EACULTAD DE
INGENIERA Y CIENCIAS

¢ Millennium Institute
. Foundational

M| Research on Data

Counterfactual and Score Based Explanations
in Data Management and Machine Learning:
An Answer-Set Programming Approach

Leopoldo Bertossi

Universidad Adolfo Ibaiiez
Faculty of Engineering and Sciences
Santiago, Chile
&

IMFD (Chile)

Reasoning Web School 2021

Explanations in Databases

Receives | R.1 | R.2 Store | S.1
2 51 52
53 53 53
S4 53 S4

Query: Are there pairs of official stores in a receiving
relationship?

Q: IxJy(Store(x) A Receives(x, y) A Store(y))
The query is true in D: D = Q
What tuples cause the query to be true?
How strong are they as causes?

We would expect tuples Receives(ss, s3) and Receives(ss, s3)
to be causes

Explanations for a query result ...

2/74

Explanations for violation of semantic conditions (integrity
constraints), etc.

A DB system could provide explanations
Want to model, specify and compute causality

Large part of our research motivated by trying to understand
causality in data management from different perspectives

3/74

Explanations in Machine Learning

loan?

classifier

Client requesting a loan from a bank using a black-box
classifier

e = (john, 18, plumber, 70K, harlem)
Record of values for features Name, Age, Income, ...

Which are the feature values most relevant for the
classification outcome, i.e. the label “No"?

What is the contribution of each feature value to the
outcome?

Questions like these are at the core of Explainable Al

4/74

A Score-Based Approach: Responsibility

e Causality has been developed in Al for 3 decades or so
e In particular, Actual Causality

e Also the quantitative notion of Responsibility: a measure of
causal contribution

e Both based on Counterfactual Interventions

e Hypothetical changes of values in a causal model to detect
other changes: “What would happen if we change ...”?
By so doing identify actual causes

e Do changes of feature values make the label change to “Yes”?

e We have investigated causality and responsibility in data
management and classification

e Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

5/74

There are other explanation scores

Also called “attribution scores”

Some of them have been applied in data management and
machine learning

The “causal effect” score
The Shapley value
We have done research on them too

We will present them

We also want to specify counterfactual interventions
Reason about them, and explanations

Compute responsibility scores from the specifications

6/74

This Tutorial

Review of causality in DBs

The DB repair connection

ASPs for causality computation

Causality under integrity constraints

Causal responsibility vs. causal effect

Shapley value in DBs

Responsibility of explanations for classification

Shapley value of explanations for classification

© 0N o oW

Counterfactual Intervention Programs for classification

=
©

Final remarks

Companion paper: L. Bertossi. “Score-Based Explanations in Data Management and
Machine Learning: An Answer-Set Programming Approach to Counterfactual
Analysis”. Posted as Corr arXiv Paper 2106.10562, 2021.

7/74

Causality in Databases

8/74

Causality in DBs

e Causality-based explanation for a query result: (Meliou et al.,
VLDB 2010)
e A relational instance D and a boolean conjunctive Q
e A tuple 7 € D is a counterfactual cause for Q if D= Q and
D~{r} £ Q
e A tuple 7 € D is an actual cause for Q if there is a

contingency set [C D, such that 7 is a counterfactual cause

f in D~ T
or Qin D~ Based on (Halpern and Pearl, 2001, 2005)

e The responsibility of an actual cause 7 for Q:

pD(T) = ‘F‘%, ‘r‘ = size of smallest contingency set for T

(0 otherwise)
e High responsibility tuples provide more interesting
explanations
Based on (Chockler and Halpern, 2004)

9/74

Example

e Database D with relations R and S below

Q: Ix3y(S(x) AR(x,y) ANS(y)) Here: D = Q
R|A | B S| A
. as4 as aa
e Causes for Q to be true in D? 2 | a 2
e S(a3) is counterfactual cause for Q: a | a &

If S(a3) is removed from D, Q is no longer an answer

e lts responsibility is 1= %\W

e R(as, a3) is an actual cause for Q with contingency set

{R(a3,a3)}

If R(as3,a3) is removed from D, Q is still true, but further
removing R(as, a3) makes Q false

e Responsibility of R(as, a3) is 3 = ﬁ
Its smallest contingency sets have size 1

e R(a3,a3) and S(as) are actual causes, with responsibility 3

10/74

Computational Problems

e Among many of them:

e Compute causes
Decide if a tuple is a cause

Compute responsibilities

e Compute most responsible causes (MRC)

Decide if a tuple has responsibility above a threshold

e Rather complete complexity picture for CQs and UCQs

e Obtained mostly via connection between:
e causality and database repairs, and

e causality and consistency-based diagnosis
(B. & Salimi, TOCS'17)

11/74

Database Repairs

Q
- W

repairs of D

wifferent _ (Arenas et al., PODS 99)

repair semantics)

—— ™
ICs
ICs

Example: Denial constraints (DCs) (in particular, FDs)

-3x3y(P(x) A Q(x,y)) PTA ATB| R[A
—3IxJy(P(x) A R(x,y)) :

a
al|b alc

o Subset-repairs (S-repairs): (maximal consistent subinstance)

Dy = {P(e), Q(a, b), R(a, c)} D> = {P(e), P(a)}
e Cardinality-repairs (C-repairs): (max-cardinality
Dy consistent subinstance)

12/74

The Repair/Causality Connection

e BCQ: Q: Ix(Pi(x1)A---APmn(Xm)) and Qs true in D
What are the causes for Q to be true?

e Obtain actual causes and contingency sets from DB repairs
e —Q is logically equivalent to DC
R(Q): —3x(Pi(x1) A+ A Pm(Xm))
e Qholdsin D iff D inconsistent wrt. k(Q)
e S-repairs associated to causes and minimal contingency sets

e C-repairs associated to causes, minimum contingency sets,
and maximum responsibilities

e Database tuple 7 is actual cause with subset-minimal
contingency set ' <= D~ (TU{7})is S-repair
In which case, its responsibility is %IFI

T is actual cause with min-cardinality contingency set I'
< D~ (Tu{r})is C-repair And 7 is MRAC

13/74

Exploiting the Connection

e Causality problem (CP): Computing/deciding actual causes
can be done in polynomial time in data for CQs and UCQs
(Meliou et al. 2010; B&S'17)
e Most computational problems related to repairs, in particular,
C-repairs, are provably hard (data complexity)
(Lopatenko & B., ICDT'07)
Techniques and results for repairs can be leveraged

e Responsibility problem: Deciding if a tuple has responsibility
above a certain threshold is NP-complete for UCQs (B&S'17)

e Computing p,(7) is FPNPUog(m)_complete for BCQs
The functional version of the responsibility problem

e Deciding if 7 is a most responsible cause is
pNP(og(m)_complete for BCQs

14/74

Answer-Set Programs for Database Repairs

e ASPs can be used to specify, compute and query S- and
C-repairs

e Example: (cont.) DC: k(Q): —3IxIy(S(x) A R(x,y) A S(y))
Repair-ASP contains the D as set of facts (with tids):
R(lv dg, 33)7 R(27 a, 31)7 R(37 as, 33)7 5(47 a4)7 5(57 32)7 5(6a 33)
Rules:
Sl(tlvxad)VRl(t27X7Y7d)VS/(t37yad) <~ S(tl,X),R(tz,X,y),S(té,y),

S'(t,x,s) < S(t,x), not S'(t,x,d). etc.

d, s: annotation constants for “tuple deleted” and “tuple
stays in repair”, resp.

e A stable model M of the program determines an S-repair D’
of D: D' := {R(¢)| R'(t,¢c,s) € M}
S-repair D; represented by: My = {R'(1, as, as,s), R'(2, a2, a1,),

R,(3a as, 3375)7 5/(4a as, S)v S/(Sa 8275), Sl(67 337d)7 e }

15/74

e Example: Schema R(A,B,C,D)and FD A, B — C
—3xyzizzvw (R(x, y, z1,v) A R(X,y, 22, W) N 21 # 22)

e Repair program contains the rules: (with global tuple ids, t;)

R'(t1,x,y,21,v,d) V R'(t2,x,y, 22, w,d) < R(t1,x,y,21,v), R(t2, x, ¥, 22, w), 21 # 22
R'(t,x,y,z,v,s) + R(t,x,y,z,v), not R'(t,x,y,z,v,d)

e For sets of DCs/FDs repair programs can be made normal, i.e.
non-disjunctive

e Maybe non-stratified, as with FDs, and with DCs with
self-joins

e Certain query answering (QA) under normal ASPs is
NP-complete in data

e Matching intrinsic data complexity of consistent query
answering under FDs/DCs

e Models corresponding to C-repairs can be obtained by adding

weak program constraints (WCs)
16/74

Example: (cont.) Add WCs

i~ R(t,x),R'(t,%,d) i~ S(t,x),S'(t,x,d)
Keep models that minimize the number of violations of the
WCs only

Here: minimize the number of deleted tuples

C-repairs and WCs useful for capturing most-responsible
actual causes

~~ ASPs for causality/responsibility computation
(B.; KAIS'20)

17/74

Specifying Causes with Repair-ASPs

Repair programs can be used as the basis for specifying causes
and reasoning with them

They provide the right expressive power and complexity for
causality-related computations

Cause and responsibility computation become QA on
extended repair program

Causes represented by global tuple identifiers (tids) t

Example: (cont.) DCis k(Q) for Q : 3x3y(S(x) A R(x,y) A S(y))

Causes?
Add rules: Ans(t) <+ R'(txy,d)
Ans(t) + S'(t,x,d)
QA: M Ebrave Ans(t)? (true in some model of)

18/74

For (maximum) responsibility we need contingency sets
associated to causes

New predicate CauCon(t, t'):
“t is actual cause, and t' is a member of the former's
contingency set”

For each pair of predicates P;, P; in DC k(Q), the rule
CauCon(t, t') < Pi(t,xi,d), Pi(t',%.,d), t #1t'
(t' deleted together with t)

In the example: CauCon(t,t") + S'(t,x,d), R'(t', u, v,d)
Etc.

19/74

e Example: (cont.) Tl extended with rules for causes with

contingency sets

CauCon(t,t') < S'(t,x,d), R'(t',u, v,d)
CauCon(t,t') + S'(t,x,d), S'(t',u,d), t £t
CauCon(t,t') + R'(t,x,y,d),S'(t',u,d)
CauCon(t,t') < R'(t,x,y,d), R'(t',u,v,d), t#t’
e From model M, corresponding to repair Dp: CauCon(1,3)

and CauCon(3,1)

From repair difference D \ Do = {R(a4, a3), R(a3, a3)}

e Contingency sets computed with extensions of ASP with
set-aggregation (e.g. DLV-Complex)

preCon(t, {t'}) <+
preCon(t, #union(C, {t"})) <+

Con(t, C)
aux(t,C) «+

4

CauCon(t,t")

CauCon(t, t"), preCon(t, C),

not #member(t”, C)

preCon(t, C), not aux(t, C) (maximal sets)
CauCon(t,t'), #member(t’, C)

20/ 74

Computation of a cause's “responsibility”

pre-rho(t,n) <« #count{t' : CauCon(t,t')} =n
rho(t,m) <« mx (pre-rho(t,m)+1) =1

Responsibility of a cause t can be obtained through a query to
the extended program [1€:

M€ Eprave rho(t, X)?
Keep minimum value for X

If WCs are added to the repair program, only
maximum-responsibility causes computed

ASP with WCs computation has exactly required expressive
power /complexity needed for maximum-responsibility
computation

21/74

Causality under Integrity Constraints

e For causality, taking satisfied ICs into account becomes crucial

e In DBs the structural model contains the lineage of the query
and now also the ICs (c.f. below)

e Counterfactual interventions become tuple deletions
(Salimi et al.; TaPP’16)
Instances obtained from D by tuple deletions should satisfy
the 1Cs (B. & Salimi; IJAR'17)

e In this case, we start assuming that D = X

e For 7 to be actual cause for Q(3), the contingency set I
must satisfy:

DT E X DT E 93
D~N(Tu{r}) E X D~ (Tu{r}) ¥ Q3

e Responsibility pg(vé)z(r) defined as before

22/74

Example: DB instance D and CQ, Q below

Course | CName TStaff DName
Dep DName TStaff ty COMO08 John Computing
t1 Computing John ts Math01 Kevin Math
153 Philosophy | Patrick te HIST02 | Patrick | Philosophy
t3 Math Kevin t7 Math08 Eli Math
tg CcoMo1 John Computing

A) O(x): Jy3z(Dep(y,x) A Course(z, x,y))

John) € D
) t1 is counterfactual {John) € Q(D)

(
(a
(b) t4 with single minimal contingency set ' = {tg}

(c) tg with single minimal contingency set ', = {ts}
Under IND v: VxVy (Dep(x,y) — Ju Course(u,y, x))

(satisfied)
ta tg not actual causes anymore: D\ T1 =1, but

DN (Mu{t}) Ev

t; still is counterfactual cause

(8) 01(x): 3y Deply,x) {John) € Q1(D)
Under IND: same causes as Q: Q =, Q1

(Q) Qo(x): JyIFzCourse(z,x,y) (John) € Q»(D)
W/O 1. t4 and tg only actual causes, with I'; = {tg} and
Mo ={ts4}, resp.

Under IND: t; and tg still actual causes

Contingency sets?

We lose ['1 and I

D~ (TiU{ta}) F=¢, DN (T2U{ts}) F o

Smallest contingency set for ta: '3 = {tg, t1}
Smallest contingency set for tg: 4 = {ta, t1}

Responsibilities of t;, tg decrease: pg o)(t4) = % but
2 onn

D,y _ 1
pQé?iohn) (t4) -3

t; is still not an actual cause, but affects the responsibility of
actual causes

24 /74

e Some Results:
e Causes are preserved under logical equivalence of queries under
ICs

e Without ICs, deciding causality for CQs is tractable, but their
presence may make complexity grow

e There are a CQ Q@ and an inclusion dependency 1, for which
deciding causality is NP-complete (B & S'17)

e ASPs for computation of causes and responsibilities under ICs
can be produced

e Beyond CQs:

e What about causality for Datalog queries?
e For Datalog queries, cause computation can be NP-complete

e Through a connection to Datalog abduction
(B. & Salimi; IJAR'17)

25 /74

Abstract Causes from Repair Semantics

e Given: DB D, true query Q, and its associated (violated)
DC k(Q)

e Different repair semantics S can be considered (not only
S-repairs as above)

e A repair semantics identifies a class RepS(D, x(Q)) of
admissible and consistent instances that “minimally” depart
from D

e Now S-related causes can be defined

e t € Disan S-actual cause for Q iff as on page 13 with
S-repairs instead of S-repairs

e In particular, prioritized repairs (Staworko et al., AMAI'12)

e There are prioritized ASPs that can be used for repair
programs (Gebser et al., TPLP'11)

26 /74

Attribute-Level Causes via Attribute-Based repairs

e Example: D, Q: IxIy(S(x) A R(x,y) A S(y)), and

R|A|B S| A
ty | a4 | a3 ta | a4
| a | a ts | a2
t3 | a3 | a3 te | a3
R A B S A
t1 as as ty as
| a2 | a1 ts az
t3 as as ts NULL
R A B S A
t1 as NULL ta as
t an ai ts a
t3 as NULL te as

D~ k(Q)

Repair by “minimally” changing
attribute values by NULL,

as in SQL DBs

Cannot be used to satisfy a join

Two repairs

For hiding sensitive information
ina DB (B. & Li; TKDE'13))

e These minimal repairs identify t5[1] (value in 1st position),

t1[2], t3[2] as actual causes

e Corresponding repair programs can be produced as before

(B.; KAIS'21)

27 /74

Causal Responsibility and Causal Effect

e Causal responsibility can be seen as an explanation score for
database tuples in relation to query results

e |t is not the only possible score

e Example: Boolean query I is true if there is a path between a

E | X|Y
t1 a b
t a c
t3 c b
ty a d
ts d e
te e b
o EUT = yes

and b
”. " ; yes < P(a,b)
Ny P(x,y) <+ E(xy)
Ao Ply) e P(xa),
| E(z.y)

[O

d ts e

(query in Datalog, also union of CQs)

e All tuples are actual causes: every tuple in a path from a to b

o All the tuples have the same causal responsibility: 3

e Maybe counterintuitive:

1

t; provides a direct path from a to b

28/74

We proposed an alternative to the notion of causal
responsibility: Causal Effect, a new score (Salimi et al., TaPP’16)

Causal responsibility has been questioned for other reasons
and from different angles

Retake question about how answer to query Q changes if 7 is
deleted/inserted from/into D

An intervention on a structural causal model
In this case provided by the the lineage of the query
Example: D = {R(a, b), R(a, c), R(c, b),S(b),S(c)}
BCQ Q: Ix(R(x,y)AS(y))

True in D, with lineage instantiated on D given by
propositional formula:

Do (D) = (Xr(a,b) A Xs)) V (Xr(a,e) A Xs(e)) V (Xree,p) A Xs(p))

X;: propositional variable that is true iff 7 € D

29/74

e Want to quantify contribution of a tuple to a query answer
e Assign probabilities uniformly and independently to tuples in

D

RP T A B | prob 5P [B [prob Probabilistic database
a|b % b % DP (tuples outside D get
alc) 3 c| 2 probability 0)
c | b 5

The X.'s become independent, identically distributed random
variables; and Q is Bernouilli random variable

What's the probability that Q takes a particular truth value
when an intervention is done on D?

Interventions of the form do(X = x): In the structural
equations make X take value x

For y,x € {0,1}: P(Q =y | do(X; =x))?
Corresponding to making X, false or true

E.g. do(Xs(p) = 0) leaves lineage in the form:
X
®o(D)=5% = (XRr(a,c) A Xs(c))

30/74

The causal effect of T:
CEPO(r) == E(Q | do(X; = 1)) — E(Q | do(X; =0))
Example: (cont.) When X is made false, probability that
the instantiated lineage above becomes true in DP:
P(Q =11 do(Xs) = 0)) = P(Xg(a,) = 1) X P(Xs(c)y =1) = 5
When X, is made true, is probability of this lineage becoming
true in DP:

X
Do(D)F2 = Xr(ap) V (Xr(ac) N Xs(e)) V Xr(e,b)
P(Q =1 do(Xsp) = 1)) = P(Xr(ab) \1/3(XR(a,c) A Xs(e)) V Xr(e,p) = 1)
= 16
E(Q | do(Xs() = 0)) = P(Q =1 do(Xs(p) =0)) = 3
E(Q | do(Xs(p) = 1)) = 12
CcEPC(S(b)) = 2 —1=1 >0, anactual cause with
this causal effect!

31/74

Example: (cont.) The Datalog query, as a union of BCQs,
has the lineage:

@0+ /

Do(D) = Xe, V (Xey A Xes) V (Xey A X A Xes)

CELC(t) = 0.65625
CEPC(ty) = CEP2(t3) = 0.21875
CEPR(ty) = CEPC(ts) = CEP2(t) = 0.09375

The causal effects are different for different tuples!

More intuitive result than responsibility!

Rather ad hoc or arbitrary? (we'll be back ...)

32/74

Shapley Value in Databases

Coalition Games and the Shapley Value

e Initial motivation: By how much a database tuple contributes
to the inconsistency of a DB? To the violation of ICs

e Similar ideas can be applied to the contribution to query
results (Livshits et al., 2020)

e Usually several tuples together are necessary to violate an IC
or produce a query result

e Like players in a coalition game, some may contribute more
than others

e Apply standard measures used in game theory, economics,
etc.: the Shapley value of tuple

e Implicitly based on counterfactual intervention: What would
happen if we change ...?

34/74

Consider a set of players D, and a wealth-distribution (game)
functonG: P(D) — R (P(D) the power set of D)

The Shapley value of player p among a set of players D:

PSP e uen -aisy

Shapley(D.G.p) :== >

SCD\{p}

ISI'(|D] —|S| —1)! is number of permutations of D with all
players in S coming first, then p, and then all the others

Expected contribution of player p under all possible additions
of p to a partial random sequence of players followed by a
random sequence of the rest of the players

+4

[3 @
[] []
2
2 [@ 5

oPe

35/74

Database tuples and feature values can be seen as players in a
coalition game
Each of them contributing to a shared wealth function

The Shapley value is a established measure of contribution by
players to the wealth function

It emerges as the only measure that enjoys certain desired
properties

For each game one defines an appropriate wealth or game
function

Shapley difficult to compute: #P-hard in general
Evidence of difficulty: #SAT is #P-hard

About counting satisfying assignments for propositional
formulas

At least as difficult as SAT

36/74

A Score-Based Approach: Shapley Values in DBs

e Database tuples can be seen as players in a coalition game
e Query Q: Ix3Jy(Store(x) A Receives(x,y) A Store(y))

It takes values 0 or 1 in a database
e Game function becomes the value of the query

e A set of tuples make it true or not, with some possibly
contributing more than others to making it true

Shapley(D, Q,7) = Y sc py 1y SHEGEEL(Q(S U{7) — Q(S))
e Quantifies the contribution of tuple 7 to query result
e All possible permutations of subinstances of D
e Average of differences between having 7 or not

e Counterfactuals implicitly involved and aggregated

37/74

We investigated algorithmic, complexity and approximation
problems

A dichotomy theorem for Boolean CQs without self-joins
Syntactic characterization: : PTIME vs. #P-hard

Extended to aggregate queries

It has been applied to measure contribution of tuples to
inconsistency of a database

Related and popular score: Bahnzhaf Power Index
(order ignored)

Banzhaf (D, Q,7) := =1 - Lsc(p\ () (QS U{7}) — Q(S))
Bahnzhaf also difficult to compute: #P-hard in general

We proved “Causal Effect” coincides with the Banzhaf Index!

38/74

Explanations for Classification

39/74

A Score-Based Approach: Responsibility

loan?
e > » No!
classifier

e = (john, 18, plumber, 70K, harlem,...) No

e The gist:
e = (john, 25, plumber, 70K, harlem,...) Yes
e’ = (john, 18, plumber, 80K, brooklyn,...) Yes
e Value for Age is counterfactual cause with x-Resp(Age) =
Value for Income is actual cause with x-Resp(Income) =
e Second may be actionable, but not the first

Nl—= =

e For binary features this works fine

e We have investigated this case in some detail

e Otherwise, there could be many values that do not change the
label, but one of them does

e Better consider all possible values ...
40/74

The Resp Score: Classification

First a simplified version

Want explanation for label “1”

Through changes of feature

e G I3 -]
values, try to get “0

Fix a feature value x = ef

g

{zy) contingency setforx x actual cause for 1

x counterfactual explanation for L(e) =1 if L(ej) =0,
for x' € Dom(F)

x actual explanation for L(e) =1 if there are values Y in e,
x ¢ Y, and new values Y’ U {x'}:

(a) Liey) =1 (b) L(e-2%) =0

1

11V

If Y is minimum in size: x-Resp(x

~—

41/74

Example: ey ()

€1

iy

&
C OO K KRR O
coroor =T
orooror =MD
CO KR KHOR R|Hl~

e Due to ey, Fa(e1) is counterfactual explanation, with
Resp(e1, F2) =1

e Dueto es, Fi(e1) is actual explanation; with ' = {Fx(e;)}
as contingency set:
Resp(e, F1) = }
e Sometimes we may be interested in minimal contingency sets,
under set-inclusion
So as S-repairs vs. C-repairs

e For non-binary features, Resp can be expressed as an
expected value

42/74

A Variation: No contingencies, but average labels

e €= < ..,eF, .. .>, FeF (B, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD'20)
P / / _

o Counter(e, F):=L(e) —E(L(e') | €}, =€, ()

e Easy to compute, and gives reasonable results

Requires underlying probability space on entity population

No need to access the internals of the classification model

Changing one value may not switch the label

No explanations are obtained

e Bring in contingency sets of feature values!

43/74

General Version: Contingencies and average labels

e e entity under classification, with L(e) =1, and F* € F

e Local Resp-score
N _ L(e')—E[L(e”) | F (= €r pxy]
Resp(e, F*, F,T,w) := 1fm{F b (4)
o [CF~{F*}
o & :=e[l =W L(e') = L(e)

e’ :=e[l :=w,F* :=v], with v € dom(F*)
(When F*(e) # v, L(e")+# L(e), F*(e) is actual causal
explanation for L(e) = 1 with contingency (', er))

Globally: Resp(e, F*) := max Resp(e, F*, F,I,w)

IT| min., (+)>0
(r,

44 /74

A Score-Based Approach: Shapley Values

e Feature values can be seen as players in a coalition game
Each of them contributing to a shared wealth function

e The Shapley value is a established measure of contribution by
players to the wealth function

e |t emerges as the only measure that enjoys certain desired
properties

e For each game one defines an appropriate wealth or game
function

e Assume the classifier is binary, with labels 0 and 1
e Set of players F contain features All relative to e

e Game function: ge(S) = E(L(e’) | els = e5) (es: projection on S)
SCF

45 /74

For a feature F* € F, compute: Shap(F, Ge, F*)
Yscr ey SUELBEEDR(L(e |y = esugrsy) — E(L(e)]es = es)]

Quantifies the contribution of feature value F*(e) to
classification result

All possible permutations of subsets of F ~ {F*}

Average of differences between having F*(e) and not having it
Counterfactuals implicitly involved and aggregated

Shap score has become popular (Lee & Lundberg; 2017)
Assumes a probability distribution on entity population

Both Resp and Shap may end up considering exponentially
many combinations

46 /74

Y £

,.mg W

S

Can we do better when we have the classification model?

What if we have a decision tree, or a random forest, or a
Boolean circuit?

Can we compute Shap in polynomial time?

We investigated this problem in detail in a AAAI'21 paper
Tractable and intractable cases

Provided algorithms for the former

In particular, tractable for decision trees and random forests

Investigated approximation algorithms

47 /74

d-D Boolean-Circuits

e A Boolean circuit over set of variables X is a DAG C with:

e Each node without incoming edges (input) is labeled with
either a variable x € X or a constant in {0,1}

e Each other node is labeled with a gate in {—, A, V}

e There is a single sink node, O, called the output
e: X — {0,1} (equivalently e € {0,1}/XI) is accepted by C,
written C(e) =1, iff O takes value 1

For a gate g of C, C(g) is the induced subgraph containing
gates on a path in C to g ™ y
Var(g) is the set of variables of C(g) o

()
Var(g) = {x2, x3, x4} ‘
C is deterministic if every V-gate g with input = & ®

gates g1,82: C(g1)(e) # C(g2)(e), for every e
Intuitively, V-gates behave as V-gates

48 /74

e C is decomposable if every A-gate g with
input gates g1,g2: Var(g1) N Var(g) =0

e We will consider C to be deterministic and decomposable
circuit (d-D circuit)

e Several classes of Boolean models can be translated in
polynomial time into d-D Boolean circuits:

e Decision trees
e Ordered binary decision diagrams (OBDDs)
e Etc.

49 /74

Compiling binary decision trees into d-D Boolean Circuits

An inductive construction starting from the bottom of the DT
Leaves of DT become constant binary gates in d-DC

By induction one can prove the resulting circuit is d-D

Final d-DC is the compilation ¢(r) of root node r of DT

n7

<:> g:)dnﬂ
n5® @nS —> @ @
20 Q
[] II [;l !. <:> c(n2) cln

n2
Final equivalent d-DC: ¢(n7)

Computable in linear time

50/ 74

The SHAP Score: d-D Boolean-Circuits

e Theorem: Shap can be computed in polynomial time for d-D
circuits under the uniform distribution

e Corollary: Shap can be computed in polynomial time for
decision trees and random forests, OBDDs, etc., under the
uniform distribution

e It can be extended to any product distribution on {0, 1}1X!
(uniform is a particular case)

51/74

Ordered Binary Decision Diagrams

e Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

e They are relevant for several reasons in Knowledge
Compilation

e In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

e Opening the ground for efficiently applying Shap to them

fx1,x2,x3) = (mx1 A =x2 A =x3) V (x1, Ax2) V (%2 A x3)

@! @ @

Binary Decision Tree

R
e oo—=0Oa~

(o]
Same variable order along full paths * 0BDD

52/74

Idea of the Proof*

e Shap(F,Ge,F) =
Yscrry UL EEVR(L(E €5y = esugry) — E(L(e))les = es)]
e Depends on e and (the classifier behind) L

e Dom(F;)={0,1}, FieF,i=1,...,n, ec&:={0,1}"
L(e) € {0,1}

e There is also a probability distribution P on £

e We will identify the Boolean classifier with L
SAT(L) :={e | L(e) =1} #SAT (L) := |SAT (L)
Counting the number of inputs that get label 1

e Proposition: For the uniform distribution PY, and e € £

#SAT(L) = 21 x (L(e) — >3, Shap(F, Ge, Fi))

53/74

#SAT <ifme Shap
When #SAT (L) is hard for a Boolean classifier L,

computing Shap is also hard
Negative Corollary: Computing Shap is #P-hard for

e Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

e Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF [Provan & Ball, 1983]

Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

Shap computation in polynomial time not precluded

54 /74

Proposition: For d-D circuits C, #SAT(C) can be computed
in polynomial time

Idea: Bottom-up procedure that inductively computes
#SAT (C(g)), for each gate g of C

So, maybe Shap computable in polynomial time ...

To show that Shap can be computed efficiently for d-D
circuits, we need a detailed analysis

We assume the uniform distribution for the moment
A related problem: “satisfiable circle of an entity”
SAT(C,e,0) :=SAT(C) N { & | |e—¢€],=¢ }
————

¢ value discrepancies

H#SAT(C, e, () := |SAT(C, e, ()|

Proposition: If computing #SAT(C, e, () is tractable, so is
Shap(F, Ge, Fi)

55 /74

e Main Result: #SAT(C,e,) can be solved in polynomial time
for d-D circuits C, entities e, and 1 < /¢ < |X|
Idea: Inductively compute #SAT(C(g)e,,,,,.) for each
gate g € C and integer ¢ < |Var(g)|
e Input gate: immediate
e —-gate:
H#SAT(C(8) ey () = (V1) — #SAT(C(g) €10 1)
e V-gate: (uses determinism)
#SAT(C(gl \ g2)7 € (1)U Var(gy) ? E) =
#SAT((gl)v €larier))+ #SAT(C(g2)7 €lar(ey) E)
e A-gate: (uses decomposition)
#SAT(C(gl A g2)7 € (1)U Var(g) ? 6) =
Zj+k:e #SAT (C(g1), e\/ar(gl)7j) x #SAT (C(g2), €arter)? k)

56 /74

Reasoning about Explanations

57 /74

Reasoning about Counterfactual Interventions

Given a classifier, one can reason in answer-set programming
(ASP) about counterfactuals

In interaction with the classifier

Specified inside the ASP, or invoked as an external predicate
Have done this for decision-tree and naive-Bayes classifiers
One can easily impose semantic constraints on counterfactuals

Each (sensible) counterfactual leading to a change of
classification corresponds to a model of the ASP

Recourses (actionable explanations) can be specified

Scores can be computed by means of set- and numerical
aggregations

The former for minimal and minimum contingency sets

The latter for Resp scores

Reasoning is enabled by cautious and brave query answering
Explanations can be queried

58 /74

ASPs for Counterfactual Interventions

e Counterfactual Intervention Programs (CIPs) specify
counterfactual interventions on a given entity under
classification

e We will use DLV and DLV-Complex notation

e So as with repair programs, we use annotation constants:

Annotation Intended Meaning
o original entity
do do counterfactual intervention
tr entity in transition
s stop, label has changed
(single change of feature value)

o Retake the decision tree on page 47 (o
Features F = {Outlook, Humidity, Wind} Sy Overcast > Rain
Dom(Outlook) = {sunny, overcast, rain} yL >
Dom(Humidity) = {high, normal}
Dom(Wlnd) = {strong, weak} High Normal s:}m Wea{
No Yes No Yes

Entity e = ent(sunny, normal, weak) gets label Yes

59 /74

e Specifying domains, entity, classification tree, annotations:

% facts:
dom1(sunny) . domi(overcast). domi(rain). dom2(high). dom2(normal).
dom3(strong) . dom3(veak) .
ent (e, sunny,normal weak,0) . % original entity at hand

specification of the decision-tree classifier:
cls(X,Y,2,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).
cls(X,Y,2,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,2,1) :- Z = veak, X = rain, dom2(Y).

cls(X,Y,2,0) :- domi(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,0).
ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes
ent(E,Xp,Y,Z,do) v ent(E,X,¥p,Z,do) v ent(E,X,Y,Zp,do) :-
ent(E,X,Y,Z,tr), cls(X,Y,Z,1), domi(Xp), dom2(Yp),
dom3(zZp), X != Xp, Y != Yp, Z!= Zp,
chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),
chosen3(X,Y,Z,Zp) .

Classifier could be invoked as external predicate in Python

The last is the counterfactual rule

Only one disjunct in the head becomes true; one per feature

It uses the non-deterministic choice predicate

Chooses a new value in last argument for each combination of
the first three

As long as the label does not depart from 1, i.e. yes

60/74

e Specification of choice predicate:
% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), domi(0), U != X,
not diffchoicel(X,Y,Z,U).

diffchoicel(X,Y,Z, U) :- choseni(X,Y,Z, Up), U != Up, domi(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,
not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(0), U != Z,
not diffchoice3(X,Y,Z,U).

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).
% Not going back to initial entity (program constraint):
:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,0).

e Choice makes the program non-stratified

e Last rule is program constraint prohibiting going back to
initial entity

Acts by eliminating models that violate it
Also contributes to non-stratification
e Non-stratified negation is what makes ASP necessary

e Each counterfactual version represented by a model

61/74

% stop when label has been changed:
ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), X != Xp.
expl(E,hunidity,Y) :- ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), Y != Yp.
expl (E,wind,Z) :- ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), Z != Zp.
entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below
:- ent(E,X,Y,Z,0), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:
invResp(E,M) :- #count{I: expl(E,I,)} = M, #int(M), E = e.

First rule defines “stop” annotation, when label changes

Next rules for collecting changes, leading to score computation
Sets of changes (in each model) is minimal (for free with ASP)
Second last is program constraint: gets rid of models with
unchanged label

Last rule contains aggregation for counting number of feature
value changes

For each counterfactual version (or model) this is a “local”
x-Resp-score associated to a minimal set of changes

Not necessarily the “global” Resp-score yet
62/74

{ent (e, sunny,normal,weak,0), cls(sunny,normal,strong,1),
cls(sunny,normal,weak,1), cls(overcast,high,strong,1),
cls(overcast,high,weak,1), cls(rain,high,weak,1),
cls(overcast,normal,weak,1), cls(rain,normal,weak,1),
cls(overcast,normal,strong,1), cls(sunny,high,strong,0),
cls(sunny,high,weak,0), cls(rain,high,strong,0),
cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),
ent (e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),
expl(e,hunidity,normal) ,invResp(e,1)}

{ent (e, sunny,normal,weak,0), cls(sunny,normal,strong,1),...,
cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),
expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

These are the two stable models of the CIP

Two counterfactual versions with minimal contingency sets
Only first is minimum counterfactual version: x-Resp(e) =1
Want only maximum responsibility counterfactual versions?

% Weak constraints to minimize number of changes:
~ ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), X != Xp.
:~ ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), Y != Yp.
~ ent(E,X,Y,Z,0), ent(E,Xp,Yp,Zp,s), Z != Zp.

Weak program constraints can be violated, but only a
minimum number of times

Minimize number of feature value differences between e and
counterfactual versions

Only first model is kept

63/74

Reasoning enabled by query answering
Under certain and brave semantics
Adding domain knowledge very easy

In a particular domain, there may never be rain with strong
wind; discard such a model

% hard constraint disallowing a particular combination
:- ent(E,rain,X,strong,tr).

64 /74

Another Example:

Naive-Bayes Classification

\;

(outlook) (Temp

-
\”
I\

§
5

ity) (Wind |

NN\

Wind [Play|

Outlook Temperature Humidity
Sunny high high
sunny high high

overcast high high

vain medium high
rain low normal
rain low normal
overcast low normal
sunny medium high
sunny low normal
vain medium normal
sunny medium normal
overcast medium high
overcast high normal
rain___medium _high

weak | no
strong| no
weak | yes
weak | yes
weak | yes
strong| no
strong| yes
weak | no
weak | yes
weak | yes
strong| yes
strong| yes
weak | yes
strong| no

e Classifier is based on Bayesian network on

Associated probabilities learned from data

the LHS above
on the RHS:

P(Play = yes) = &

P(Play = no) = &

P(Outlook = sunny|Play = yes) = 2
P(Outlook = overcast|Play = yes) = &
P(Outlook = rain|Play = yes) = &
P(Temp = high|Play = yes) = 2
P(Temp = medium|Play = yes) = &
P(Temp = low|Play = yes) = 3
P(Humidity = high|Play = yes) = &
P(Humidity = normalPlay = yes)
P(Wind = strong|Play = yes)
P(Wind = weak|Play = yes)

P(Outlook — sunny|Play = no)

P(Outlook = overcast|Play = no)

P(Outlook = rain|Play = no) =
P(Temp = high|Play = no) =

P(Temp = medium|Play = no) = 2

P(Wind = weak|Play = no

e Beginning of CIP is as before, with probabilities as facts

e Entity with label Yes: e =

(rain, high, normal, weak)

65 /74

% DLV-COMPLEX #include<ListAndSet> #maxint = 100000000.
% domains:
dom_o(sunny) . dom_o(overcast). dom_o(rain). dom_t(high). dom_t(medium).
dom_t(low). dom_h(high). dom_h(normal). dom_w(strong). dom_w(weak).
% original entity that gets label 1:
ent(e,rain,high,normal ,weak,o) .
% absolute probabilities for Play (as percentage)
p(yes, 64). p(no, 36).
% Outlook conditional probabilities (as percentage)
p_o_c(sunny, yes, 22). p_o_c(overcast, yes, 45). p_o_c(rain, yes, 33).
p_o_c(sunny, no, 60). p_o_c(overcast, no, 0). p_o_c(rain, no, 40).
% Temperature conditional probabilities (as percentage)
p_t_c(high, yes, 22). p_t_c(medium, yes, 45). p_t_c(low, yes, 33).
p_t_c(high, no, 40). p_t_c(medium, no, 40). p_t_c(low, no, 20).
% Humidity conditional probabilities (as percentage)
p_h_c(normal, yes, 67). p_h_c(high, yes, 33).
p-b_c(normal, no, 20). p_h_c(high, no, 80).
% Wind conditional probabilities (as percentage)
p_w_c(strong, yes, 33). p_w_c(weak, yes, 67).
p-w_c(strong, no, 60). p_w_c(ueak, no, 40).

e Classification based on probability comparison
P(Play
P(Play

yes|Outlook = rain, Temp = high, Humidity = normal, Wind = weak)

no|Outlook = rain, Temp = high, Humidity = normal, Wind = Weak)

% spec of the classifier
c1s(E,0,T,H,W,yes) :- ent(E,0,T,H,W,tr), pb_num(E,0,T,H,W,yes, Fyes),
pb_nun(E,0,T,H,W,n0,Fno), Fyes >= Fno.
c1s(E,0,T,H,W,n0) :- ent(E,0,T,H,W,tr), pb_num(E,0,T,H,W,yes, Fyes),
pb_nun(E,0,T,H,W,n0,Fno), Fyes < Fno.

e Rest of CIP as in previous example, including counterfactual
rule, hard and weak constraints, etc.

66/74

e We can collect changes of feature values

% collecting changed values for each feature:
expl(E,outlook,0) :- ent(E,0,T,H,W,0), ent(E,Op,Tp,Hp,lp,s), 0 !
expl(E, temp, T) ent(E,0,T,H,W,0), ent(E,Op,Tp,Hp,Wp,s), T !
expl (E,hunidity,H) :- ent(E,0,T,H,W,0), ent(E,Op,Tp,Hp,Wp,s), H !
expl (E,wind,W) :- ent(E,0,T,H,W,0), ent(E,0p,Tp,Hp,Wp,s), W !

e We can use DLV-Complex for building contingency sets

% building contingency sets

cause (E,U) := expl(E,U,X).

cauCont (E,U,I) :- expl(E,U,X), expl(E,I,Z), U != I.

preCont (E,U,{I}) :- cauCont(E,U,I).

preCont (E,U, #union(Co,{I})) :- cauCont(E,U,I), preCont(E,U,Co),

not #member (I,Co) .

:= preCont (E,U,Co), not HoleIn(E,U,Co).
preCont (E,U,Co), cauCont(E,U,I), not #member(I,Co).
cont(E,U,Co), not #card(Co,0).
cause(E,U), not tmpCont(E,U).

cont (E,U,Co)
HoleIn(E,U,Co)
tmpCont (E,U)
cont (E,U,{})

e Inverse responsibility computation as before or via cardinality
of contingency sets

% computing the inverse of x-Resp
invResp(E,U,R) :- cont(E,U,S), #card(S,M), R = M+1, #int(R).

67/74

e Without weak constraints we obtain 10 different models
Each representing a counterfactual version of e
e Only three shown here:

M1 {ent(e,rain,high,normal,weak,o0), ent(e,rain,high,normal,weak,tr),
cls(e,rain,high,normal ,weak,yes), ent(e,rain,high,high,weak,do),
ent(e,rain,high,high,weak,tr), cls(e,rain,high,high,weak,no),
ent(e,rain,high,high,weak,s), expl(e,humidity,normal),
cont (e,humidity,{}),invResp(e,humidity,1),fullExpl(e,humidity,1,{}}

M2 {ent(e,rain,high,normal,weak,o0), ent(e,rain,high,high,strong,tr),
cls(e,rain,high,high,strong,no), ent(e,rain,high,high,strong,s),
invResp(e,humidity,2), fullExpl(e,humidity,2,{wind}),
invResp(e,wind,2), fullExpl(e,wind,2,{humidity})}

M3 {ent(e,rain,high,normal,weak,0), ent(e,sunny,high,normal,strong,tr),
cls(e,sunny,high,normal,strong,no) ,ent (e, sunny,high,normal,strong,s),
invResp(e,outlook,2), fullExpl(e,outlook,2,{wind}), ...}

e With WCs only the first survives, corresponding to a
maximum responsibility counterfactual version

/

e’ = (rain, high, high, weak)

68/74

e We can add domain knowledge

e If there are functional relationships between feature values for
Temperature and Humidity:

high — normal, {medium,low} — high
We can drop disjuncts from counterfactual rule, or qualify

body conditions, or use program constraints, for not leading
to admissible counterfactuals

e Alternatively, we could use extra rules:

ent(E,0,T,normal,W,tr) :- ent(E,0,high,H,W,tr).
ent(E,0,T,high,W,tr) :- ent(E,0,medium,H,W,tr).
ent(E,0,T,high,W,tr) :- ent(E,0,low,H,W,tr).

e This is very flexible ...
e Reasoning enabled by query answering

Some queries

\DLV>dlcomplex.exe -nofacts -nofdcheck -brave naiveBayes.txt queries.txt

69/74

Responsibility of feature value for Outlook?

Remove weak constraints: Is there a counterfactual with less
than three changes?

Use brave semantics:

invResp(e,outlook,R)? %Q1
fullExpl(E,U,R,S), R<3? Q2
Q1 returns 2,3,4 So, its responsibility is %

Q2 returns a full explanation: e,outlook,?2, {humidity}

Under brave semantics: Is there an intervened entity with
combination of sunny outlook with strong wind, and its label?
Or, all intervened entities that obtain label No

cls(E,0,T,H,W,_), 0 = sunny, W = strong? %Q3
cls(E,0,T,H,W,n0)? %Q4

For Q3 we obtain, e.g., e, sunny, low, normal, strong, yes

For Q4, e.g., e, sunny, low, high, strong

70/ 74

Does the wind not change under every counterfactual version?
Under cautions semantics:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,0), W = Wp? %Q5

We obtain the empty output

Meaning Wind is changed in at least one counterfactual
version

Different kinds of queries
For explanatory and exploratory purposes
For comparison of two different classifiers in a single program

Etc.

71/74

Score-Based Approaches: Final Remarks

e There are many interesting open problems to investigate
e Investigated complexity and algorithmic aspects of Resp

e What if we have the classifier?

e Addition of semantic and domain knowledge is important

e Redefinition vs. hacked computation vs. change of
distribution?

e Reasoning about counterfactuals

e Connections to model-based diagnosis?
e Explanations vs. Interpretations?

e What is a good explanation?

e What is a good score?

e Maybe emerging from desiderata, so as the Shapley value

72/74

Explanations are at the basis of fairness and bias analysis

Identifying unexpected or undesirable high-score features
becomes relevant

But possibly not enough

Understanding the decisions in relation to protected features
becomes relevant

An analytical process that should be characterized, formalized
and automated

Loan?
income

Explaining how decisions are made

age

ene;

Here race is a protected feature

Two entities with same path diverge at that =~ ~
point, getting different labels o/ N

No!

Another promising problem: higher-order analytics
on explanations

What else can be learnt about the population or our
classification mechanism?

73/74

References (self-references for this presentation)

- Bertossi, L. and Salimi, B. “From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back”.
Theory of Computing Systems, 2017, 61(1):191-232.

- Bertossi, L. and Salimi, B. “Causes for Query Answers from Databases: Datalog Abduction, View-Updates, and
Integrity Constraints”. International Journal of Approximate Reasoning, 2017, 90:226-252.

- L. Bertossi. “Specifying and Computing Causes for Query Answers in Databases via Database Repairs and Repair
Programs”. Knowledge and Information Systems, 2021, 63(1):199-231.

- E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “The Shapley Value of Tuples in Query Answering”. In Proc.
ICDT 2020. Extended version to appear in Logical Methods in Computer Science, arXiv Paper cs.DB/1904.08679.

- E. Livshits, L. Bertossi, B. Kimelfeld, M. Sebag. “Query Games in Databases”. ACM Sigmod Record, 2021,
50(1):78-85.

- L. Bertossi, J. Li, M. Schleich, D. Suciu and Z. Vagena. “Causality-based Explanation of Classification
Outcomes”. Proc. 4th International Workshop on " Data Management for End-to-End Machine Learning” (DEEM)
at ACM SIGMOD/PODS, 2020, pp. 6.1-6.10.

- M. Arenas, P. Barcelo, L. Bertossi, M. Monet. “The Tractability of SHAP-scores over Deterministic and
Decomposable Boolean Circuits”. Proc. AAAI 2021. Extended version as arXiv Paper 2104.08015, 2021

- L. Bertossi. “Declarative Approaches to Counterfactual Explanations for Classification”. Journal submission.
arXiv Paper 2011.07423, 2020.

- L. Bertossi. “Score-Based Explanations in Data Management and Machine Learning”. Proc. Int. Conf. Scalable
Uncertainty Management (SUM 20), Springer LNCS 2322, pp. 17-31.

- L. Bertossi and G. Reyes. “Answer-Set Programs for Reasoning about Counterfactual Interventions and
Responsibility Scores for Classification”. To appear in Proc. 1st International Joint Conference on Learning and
Reasoning (IJCLR'21). Extended version posted as arXiv Paper 2107.10159.

74 /74

