SSSSSSSSSSSSSSSSSSSS

Tractability and Optimization of
Shap-Score Computation for
Explainable Al

Leopoldo Bertossi

France, November 2023 www.scs.carleton.ca/~bertossi

https://people.scs.carleton.ca/~bertossi/

Explanations in Machine Learning

e Bank client e = (john, 18, plumber, 70K, harlem, .. .)

As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

e e requests a loan from a bank that uses a classifier

e The client asks Why? m

e What kind of explanation?
H OW? classifier

From what?

2/38

Explanations come in different forms

Some of them are causal explanations, some are explanation
scores a.k.a. attribution scores

They are sometimes related

E.g. actual causality leads to responsibility scores

Large part of our recent research is about the use of causality,
and score definition and computation

In data management and machine learning

Some of them (in data management or ML)

e Responsibility (in its original and generalized versions)
e The Causal Effect score

e The Shapley value (as Shap in ML)

3/38

A Score-Based Approach: Responsibility

e Causality has been developed in Al for three decades or so
e In particular: Actual Causality

e Also the quantitative notion of Responsibility: a measure of
causal contribution (the Resp-score)

e Both based on Counterfactual Interventions

e Hypothetical changes of values in a causal model to detect

other changes
“What would happen if we change ..."?

By so doing identify actual causes
e Does the deletion of the DB tuple invalidates the query?
e Does a change of this feature value leads to label “Yes"?

4/38

We have investigated actual causality and responsibility in
data management and ML-based classification

Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

Assign numbers to, e.g., database tuples or features values to
capture their causal, or, more generally, explanatory strength

They can be applied without knowing “the internals” of a
classifier Only input/output relation needed

It can be a "black box", or treated as such (a complex NN)

We have experimentally compared responsibility scores with
other local attribution scores

- Shap

- Ad hoc scores, such as for FICO data on “open-box” model
(connected logistic regressions)

5/38

e Simplified Case:

loan?
e ——— — No!

classifier

e = (john, 18, plumber, 70K, harlem,...) No
e Counterfactual versions:

= (john, 25, plumber, 70K, harlem,...) Yes

e/
e” = (john, 18, plumber, 80K, brooklyn,...) Yes
e For the gist:

1. Value for feature Age is counterfactual cause with explanatory
responsibility Resp(e, Age) = 1

2. Value change Income := 80K needs an additional, minimum
contingent change: I = {Area := brooklin}

Income := 70K is actual cause with Resp(e, Income) = ﬁ =1

6/38

The Generalized Resp Score

e For binary (two-valued) features the previous “definition”
works fine (previous example is non-binary)

e Otherwise, there may be many values for a feature that do
not change the label: original value not great explanation

Similarly for features in a potential contingency set

e Better consider average labels obtained via counterfactual
interventions

Resp, our extended version of responsibility, will be expressed
in terms of an expected valuel

lBertossi, Li, Schleich, Suciu,Vagena; SIGMOD Deem WS'20
7/38

e Below, F is the set of features, the classifier is binary, not
necessarily the features

For F € F, and entity e, F(e) is value for F in e
Label L(e) =1 is the one we want to explain

e Assume L(e) =1, feature F*: want Resp(e, F*)

In the example, F* =Salary, F*(e) =70K, and L(e) =1

e With F*(e) fixed, want to define “local” score for fixed

contingent assignment [:=w F*¢Tr CF
er"’_" = e[F = W] (entity obtained changing feature values in e

according to ', w)
I ={Location}, and w := (brooklin), a contingent (new) value for Location
e{Location}, (brooklin) _ e[Location := brooklin]

= (john, 25, plumber, 70K, brooklin, 10K, basic)

8/38

e Assume L(e"7) = L(e) =1
Contingent changes alone do not switch label, only after change for F*

Assume L(e[Location := brooklin]) = L(e) =1
Or maybe L(e™%) =1, with " = {Activity, Education},

w’ = (accountant, medium)

e For fixed €% consider entities e’ obtained additionally

changing value for F* in all possible ways
(fix values for other features)
For e[Location := brooklin] fixed, consider:

e] := e[Location := brooklin; Salary := 60K]
= elocation, (brooklin)[gajary :— 60K]), maybe with Lef) =1
Or &) := e[Location := brooklin; Salary :=80], maybe with L(e}) =0
e Fixed contingency (', w) on e as above, define its /ocal
responsibility score

Difference between original label and the expected label over
all possible e’

9/38

L(e) —E(L(e') | F(e') = F(e""), VF e (F~{F*}))
1+r]
1—E(L(e""[F* :=v]) | v € Dom(F*))

- 1+)

Resp(e, F*, T, w)

Takes into account the size of contingency I’

Assumes a probability distribution over entity population
(which becomes relevant)

F*(e) is actual cause for label 1 if, for some (I', w), (*) is
positive

F*(e) is a counterfactual cause if [= () (w is empty) and (¥*)
is positive

Counterfactual causes (as original values in €) may have different causal
strengths

Fi(e), Fj(e) could be counterfactual causes with different values for (*)

If changes on the former switch label “fewer times” than for the latter

10/38

e Pass from a local score (local for I' and associated assignment w)

_ / /y— rw N *
Resp(e, F*,T, w) := L(e)=E(L(¢') | F(e') 1+F‘ﬁe‘z), YFE(F~{F*}))

To global score, with “best” contingencies (I, w)

Resp(e, F*) :=

max Resp(e, F'*, I, w
Ty: || is min. & (*) > 0 p(, P)

In particular with I of minimum size

e Computation:

1. First find minimum-size contingency sets ['s with associated
updates w with (*) greater that 0

2. Next, find the maximum value for (*) over those pairs (I', w)

3. Starting with [= (), and iteratively increasing the cardinality
of [find a (I', w)

4. Stop increasing the cardinality, and just check if there is
(I, w') with a greater value for (*) and same cardinality

11/38

e We are usually interested in feature values with maximum
scores

Associated to minimum (cardinality) contingency sets
e Already with binary domains, Resp is intractable?

e Can we compute it faster when we have access to the
internals?

This kind of research was done for Shap (coming)

2Bertossi; TPLP'23
12/38

Coalition Games and the Shapley Value

e Usually several tuples together violate an IC or produce a
query result

e Like players in a coalition game contributing, possibly
differently, to a shared wealth-distribution function

e Apply standard measures used in game theory: the Shapley
value of a player (as a measure of its contribution)

e The Shapley value is a established measure of contribution by
players to a wealth function

e |t emerges as the only measure enjoying certain properties

e We need a game (function) ...

13/38

Set of players D, and game function G: P(D) — R
(P(D) the power set of D)

The Shapley value of player p among a set of players D:

Stapley(D.0.p) = 3~ 2P BI= R 6(5 U 1) - 0(5))
SCD\{p}

ISI'(|D] —|S| —1)! is number of permutations of D with all
players in S coming first, then p, and then all the others

Expected contribution of player p under all possible additions
of p to a partial random sequence of players followed by a

random sequence of the rest of the players
@ [3
2]ajaa
alle

+4

oPe

For each application one defines an appropriate game function

14/38

Shapley is difficult to compute

Naive approach: exponentially many counterfactual
combinations

Actually, Shapley computation is #P-hard in general

A complexity class of (possibly implicitly) computational
counting problems

Being #P-hard is evidence of difficulty: #SAT is #P-hard
Counting satisfying assignments for a propositional formula

At least as difficult as SAT

15/38

Shap Scores

e Based on the general Shapley value
e Set of players F contain features, relative to classified entity e

e We need an appropriate e-dependent game function that
maps (sub)sets of players to real numbers

e For S C F, and egs the projection of e on S:
Ge(S) = E(L(e') | €& & €s=es)
e For a feature F* € F, compute: Shap(F, Ge, F*)

Sscrvrry ST E(LE | esu e = esugrn) —E(L(e)|es = es)]

Ge(SU{F*}) Ge(S)

e Shap score has become popular (Lee & Lundberg, 2017)
e Assumes a probability distribution on entity population

16/38

Shap may end up considering exponentially many

combinations

And multiple passes through the black-box classifier

Can we do better with an open-box classifier?

.M

Exploiting its elements and internal structure?

S

Haridiy

?E

What if we have a decision tree, or a random forest, or a

Boolean circuit?

Can we compute Shap in polynomial time?

17/38

Tractability for BC-Classifiers: Big Picture

e We investigated this problem in detail®

e Tractable and intractable cases, with algorithms for the
former

Investigated good approximation algorithms
e Choosing the right abstraction (model) is crucial

e We considered Boolean-Circuit Classifiers (BCCs), i.e.
propositional formulas with (binary) output gate

e We had shown already that Shap is ®
intractable for “Monotone 2CNF" @/ \®
classifiers under the product distribution O
(at most 2 variables per clause, and positive)
CRNG©

e So, it had to be a broad and interesting
class of BCs

3Arenas, Bertossi, Barcelo, Monet; AAAI'21; JMLR'23
18 /38

Shap for Boolean-Circuit Classifiers

e Features Fie F, i=1,...,n, Dom(F;)={0,1},
ec&:={0,1}", L(e) €{0,1}

e There is also a probability distribution P on &
e For BC-classifier L: Shap(F, Ge, F*) =

DosCE\(F) W[E(L(e’le;u{m =esu(r+y) — E(L(e')|es = es)]
Depends on e and L

o SAT(L) :={€e | L(e/) =1} #SAT (L) := |SAT (L)
Counting the number of inputs that get label 1

e We established that Shap is at least as hard as model
counting for the BC:

Proposition: For the uniform distribution PY, and e € £

#SAT(L) = 21 x (L(e) — >3, Shap(F, Ge, Fi))

19/38

e When #SAT(L) is hard for a Boolean classifier L, Shap is
also hard

e Corollary: Computing Shap is #P-hard for Boolean

classifiers defined by Monotone 2DNF or Monotone 2CNF
(Provan & Ball, 1983)

e Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

20/38

Deterministic and Decomposable BCs

e A Boolean circuit over set of variables X is a DAG C with:

e Each input (source) node labeled with a variable or a constant
in {0,1}

e Other nodes labeled with a gate in {—, A, V}

e Single sink node, O, the output

e For gate g of C, C(g) is the induced ® .
subgraph containing gates on a path ®/ \® o

inCtog
Var(g) is the set of variables of C(g) g

Var(g) = {x2, x3, x4}

e C is deterministic if every V-gate g with input
gates g1, 82: C(g1)(e) # C(g2)(e), for every e

21/38

C is decomposable if every A-gate g with

input gates g1, g»: Var(gy) N Var(g) =0 ®\®\®
We concentrated on the class of deterministic @/

and decomposable Boolean circuits (dDBCs)
Shap computation in polynomial time not initially precluded

A class of BCCs that includes -via efficient (knowledge)
compilation- many interesting ones, syntactic and not ...
(more coming)

22/38

Shap for dDBCs

e Proposition: For dDBCs C, #SAT(C) can be computed in
polynomial time (= the same for Shap)

Idea: Bottom-up procedure that inductively computes
#SAT (C(g)), for each gate g of C

e To show that Shap can be computed efficiently for dDBCs, we
need a detailed analysis

e We assume the uniform distribution for the moment

e Theorem: Shap can be computed in polynomial time for
dDBCs under the uniform distribution

e It can be extended to any product distribution on {0, 1}

23/38

e Corollary: Via polynomial time transformations, under the
uniform and product distributions, Shap can be computed in
polynomial time for

e Decision trees (and random forests)
e Ordered binary decision diagrams (OBDDs)
(mx1 A =2 A=x3) V (x1 A xe) V (x2 A x3))
Compatible variable orders along full paths

Compact representation of Boolean formulas

e Sentential decision diagrams (SDDs)
Generalization of OBDDs

e Deterministic-decomposable negation normal-form (dDNNFs)
As dDBC, with negations affecting only input variables
o All the latter relevant in Knowledge Compilation

e An optimized efficient algorithm for Shap computation can be
applied to any of these
24/38

Shap for Decision Trees and ...

e Compiling binary decision trees into dDBCs

An inductive construction starting from the bottom of the DT

e Leaves of DT become constant binary gates in dDBC

By induction one can prove the resulting circuit is dDBC
Final dDBC is the compilation c(r) of root node r of DT

n7 @c(ns)
@ né H @ @
i egoeg
!)

na

=]

9,

l
Final equwalent dDBC: ¢(n7)

Computable in linear time

(o]~
Rl=)e

(]
=Y

25/38

e Beyond binary features?

Sunny Overcast Rain

e “Binarize” features e
e OutlookSunny (OS) i ot h
OutlookOvercast, OutlookRain, etc. ™ tes No ves

become propositional features

0S
1.0
,/ S . .

HH 00 Certain entities become
191 0 impossible (probability 0)
K/ \ OR e — < 0 1 1 > ><

0 HN 1 s 4y g e
1 N
N\ ETC. for 0S, 00, OR
> 0 e=(0,1,0 ,...) ok
——
for OS, OO, OR

26/38

Shap on Neural Networks

e Binary Neural Networks (BNNs) are commonly considered
black-box models

e Naively computing Shap on a BNN is bound to be complex

e Better try to compile the BNN into an open-box BC where
Shap can be computed efficiently

e We have experimented with Shap computation with a
black-box BNN and with its compilation into a dDBC*

e Even if the compilation is not entirely of polynomial time, it
may be worth performing this one-time computation

e Particularly if the target dDBC will be used multiple times, as
is the case for explanations

e We illustrate the approach by means of an example

4 Bertossi, Leon; JELIA'23
27/38

¢g(i) = sp(Wg e i+ bg)
O]

(1 if Wyei+by>0,
T —1 otherwise,

oy 9

10 9

0 4

4

iEgé///////
a =070}

e The BNN is described by means of a propositional formula,
which is further transformed and optimized into CNF

0 (=[(x3 A (22 V1)) V(22 A21)] A
(
[
(

@08 on

[(—.’153 A (—1’2 \ —1‘1)) \Y (—1‘2 A —.’L’l)] \Y
(1’3 A\ (—1‘2 Vv —xl)) Vv (—l‘g A\ —11)])) Vv

[(—1'3 A (—1’2 \ —1‘1)) \Y% (—1‘2 N —.’L’l)] A
[(:v3 A (—IQ \Y —1‘1)) \ (—1‘2 A —181)}).

In CNF:

o < (—X1 V —Xg) VAN (—Xl V —X3) VAN (—X2 V —X3)

28/38

e The CNF is transformed into an SDD 0
It succinctly represents the CNF

e The expensive compilation step

But upper-bounded by an —
exponential only in the tree-width |¥x2|ﬂx_«| (e[[elx] [x[T]
of the CNF

TW of the associated undirected graph:
an edge between variables if together in

a clause
A measure of how close it is to a tree \.\
(In example, graph is clique, TW is #vars -1 =2)

e The SDD is easily transformed \\\

into a dDBC x3
e On it Shap is computed, possibly multiple times

e With considerable efficiency gain

29/38

In our experiments, we used a BNN with 14 gates

It was compiled into a dDBC with 18,670 nodes

A one-time computation that fully replaces the BNN
e We compared Shap computation time for black-box BNN,

open-box dDBC, and black-box dDBC

Total time for computing all Shap scores with increasing
number of classification inputs

W BNN black-box
EEm dDBC black-box

10¢ dDBC open-box
E
E
8108
$10
3

102

20 10
Eni

e The uniform distribution was used

60 80 100
Bios .
(logarithmic scale)

30/38

Some Remarks

e The above results on Shap computation hold under the
uniform and product distributions

The latter imposes independence among features

e Other distributions have been considered for Shap and other
scores

The empirical and product-empirical distributions

They naturally arise when no more information available
about the distribution

e Imposing domain semantics (domain knowledge) is relevant

e Can we modify Shap definition and computation accordingly?
Or the distribution?

e Do we still have an efficient algorithm?

31/38

Some Research Directions

e Explanation scores commonly use the classifier plus a
probability distribution over the underlying entity population

Imposing or using explicit and additional domain semantics or
domain knowledge is relevant to explore

Can we modify Shap's definition and computation
accordingly?
Or the probability distribution?

e Shapley values satisfy desirable properties for general coalition
game theory

Specific properties for Explanations Scores (in Al)?

Existing scores have been criticized or under-explored in terms
of general properties

32/38

e Features (in ML and in general) may be hierarchically ordered
according to categorical dimensions

address — neighborhood — city — - - -
We may want to define and compute explanations (scores) at
different levels of abstraction

How to do this in a systematic way, possibly reusing results at
different levels?

Multi-dimensional explanations?

e There is a need for principled and sensible algorithms for
explanations and score aggregation

At the individual level as in {3) or at the group level, e.g. @
categories of instances

Hopefully guided by a declarative and flexible specifications
(about what to aggregate and at which level)

33/38

Leo's Notebook
Cross-Out

Leo's Notebook
Sticky Note
previous item

EXTRA SLIDES

The Shapley Value

Consider a set X = {Xi,...,X,} of n agents or variables or
features, and a utility function g : 2X — R, and define the Shapley
and Banzhaf values as:

oxs0) = 3 (6 U XN —gr) ()
' 7r€ﬂn

Sxe(6) =55 O (8(SULX)) ~ 8(5)))
SCX

where I, is the set of permutations of X, and 7<% is the set of

agents that come before X; in the permutation 7

35/38

More generally, given n+ 1 numbers ag, ..., a, € R, we define the
generalized value as

e(X)) =) a5 (8(SU{X;}) — £(5)) (3)

SCX

The Shapley and Banzhaf values are the special cases
ag := k!(n— k —1)! and ax := 1 respectively

36/38

The Shapley value is the unique value satisfying:
Efficiency ijl’m ox.g(Xj) = g(X)

Symmetry ¢x g(Xi) = ¢x g(Xj) whenever X;, X; are
interchangeable, meaning that
g(SU{Xi}) = g(SU{X;}) for all sets S not
containing X;, X;

Dummy ¢x ¢(Xi) = 0 if i does not contribute to the utility
function, i.e. g(SU{Xi}) = g(§) forall S

Additivity ox g+g = PX,g + PX.e

The Banzhaf value satisfies all properties above except for
efficiency

The utility function g : 2X — R is exponentially large
Various applications restrict the way the function is specified

37/38

e We can compute the expectation of the label: ¢o(L) = E(L),
which will give a value in [0, 1], say 0.4

e Now fix e*, for which we have the label L(e*), e.g. 1
We want to account for the difference between this label and
do(L): L(e*) — ¢o(L)=1—-0.4=0.6

e The question is which feature value contributes the most to
the difference L(e*) — ¢o(L)
In our experiments we usually concentrate on entities e* with
L(e*) = 1, that means “rejection”, which has to be explained

e The difference is expressed as a sum of individual
contributions, ¢;(L,e*), from the different features F; € F:

Z ¢i(L,e") = L(e") — ¢o(L)

38/38

