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Database Causality

° In data management, we need to understand and compute why certain
results are obtained or not
E.g. query answers, violation of semantic conditions, ...

e A DB system could provide explanations

e Want to model, specify and compute causality

e Our research motivated by trying to understand causality in data management
from different perspectives
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This Presentation

1. Review of causality in DBs

2. The DB repair connection

3. Exploiting the connection

4. ASPs for causality computation

5. Causality under integrity constraints
6. Causal responsibility vs. causal effect
7. Abstracting out causality in DBs

8. Newer developments

9. Extra slides: The abduction connection™
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Causality in DBs

e Causality-based explanation for a query result: (Meliou et al., VLDB 2010)

e A relational instance D and a boolean conjunctive O
e Atuple 7 € D is a counterfactual cause for Qif D = Q and D ~ {7} £ O

e Atuple 7 € D is an actual cause for Q if there is a contingency set I' C D, such that
T is a counterfactual cause for Q in D \. I

Based on (Halpern and Pearl, 2001, 2005)

e The responsibility of an actual cause 7 for O:

pD(T) L= m% II'| = size of smallest contingency set for 7

(0 otherwise)

e High responsibility tuples provide more interesting explanations
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Example: Database D with relations R and .S below
Q: dxIy(S(x) AN R(x,y) A S(y)) Here: D = O

Causes for O to be true in D:

R| A | B S| A S(az) is counterfactual cause for
as | as a4 Q: if S(asz) is removed from
a2 | ai a2 D, O is no longer an answer; its

T 1
az | as as responsibility is 1 = T3 17]

R(ay4, a3) is an actual cause for Q with contingency set { R(as, as)}

If R(as,as) is removed from D, Q is still true, but further removing R(a4, a3) makes Q
false

Responsibility of R(a4, CL3) is % = 1+Ll (its smallest contingency sets have size 1)

R(as, a3) and S(ay) are actual causes, with responsibility =
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Computational Problems

e Among many of them:

e Compute causes, and decide if a tuple is a cause
e Compute responsibilities
e Compute most responsible causes (MRC)

e Decide if a tuple has responsibility above a threshold

e Rather complete complexity picture for CQs and UCQs

e Obtained mostly via connection between: causality and database repairs and
causality and consistency-based diagnosis (B. & Salimi, TOCS'17)
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Database Repairs

Q
? |
(Arenas et al., PODS 99)
T

repairs of D
(different
repair semantics)
m m™ T m
ICs ICs
Example: Denial constraints (DCs) and inconsistent DBs (in particular, FDs)
P | A
—JzxIy(P(x) AN Q(x,y)) — Q|A|B| R|A|C
—3z3y(P(x) A R(z,y)) o alb ajc
Subset-repairs (S-repairs): (maximal consistent sub-instance)
D, :{P(e),Q(CL,b),R(CL,C)} Dy :{P(e),P(a)}
Cardinality-repairs (C-repairs): (maximum-cardinality consistent subinstance)

Dy
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The Repair/Causality Connection

e BCQ: Q:3Jx(Pi(z1)N---NP,(Zy,)) and Qistruein D
What are the causes for O to be true?
e Obtain actual causes and contingency sets from database repairs

—Q is logically equivalentto DC  x(Q): =3Z(Pi(Z1) A -+ A Pp(Zi))
e Qholdsin D iff D inconsistentwrt. x(Q)
e S-repairs associated to causes and minimal contingency sets (B&S, op. cit.)

C-repairs associated to causes, minimum contingency sets, and maximum
responsibilities
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e Fix a database tuple 7

e 7 is actual cause with subset-minimal contingency setI' < D~ (I'U {7})
is S-repair

1
14[T|

In which case, its responsibility is
e T is actual cause with min-cardinality contingency setI' < D ~ (I'U {7})
is C-repair

In which case, 7 is an MRAC

e (Conversely, repairs can be obtained from causes and their contingency sets)
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Exploiting the Connection

e (Causality problem (CP):  Computing/deciding actual causes can be done in
polynomial time in data for CQs and UCQs (Meliou et al. 2010; B&S'17)

e Most computational problems related to repairs, in particular, C-repairs, are
provably hard (data complexity) (Lopatenko & B., ICDT’07)

Techniques and results for repairs can be leveraged ~~

e Responsibility problem: Deciding if a tuple has responsibility above a certain
threshold is NP-complete for UCQs (B&S’17)

10
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o Computing p,(7) is FPNF09(m) complete for BCQs

The functional, non-decision, version of the responsibility problem

e Deciding if T is a most responsible cause is PN (09("))_complete for BCQs

11
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Answer-Set Programs for Database Repairs

e ASPs can be used to specify, compute and query S- and C-repairs

Example: (cont.) DC: x(Q) : —JxIy(S(z) A R(z,y) A S(y))
Repair-ASP contains the DB ) as set of facts (with tids in 1st attribute):

R(]-7 a4, CL3), R(27 az, a’l)a R(37 as, CL3), 5(47 &4), 5(57 a2)7 5(67 CLB)
Rules:

S/(thx?d)\/R,(t27x7y7d)\/5/(t37yad) A S(tlax)7R<t27xay)75<t3ay>7
S'(t,x,s) <+ S(t,x), not S'(t,z,d). etc.

d, s: annotation constants for “tuple deleted” and “tuple stays in repair”, resp.

12
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e A stable model M of the program determines an S-repair D’ of D:

D" := {R(¢) | R'(t,¢,s) € M} (and every S-repair obtained in this way)

An S-repair 1)1 represented by model

My = {R’(l,a4,a,g,s),R’(Q,ag,al,s),R/(S,ag,ag,s), S/(4,CL4,S), S/(5,CL2,S), S’(6,a3,d), ce

e For sets of DCs repair programs can be made normal, i.e. non-disjunctive

Maybe non-stratified, e.g. for FDs and DCs with self-joins

e Consistent query answering becomes certain QA under normal ASPs, which is
NP-complete (in data)

Matching the data complexity of consistent QA under FDs/DCs

13



L
relationalAl

e Models corresponding to C-repairs can be obtained by adding weak program
constraints (WCs)

Example: (cont.) Add WCs “— R(t j) R’(t T d)
T

Keep models that minimize the number of violations of the WCs only

Here: minimize the number of deleted tuples

e C-repairs and WCs useful for capturing most-responsible actual causes

14
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Specifying Causes with Repair-ASPs
~~> ASPs for causality/responsibility computation (B.; FolKS’18)
e Cause and responsibility computation become QA on extended repair program

Causes represented by global tuple identifiers (tids) ¢

Example: (cont) DCis x(Q) for @ : JaxIy(S(x) A R(x,y) A S(y))

Causes”? Add rules:

Ans(t) «+ R'(t,z,y,d)
Ans(t) <+ S'(t,z,d)

QA:  II Eprave Ans(t)? (true in some model of I1)

e For (maximum) responsibility we need contingency sets associated to causes

15
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e New predicate:

CauCon(t,t"): t is actual cause, and t’ is a member of the former’s
contingency set

For each pair of predicates P;, P; in DC x(Q), the rule

CauCon(t, ') + Pl(t,%;,d), Pi(t',Z;,d), t # 1/

(t' deleted together with ?)

In the example:  CauCon(t,t") < S'(t,x,d), R'(t',u,v,d) Etc.

16
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e (Contingency sets computed with extensions of ASP with set-aggregation (e.g.

DLV-Complex)
preCon(t,{t'})) <« CauCon(t,t)
preCon(t, #union(C,{t"})) <+ CauCon(t,t"), preCon(t,C), not #member(t’, O)
Con(t,C') < preCon(t,C), not aux(t,C) (maximal sets)
auz(t,C) <+ CauCon(t,t'), #member(t,O)

e Computation of a cause’s “responsibility”

pre-rho(t,n) < Ftcount{t' : CauCon(t,t')} =n
rho(t,m) <« m=x (pre-rho(t,m)+1)=1

e Responsibility of a cause t can be obtained through a query to the extended
program 11 I1¢ Eprave Tho(t, X)? (keep minimum value for X)

17



L
relationalAl

e |f WCs are added to the repair program, only maximum-responsibility causes
computed

e ASP with WCs computation has exactly required expressive power/complexity
needed for maximum-responsibility computation

18
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Causality under Integrity Constraints

e For causality, taking satisfied ICs into account becomes crucial

Instances obtained from D by tuple deletions should satisfy the ICs
e In this case, we start assuming that D = 3

e For 7 to be actual cause for Q(a), the contingency set I must satisfy:
D\T E X D~\T E Qa)
D~N(TuU{r}) X D~ (T'u{r}) = Qla

e Responsibility pQD(f)J (7) defined as before

)

(B. & Salimi; IJAR’17)

19
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Example: DB instance D and CQ, Q below

Course CName TStaff DName
Dep DName TStaff ta COMO08 John Computing
t1 Computing John t5 Math01 Kevin Math
to Philosophy Patrick te HIST02 Patrick Philosophy
ts Math Kevin tr Math08 Eli Math
ts COMO1 John Computing
(A) Q(x): Jy3z(Dep(y,x) A Course(z,x,y)) (John) € Q(D)

(a) t1 is counterfactual; (b) t4 with single minimal contingency set 'y = {tg}; (c) tg with
single minimal contingency set I's = {t4}

Under IND v: VaVy (Dep(x,y) — Ju Course(u,y,xz)) (satisfied IND)
t4 tg not actual causes anymore; t; still is counterfactual cause

(B) Q1(x): Jy Dep(y, ) (John) € Q4(D)

Under IND: same causes as (): Q =, 9

(C) Qo(x): JydzCourse(z,x,y) (John) € Os(D)
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(C) Qs (x): JydzCourse(z, x,y)
W/O 1): t4 and tg only actual causes, with 'y = {tg} and I'y = {t4}, resp.

Under IND: 14 and tg still actual causes Contingency sets?
We lose I'; and I'5
Smallest contingency set for t4: I's = {ts, 1}
Smallest contingency set for tg: T'y = {t4,%1}
o . D 1 D, 1
Responsibilities of ¢4, ts decrease: p (ta) = 3. butpgzﬁohn) (ta) = 3

t1 is still not an actual cause, but affects the responsibility of actual causes

21
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Some Results:

e Causes are preserved under logical equivalence of queries under ICs

e Without ICs, deciding causality for CQs is tractable, but their presence may
make complexity grow

There are a CQ © and an inclusion dependency 1, for which deciding causality
is NP-complete (B & S'17)

e ASPs for computation of causes and responsibilities under ICs can be produced

22
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Beyond CQs

e What about causality for Datalog queries?
For Datalog queries, cause computation can be NP-complete

Through a connection to Datalog abduction

(B. & Salimi; IJAR’17)

23
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Abstract Causes from Repair Semantics

e Given: DB D, true query O, and its associated (violated) DC x(Q)
e Different repair semantics S can be considered (not only S-repairs as above)

A repair semantics identifies a class  Rep°(D,k(Q)) of admissible and
consistent instances that “minimally” depart from D

e Now S-related causes can be defined:
t € Disan S-actual cause for Q iff (as on page 9 with S-repairs)
e |n particular, prioritized repairs (Staworko et al., AMAI'12)

There are prioritized ASPs that can be used for repair programs
(Gebser et al., TPLP’11)

24
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Attribute-Level Causes via Attribute-Based repairs

Example: Database D, query Q: Jx3dy(S(z) A R(xz,y) A S(y)), and D £~ k(Q)

R A B S A
t1 | asa | as ta | aq
to | a2 | a1 ts | a2
i3 as as te as
R A B S A
t1 a4 as tg a4
to as ai ts as
t3 as as te NULL

Repair by “minimally” changing
attribute values by NULL, as in SQL DBs

Cannot be used to satisfy a join

R A B S A
tl ag NULL t4 aq
t2 a9 aq t5 a9
t3 as NULL t6 as

(Used to hide sensitive information ina DB (B. & Li; TKDE’13))

These minimal repairs identify #s|1] (value in 1st position), t1|2], t3|2] as actual causes

Corresponding repair programs can be produced as before

(B.; FOIKS’18)
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Causal Responsibility and Causal Effect

Example: Boolean Datalog query 11 becomes true on E if there is a path between a and b

E | X |Y 5 t :
t1 | a|Db @ : 0
to | a | c | & ts T
ts | ¢ | b N yes < P(a,b)
ta | a | d ta | ® o P(z,y) <+ FE(x,y)
ts | d | e
te e b .": P(x7 y) < P(CL‘, Z>7 E(Z7 y)
) @
d ts e
E UII = yes
All tuples are actual causes: every tuple appears in a path from a to b
All the tuples have the same causal responsibility: %

Maybe counterintuitive: t; provides a direct path from a to b
26
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e We proposed an alternative notion to that of causal responsibility: causal effect
(Salimi et al., TaPP’16)

e Causal responsibility has been questioned for other reasons and from different angles

e Retake question about how answer to query O changes if 7 is deleted/inserted from/into D
An intervention on a structural causal model
In this case provided by the the lineage of the query

Example: D = {R(a,b), R(a,c), R(c,b),S(b),S(c)} BCQ Q: Jdx(R(x,y) AS(y))

True in D, with lineage instantiated on [ given by propositional formula:

Po(D) = (Xp@n N Xsw) V (Xr@eo N Xse) V (Xren AN Xswp)) (1)

X propositional variable that is true iff 7 € D

27
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e Want to quantify contribution of a tuple to a query answer
Assign probabilities, uniformly and independently, to the tuples in D
A probabilistic database (tuples outside D get probability 0)
e The X, and O become random variables
What'’s the probability that O takes a truth value when an intervention is done on D?
e Interventions of the form do(X = x): In the structural equations make X take value x
For {y,z} C{0,1}: P(Q=vy|do(X, =2x))?
Corresponding to making X - false or true

E.g. do(Xg() = 0) leaves lineage in the form: CIDQ(D)X%(b) = (XR(a.0) N Xs(0))

o The causal effectof : CEP"2(1) = E(Q | do(X, =1)) —E(Q| do(X, =0))

28
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Example: DP = {R(a,b; 5 ) R(a, c; 5) R(c, b; ) S (b; %),S(c, %)}
When X is made false, probability that the instantiated lineage above becomes true in D?:
P(Q=1]do(Xsp) =0)) = P(XRa,e) =1) X P(X5(c) =1) =

When X is made true, is probability of this lineage becoming true in DP:

X
Do (D) = Xp(ap) V (Xra,e) AN Xs(e) V XR(ep)
P(Q=1] dO(XS(b) =1)) = P(Xgp) V (Xr(a,e) N Xs(e) V XR(ep) = 1)
_ 13

E(Q|do(Xsp) =0)) = P(Q=1]|do(Xsp) =0)) =
(Q] do(Xsp) =1)) = 15
CEPC(S(b)) D=2 >0 an actual cause with this causal effect!

29
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Example: (continued) The Datalog query (here as a union of BCQs) has the lineage:

a & b
e
o 9
\ J2 ts |
\ ‘\\ (& ,/" IJI
| y / w
\ . |
ty I'. If 1g
|¥ ’\
‘~‘ |
v .'
O @
d [43 e

CEPC(t1) = 0.65625

CEPC(ty) = CEPC(ts)
CEPC(ty) = CEPC(ts)

Oo(D) = X¢, V( Xy AN Xey) V (X, A Xe, A Xyy)

— (.21875
= CEPC(tg) = 0.09375
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Newer Development: Coalition Games and Causal Contribution

Initial motivation: By how much a database tuple contributes to the inconsistency of a DB?
l.e. to the violation of ICs
Similar ideas can be applied to the contribution to query results (Livshits et al., 2020)

Usually several tuples together are necessary to violate an IC or produce a query result
Like players in a coalition game, some may contribute more than others

Apply standard measures used in game theory, economics, etc.: the Shapley value of tuple
Also based on counterfactual intervention: What would happen if we change ...?7

An “alternative” measure is the Banzhaf Index (similar ideas underneath)

We proved “Causal Effect” coincides with the Banzhaf Index

31
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Newer Development: Explanations for Classification

- e = (r1,...,x,) entity requesting a loan
e

Black-box classification model returns label L(e) = 1, i.e. rejected Why 2?2211

Le)

X3

Similarly if we have the model, e.g. a classification tree * .‘é X,

L~

Which are the features (or feature values) that contribute the most?

X,

e Again: counterfactual interventions, measures (feature scores), some based on Shapley
values

Other measures are more model-dependent, etc.

32
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EXTRA SLIDES

33
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Causality and Datalog Abduction

e An abductive explanation for an observation is a formula that, together with
the background Datalog theory 11, entails the observation

A recursive Datalog program:

ancestor(X,Y
ancestor(X,Y

) parent(X,Y)

)
parent(mary, john)

)

%
— parent(X,Z),ancestor(Z,Y)
parent(mary, john

e Datalog programs define monotone queries and actual causality can be applied
as above

34
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e A Datalog abduction problem (DAP) is of the form AP = (I, E, Hyp, Obs),

(a) 1I: set of Datalog rules
(b) E': finite set of ground atoms (extensional database)
(c) Hyp: finite set of ground atoms, the abducible atoms

(d) Obs: observation, a finite conjunction of ground atoms

ITU E U Hyp = Obs

e The abduction problem is about computing a subset-minimal A C Hyp, such
that [TU £ U A = Obs

e Relevance Problem: Deciding if h € Hyp belongs to some abductive diagnosis is
NP-complete! (in |AP|)

35
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® Datalog abduction can be represented as an actual causation problem for
Datalog queries

e Datalog abduction problem AP = (II, E, Hyp, Obs)

e Construct a causality setting:

e Partition into exogeneous and endogenous tuples, with causes and members of con-
tingency set among the latter:

D:=D*UD" D*:=FE, and D" := Hyp

e Query Datalog program II" := II U {ans < Obs}

(ans is fresh propositional atom)
e II' is seen as monotone query on D

e It holds: h € Hyp is relevant for AP iff h is an actual cause for ans wrt.
(I", D)
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e These connections enable mutual applications
In particular, new results about causality for Boolean Datalog queries

e Deciding if a tuple is a counterfactual cause, i.e. with responsibility 1, is in
PTIME (in data)

e Deciding is a tuple is an actual cause is NP-complete (in data)
(B. & Salimi; IJAR'17)

e For unions of Boolean conjunctive queries the problem is tractable in data
(B. & Salimi; TOCS'17)

e Deciding if the a tuple has has a responsibility above a given threshold is
NP-complete (in data)
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