programs based on
the iteration of two steps: [10]

• Basic rewriting using the rules (resolution)

• Minimization of the query obtained from rewriting step

QR is the union of resulting conjunctive queries from iterations of the
above

43

Example: (ex. in page 39 cont.) CQ Q
q(p)← in area(p, a), external(e, a, p)

Applying the TGD:
∃z external(z, y, x)← runs(w, x), in area(x, y)

basic rewriting step returns new CQQ1: (∗: don’t care symbol)
q(p)← in area(p, a), runs(∗, p), in area(p, a)

Minimization leads to new CQQ2:

q(p)← runs(∗, p), in area(p, a)

The final result of the rewriting procedure is QR = Q∨Q2, i.e.
q(p)← in area(p, a), external(e, a, p)

q(p)← runs(∗, p), in area(p, a)

We keep the original query since external may have initial (partial) data

Resolution looks for potential additional data

44

Why Stickiness?

• Stickiness for a set of TGDs guarantees BDDP

• Stickiness guarantees backward resolution-based query rewriting
terminates

Applying resolution with a TGD without repeated marked variable, no
new variable is introduced (but only new “don’t care” symbols)

Example: Sticky set of TGDs:

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v,w, x, y)

∃z external(z, y, x)← runs(w, x), in area(x, y)

Query: q(p)← in area(p, a), external(e, a, p)

Applying last TGD: q(p)← in area(p, a), runs(∗, p), in area(p, a)

Variables are all inherited from the first query Etc.

45

Example: Modification of previous one, for non-sticky case

∃x, y, z emp(w, x, y, z)← dept(v, w)

∃z dept(w, z), runs(w, y), in area(y, x)← emp(v,w, x, y)

∃z, t external(z, y, t)← runs(w, x), in area(x, y)

(x marked and occurs twice in body of last TGD)

Same query: q(p)← in area(p, a), external(e, a, p)

Applying last TGD: q(p)← in area(p, a), runs(∗, r), in area(r, a)

Generates new, “relevant” variable r (in a join), not from the original
query

(“Do not care variables” can get values in isolation)

Weakly-sticky programs relax conditions by ensuring “loose” join vari-
ables take only finitely many values, guaranteeing scenario (B) above

46

Conclusions

• Ontologies have been used for some time in AI (KR) and the Semantic
Web

• Now they are being increasingly used in data management

In particular, in interaction with relational DBs

• Ontologies can be used to access DBs through a model that is close
to the user or application environment, e.g. business data

• They can also be used for data integration

• The ontological “schema” can be different from the DB schema

Connection established via logical mappings

• DL and Datalog± have been used for OBDA

47

• Datalog± is a family of extensions of Datalog

The latter has been around for more than two decades in the DB
community

• DL and Datalog± have been used to symbolically/logically represent
ER, UML, ..., models

• Many applications are still to be unveiled

• There are many interesting open research problems

48

References

[1] M. Arenas, G. Gottlob, A. Pieris. Expressive Languages for Querying the Semantic Web. Proc. PODS 2014, pp.
14-26.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May 2001, pp. 3443.

[3] A. Borgida and J. Mylopoulos: Data Semantics Revisited. Proc. SWDB, Springer LNCS 3372, 2004, pp. 9-26.

[4] A.Cali, G. Gottlob and Thomas Lukasiewicz: A General Datalog-Based Framework for Tractable Query Answering
over Ontologies. Journal of Web Semantics, 2012, 14:57-83.

[5] A.Cali, G. Gottlob and A. Pieris. Towards More Expressive Ontology Languages: The Query Answering Problem.
Artificial Intelligence, 2012, 193:87-128.

[6] A. Cali, G. Gottlob, G. Orsi and A. Pieris. Querying UML Class Diagrams. Proc. Foundations of Software Science and
Computational Structures. Springer LNCS 7213, 2012, pp. 1-25.

[7] A.Cali, G. Gottlob and A. Pieris. Ontological Query Answering under Expressive Entity-Relationship Schemata. Infor-
mation Systems, 2012, 37(4):320-335.

[8] A.Cali, G. Gottlob, Th. Lukasiewicz and A. Pieris. A Logical Toolbox for Ontological Reasoning. SIGMOD Record,
2011, 40(3):5-14.

[9] B. Chadrasekaran, J. Josephson and V.R. Benjamins. What are Ontologies, and Why Do We Need Them?. IEEE
Intelligent Systems, Jan/Feb. 1999, pp. 20-26.

49

[10] G. Gottlob, G. Orsi and A. Pieris. Query Rewriting and Optimization for Ontological Databases. ACM Trans. Database
Syst., 2014, 39(3):25.

[11] D. Harel and B. Rumpe. Meaningful Modeling: What’s the Semantics of “Semantics”?. IEEE Computer, 2004, 37(10):
64-72.

[12] P. Hitzler, M. Krötzsch and S. Rudolph. Foundations of Semantic Web Technologies. CRC Press, 2010.

[13] M. Milani, L. Bertossi and S. Ariyan. Extending Contexts with Ontologies for Multidimensional Data Quality Assess-
ment. Proc. 5th International Workshop on Data Engineering meets the Semantic Web (DESWeb). Data Engineering
Workshops (ICDEW), 2014, pp. 242 - 247.

[14] M. Lenzerini. Ontology-Based Data Management. Proc. AMW 2012, CEUR Proceedings, Vol. 866, pp. 12-15.

[15] A. Maedche, B. Motik, L. Stojanovic, R. Studer and R. Volz. Ontologies for Enterprise Knowledge Management. IEEE
Intelligent Systems, 2003, 18(2):26-33.

[16] N. Shadbolt, T. Berners-Lee and W. Hall. The Semantic Web Revisited. IEEE Intelligent Systems, 2006, 21(3):96-101.

[17] G. Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE Computer, 1992, 25(3):38-49.

