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Explanations in Databases

Receives R.1 R.2
s2 s1
s3 s3
s4 s3

Store S .1
s2
s3
s4

• Query: Are there pairs of official stores in a receiving
relationship?

• Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

The query is true in D: D |= Q
• What tuples cause the query to be true?

• How strong are they as causes?

• We would expect tuples Receives(s3, s3) and Receives(s4, s3)
to be causes

• Explanations for a query result ...
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• Explanations for violation of semantic conditions (integrity
constraints), etc.

• A DB system could provide explanations

• Want to model, specify and compute causality

• Large part of our research motivated by trying to understand
causality in data management from different perspectives
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Explanations in Machine Learning

classifier

e
loan?

No!

• Client requesting a loan from a bank using a black-box
classifier

• e = ⟨john, 18, plumber, 70K, harlem⟩
Record of values for features Name, Age, Income, ...

• Which are the feature values most relevant for the
classification outcome, i.e. the label “No”?

• What is the contribution of each feature value to the
outcome?

• Questions like these are at the core of Explainable AI
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A Score-Based Approach: Responsibility

• Causality has been developed in AI for 3 decades or so

• In particular, Actual Causality

• Also the quantitative notion of Responsibility: a measure of
causal contribution

• Both based on Counterfactual Interventions

• Hypothetical changes of values in a causal model to detect
other changes: “What would happen if we change ...”?
By so doing identify actual causes

• Do changes of feature values make the label change to “Yes”?

• We have investigated causality and responsibility in data
management and classification

• Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.
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• There are other explanation scores

Also called “attribution scores”

• Some of them have been applied in data management and
machine learning

• The “causal effect” score

• The Shapley value

• We have done research on them too

• We will present them

• We also want to specify counterfactual interventions

• Reason about them, and explanations

• Compute responsibility scores from the specifications
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This Tutorial

1. Review of causality in DBs

2. The DB repair connection

3. ASPs for causality computation

4. Causality under integrity constraints

5. Causal responsibility vs. causal effect

6. Shapley value in DBs

7. Responsibility of explanations for classification

8. Shapley value of explanations for classification

9. Counterfactual Intervention Programs for classification

10. Final remarks

Companion paper: L. Bertossi. “Score-Based Explanations in Data Management and
Machine Learning: An Answer-Set Programming Approach to Counterfactual
Analysis”. Posted as Corr arXiv Paper 2106.10562, 2021.
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Causality in Databases
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Causality in DBs

• Causality-based explanation for a query result: (Meliou et al.,

VLDB 2010)

• A relational instance D and a boolean conjunctive Q
• A tuple τ ∈ D is a counterfactual cause for Q if D |= Q and

D ∖ {τ} ̸|= Q
• A tuple τ ∈ D is an actual cause for Q if there is a

contingency set Γ ⊆ D, such that τ is a counterfactual cause
for Q in D ∖ Γ

Based on (Halpern and Pearl, 2001, 2005)

• The responsibility of an actual cause τ for Q:
ρ
D
(τ) := 1

|Γ| + 1 , |Γ| = size of smallest contingency set for τ

(0 otherwise)

• High responsibility tuples provide more interesting
explanations

Based on (Chockler and Halpern, 2004)
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Example

• Database D with relations R and S below
Q : ∃x∃y(S(x) ∧ R(x , y) ∧ S(y)) Here: D |= Q

R A B

a4 a3
a2 a1
a3 a3

S A

a4
a2
a3

• Causes for Q to be true in D?

• S(a3) is counterfactual cause for Q:
If S(a3) is removed from D, Q is no longer an answer

• Its responsibility is 1 = 1
1+|∅|

• R(a4, a3) is an actual cause for Q with contingency set
{R(a3, a3)}

If R(a3, a3) is removed from D, Q is still true, but further
removing R(a4, a3) makes Q false

• Responsibility of R(a4, a3) is
1
2 = 1

1+1
Its smallest contingency sets have size 1

• R(a3, a3) and S(a4) are actual causes, with responsibility 1
2
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Computational Problems

• Among many of them:

• Compute causes
• Decide if a tuple is a cause

• Compute responsibilities

• Compute most responsible causes (MRC)

• Decide if a tuple has responsibility above a threshold

• Rather complete complexity picture for CQs and UCQs

• Obtained mostly via connection between:

• causality and database repairs, and

• causality and consistency-based diagnosis
(B. & Salimi, TOCS’17)
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Database Repairs

D

 

ICs

Q

    

ICs

Q

repairs of D

(different 

repair semantics)

? (Arenas et al., PODS 99)

Example: Denial constraints (DCs) (in particular, FDs)

¬∃x∃y(P(x) ∧ Q(x , y))

¬∃x∃y(P(x) ∧ R(x , y))
P A

a
e

Q A B
a b

R A C
a c

• Subset-repairs (S-repairs): (maximal consistent subinstance)

D1 = {P(e),Q(a, b),R(a, c)} D2 = {P(e),P(a)}
• Cardinality-repairs (C-repairs): (max-cardinality

consistent subinstance)D1
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The Repair/Causality Connection

• BCQ: Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m)) and Q is true in D
What are the causes for Q to be true?

• Obtain actual causes and contingency sets from DB repairs

• ¬Q is logically equivalent to DC

κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m))

• Q holds in D iff D inconsistent wrt. κ(Q)
• S-repairs associated to causes and minimal contingency sets

• C-repairs associated to causes, minimum contingency sets,
and maximum responsibilities

• Database tuple τ is actual cause with subset-minimal
contingency set Γ ⇐⇒ D ∖ (Γ ∪ {τ}) is S-repair
In which case, its responsibility is 1

1+|Γ|
• τ is actual cause with min-cardinality contingency set Γ
⇐⇒ D ∖ (Γ ∪ {τ}) is C-repair And τ is MRAC
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Exploiting the Connection

• Causality problem (CP): Computing/deciding actual causes
can be done in polynomial time in data for CQs and UCQs

(Meliou et al. 2010; B&S’17)

• Most computational problems related to repairs, in particular,
C-repairs, are provably hard (data complexity)

(Lopatenko & B., ICDT’07)

Techniques and results for repairs can be leveraged

• Responsibility problem: Deciding if a tuple has responsibility
above a certain threshold is NP-complete for UCQs (B&S’17)

• Computing ρ
D
(τ) is FPNP(log(n))-complete for BCQs

The functional version of the responsibility problem

• Deciding if τ is a most responsible cause is
PNP(log(n))-complete for BCQs
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Answer-Set Programs for Database Repairs

• ASPs can be used to specify, compute and query S- and
C-repairs

• Example: (cont.) DC: κ(Q) : ¬∃x∃y(S(x) ∧ R(x , y) ∧ S(y))

Repair-ASP contains the D as set of facts (with tids):

R(1, a4, a3),R(2, a2, a1),R(3, a3, a3), S(4, a4), S(5, a2),S(6, a3)

Rules:

S ′(t1, x , d) ∨ R ′(t2, x , y , d) ∨ S ′(t3, y , d) ← S(t1, x),R(t2, x , y), S(t3, y),

S ′(t, x , s) ← S(t, x), not S ′(t, x , d). etc.

d, s: annotation constants for “tuple deleted” and “tuple
stays in repair”, resp.

• A stable model M of the program determines an S-repair D ′

of D: D ′ := {R(c̄) | R ′(t, c̄ ,s) ∈ M}
S-repair D1 represented by: M1 = {R ′(1, a4, a3, s),R

′(2, a2, a1, s),

R ′(3, a3, a3, s), S
′(4, a4, s), S

′(5, a2, s), S
′(6, a3, d), . . .}
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• Example: Schema R(A,B,C ,D) and FD A,B → C
¬∃xyz1z2vw(R(x , y , z1, v) ∧ R(x , y , z2,w) ∧ z1 ̸= z2)

• Repair program contains the rules: (with global tuple ids, ti )

R′(t1, x , y , z1, v , d) ∨ R′(t2, x , y , z2,w , d) ← R(t1, x , y , z1, v),R(t2, x , y , z2,w), z1 ̸= z2

R′(t, x , y , z, v , s) ← R(t, x , y , z, v), not R′(t, x , y , z, v , d)

• For sets of DCs/FDs repair programs can be made normal, i.e.
non-disjunctive

• Maybe non-stratified, as with FDs, and with DCs with
self-joins

• Certain query answering (QA) under normal ASPs is
NP-complete in data

• Matching intrinsic data complexity of consistent query
answering under FDs/DCs

• Models corresponding to C-repairs can be obtained by adding
weak program constraints (WCs)
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• Example: (cont.) Add WCs

:∼ R(t, x̄),R ′(t, x̄ , d) :∼ S(t, x̄),S ′(t, x̄ , d)

• Keep models that minimize the number of violations of the
WCs only

• Here: minimize the number of deleted tuples

• C-repairs and WCs useful for capturing most-responsible
actual causes

• ; ASPs for causality/responsibility computation
(B.; KAIS’20)
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Specifying Causes with Repair-ASPs

• Repair programs can be used as the basis for specifying causes
and reasoning with them

• They provide the right expressive power and complexity for
causality-related computations

• Cause and responsibility computation become QA on
extended repair program

• Causes represented by global tuple identifiers (tids) t

• Example: (cont.) DC is κ(Q) for Q : ∃x∃y(S(x) ∧ R(x , y) ∧ S(y))

Causes?

• Add rules: Ans(t) ← R ′(t, x , y , d)

Ans(t) ← S ′(t, x , d)

• QA: Π |=brave Ans(t)? (true in some model of Π)
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• For (maximum) responsibility we need contingency sets
associated to causes

• New predicate CauCon(t, t ′):

“t is actual cause, and t ′ is a member of the former’s
contingency set”

• For each pair of predicates Pi ,Pj in DC κ(Q), the rule

CauCon(t, t ′)← P ′i (t, x̄i , d), P
′
j (t
′, x̄j , d), t ̸= t ′

(t′ deleted together with t)

• In the example: CauCon(t, t ′)← S ′(t, x , d),R ′(t ′, u, v , d)
Etc.
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• Example: (cont.) Π extended with rules for causes with
contingency sets

CauCon(t, t′)← S ′(t, x , d),R ′(t′, u, v , d)
CauCon(t, t′)← S ′(t, x , d), S ′(t′, u, d), t ̸= t′

CauCon(t, t′)← R ′(t, x , y , d), S ′(t′, u, d)

CauCon(t, t′)← R ′(t, x , y , d),R ′(t′, u, v , d), t ̸= t′

• From model M2 corresponding to repair D2: CauCon(1, 3)
and CauCon(3,1)
From repair difference D ∖ D2 = {R(a4, a3),R(a3, a3)}
• Contingency sets computed with extensions of ASP with
set-aggregation (e.g. DLV-Complex)

preCon(t, {t′}) ← CauCon(t, t′)

preCon(t,#union(C , {t′′})) ← CauCon(t, t′′), preCon(t,C),

not #member(t′′,C)

Con(t,C) ← preCon(t,C), not aux(t,C) (maximal sets)

aux(t,C) ← CauCon(t, t′),#member(t′,C)
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• Computation of a cause’s “responsibility”

pre-rho(t, n) ← #count{t ′ : CauCon(t, t ′)} = n

rho(t,m) ← m ∗ (pre-rho(t,m) + 1) = 1

• Responsibility of a cause t can be obtained through a query to
the extended program Πe :

Πe |=brave rho(t,X )?

Keep minimum value for X

• If WCs are added to the repair program, only
maximum-responsibility causes computed

• ASP with WCs computation has exactly required expressive
power/complexity needed for maximum-responsibility
computation
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Causality under Integrity Constraints

• For causality, taking satisfied ICs into account becomes crucial

• In DBs the structural model contains the lineage of the query
and now also the ICs (c.f. below)

• Counterfactual interventions become tuple deletions
(Salimi et al.; TaPP’16)

Instances obtained from D by tuple deletions should satisfy
the ICs (B. & Salimi; IJAR’17)

• In this case, we start assuming that D |= Σ

• For τ to be actual cause for Q(ā), the contingency set Γ
must satisfy:

D ∖ Γ |= Σ D ∖ Γ |= Q(ā)
D ∖ (Γ ∪ {τ}) |= Σ D ∖ (Γ ∪ {τ}) ̸|= Q(ā)

• Responsibility ρD,Σ
Q(ā)

(τ) defined as before
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• Example: DB instance D and CQ, Q below

Dep DName TStaff
t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName TStaff DName
t4 COM08 John Computing
t5 Math01 Kevin Math
t6 HIST02 Patrick Philosophy
t7 Math08 Eli Math
t8 COM01 John Computing

(A) Q(x) : ∃y∃z(Dep(y , x) ∧ Course(z , x , y))
⟨John⟩ ∈ Q(D)

(a) t1 is counterfactual
(b) t4 with single minimal contingency set Γ1 = {t8}
(c) t8 with single minimal contingency set Γ2 = {t4}
• Under IND ψ: ∀x∀y (Dep(x , y)→ ∃u Course(u, y , x))

(satisfied)• t4 t8 not actual causes anymore: D ∖ Γ1 |= ψ, but
D ∖ (Γ1 ∪ {t4}) ̸|= ψ
• t1 still is counterfactual cause

(B) Q1(x) : ∃y Dep(y , x) ⟨John⟩ ∈ Q1(D)

• Under IND: same causes as Q: Q ≡ψ Q1
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(C) Q2(x) : ∃y∃zCourse(z , x , y) ⟨John⟩ ∈ Q2(D)

• W/O ψ: t4 and t8 only actual causes, with Γ1 = {t8} and
Γ2 = {t4}, resp.
• Under IND: t4 and t8 still actual causes

• Contingency sets?

• We lose Γ1 and Γ2

D ∖ (Γ1 ∪ {t4}) ̸|= ψ, D ∖ (Γ2 ∪ {t8}) ̸|= ψ

• Smallest contingency set for t4: Γ3 = {t8, t1}
Smallest contingency set for t8: Γ4 = {t4, t1}
• Responsibilities of t4, t8 decrease: ρD

Q2(John)
(t4) =

1
2 , but

ρD,ψ
Q2(John)

(t4) =
1
3

• t1 is still not an actual cause, but affects the responsibility of
actual causes
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• Some Results:

• Causes are preserved under logical equivalence of queries under
ICs

• Without ICs, deciding causality for CQs is tractable, but their
presence may make complexity grow

• There are a CQ Q and an inclusion dependency ψ, for which
deciding causality is NP-complete (B & S’17)

• ASPs for computation of causes and responsibilities under ICs
can be produced

• Beyond CQs:

• What about causality for Datalog queries?

• For Datalog queries, cause computation can be NP-complete

• Through a connection to Datalog abduction
(B. & Salimi; IJAR’17)
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Abstract Causes from Repair Semantics

• Given: DB D, true query Q, and its associated (violated)
DC κ(Q)
• Different repair semantics S can be considered (not only

S-repairs as above)

• A repair semantics identifies a class RepS(D, κ(Q)) of
admissible and consistent instances that “minimally” depart
from D

• Now S-related causes can be defined

• t ∈ D is an S-actual cause for Q iff as on page 13 with
S-repairs instead of S-repairs

• In particular, prioritized repairs (Staworko et al., AMAI’12)

• There are prioritized ASPs that can be used for repair
programs (Gebser et al., TPLP’11)
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Attribute-Level Causes via Attribute-Based repairs

• Example: D, Q : ∃x∃y(S(x) ∧ R(x , y) ∧ S(y)), and
D ̸|= κ(Q)

R A B
t1 a4 a3
t2 a2 a1
t3 a3 a3

S A
t4 a4
t5 a2
t6 a3

Repair by “minimally” changing
attribute values by NULL,

as in SQL DBs

Cannot be used to satisfy a join
R A B
t1 a4 a3
t2 a2 a1
t3 a3 a3

S A
t4 a4
t5 a2
t6 NULL

R A B
t1 a4 NULL
t2 a2 a1
t3 a3 NULL

S A
t4 a4
t5 a2
t6 a3

Two repairs

For hiding sensitive information
in a DB (B. & Li; TKDE’13))

• These minimal repairs identify t6[1] (value in 1st position),
t1[2], t3[2] as actual causes

• Corresponding repair programs can be produced as before
(B.; KAIS’21)
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Causal Responsibility and Causal Effect

• Causal responsibility can be seen as an explanation score for
database tuples in relation to query results

• It is not the only possible score

• Example: Boolean query Π is true if there is a path between a
and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P(a, b)

P(x , y) ← E(x , y)

P(x , y) ← P(x , z),

E(z , y)

• E ∪ Π |= yes (query in Datalog, also union of CQs)

• All tuples are actual causes: every tuple in a path from a to b

• All the tuples have the same causal responsibility: 1
3

• Maybe counterintuitive: t1 provides a direct path from a to b
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• We proposed an alternative to the notion of causal
responsibility: Causal Effect, a new score (Salimi et al., TaPP’16)

• Causal responsibility has been questioned for other reasons
and from different angles

• Retake question about how answer to query Q changes if τ is
deleted/inserted from/into D

• An intervention on a structural causal model

• In this case provided by the the lineage of the query

• Example: D = {R(a, b),R(a, c),R(c , b),S(b),S(c)}
BCQ Q : ∃x(R(x , y) ∧ S(y))

• True in D, with lineage instantiated on D given by
propositional formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b))

• Xτ : propositional variable that is true iff τ ∈ D
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• Want to quantify contribution of a tuple to a query answer
• Assign probabilities uniformly and independently to tuples in
D
Rp A B prob

a b 1
2

a c 1
2

c b 1
2

Sp B prob

b 1
2

c 1
2

Probabilistic database
Dp (tuples outside D get

probability 0)

• The Xτ ’s become independent, identically distributed random
variables; and Q is Bernouilli random variable

• What’s the probability that Q takes a particular truth value
when an intervention is done on D?

• Interventions of the form do(X = x): In the structural
equations make X take value x

• For y , x ∈ {0, 1}: P(Q = y | do(Xτ = x))?

• Corresponding to making Xτ false or true

• E.g. do(XS(b) = 0) leaves lineage in the form:

ΦQ(D)
XS(b)

0 := (XR(a,c) ∧ XS(c))
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• The causal effect of τ :

CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

• Example: (cont.) When Xτ is made false, probability that
the instantiated lineage above becomes true in Dp:

P(Q = 1 | do(XS(b) = 0)) = P(XR(a,c) = 1)× P(XS(c) = 1) = 1
4

• When Xτ is made true, is probability of this lineage becoming
true in Dp:

ΦQ(D)
XS(b)

1 := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b)

P(Q = 1 | do(XS(b) = 1)) = P(XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1)

= · · · = 13
16

• E(Q | do(XS(b) = 0)) = P(Q = 1 | do(XS(b) = 0)) = 1
4

E(Q | do(XS(b) = 1)) = 13
16

• CED,Q(S(b)) = 13
16 − 1

4 = 9
16 > 0, an actual cause with

this causal effect!
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• Example: (cont.) The Datalog query, as a union of BCQs,
has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6)

• CED,Q(t1) = 0.65625
CED,Q(t2) = CED,Q(t3) = 0.21875
CED,Q(t4) = CED,Q(t5) = CED,Q(t6) = 0.09375

• The causal effects are different for different tuples!

• More intuitive result than responsibility!

• Rather ad hoc or arbitrary? (we’ll be back ...)
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Shapley Value in Databases
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Coalition Games and the Shapley Value

• Initial motivation: By how much a database tuple contributes
to the inconsistency of a DB? To the violation of ICs

• Similar ideas can be applied to the contribution to query
results (Livshits et al., 2020)

• Usually several tuples together are necessary to violate an IC
or produce a query result

• Like players in a coalition game, some may contribute more
than others

• Apply standard measures used in game theory, economics,
etc.: the Shapley value of tuple

• Implicitly based on counterfactual intervention: What would
happen if we change ...?
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• Consider a set of players D, and a wealth-distribution (game)
function G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S |!(|D| − |S | − 1)!

|D|! (G(S ∪ {p})− G(S))

• |S |!(|D| − |S | − 1)! is number of permutations of D with all
players in S coming first, then p, and then all the others

• Expected contribution of player p under all possible additions
of p to a partial random sequence of players followed by a
random sequence of the rest of the players

Shapley Value

Livshits et al. ICDT 2020 8

⊆∖{}

72
21 25

+4

The Shapley value is the expected delta 
due to the addition in a random permutation
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• Database tuples and feature values can be seen as players in a
coalition game
Each of them contributing to a shared wealth function

• The Shapley value is a established measure of contribution by
players to the wealth function

• It emerges as the only measure that enjoys certain desired
properties

• For each game one defines an appropriate wealth or game
function

• Shapley difficult to compute: #P-hard in general

• Evidence of difficulty: #SAT is #P-hard

About counting satisfying assignments for propositional
formulas

At least as difficult as SAT
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A Score-Based Approach: Shapley Values in DBs

• Database tuples can be seen as players in a coalition game

• Query Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

It takes values 0 or 1 in a database

• Game function becomes the value of the query

• A set of tuples make it true or not, with some possibly
contributing more than others to making it true

Shapley(D,Q, τ) := ∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

• Quantifies the contribution of tuple τ to query result

• All possible permutations of subinstances of D

• Average of differences between having τ or not

• Counterfactuals implicitly involved and aggregated
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• We investigated algorithmic, complexity and approximation
problems

• A dichotomy theorem for Boolean CQs without self-joins

Syntactic characterization: : PTIME vs. #P-hard

• Extended to aggregate queries

• It has been applied to measure contribution of tuples to
inconsistency of a database

• Related and popular score: Bahnzhaf Power Index
(order ignored)

Banzhaf (D,Q, τ) := 1
2|D|−1 ·

∑
S⊆(D\{τ})(Q(S ∪ {τ})−Q(S))

• Bahnzhaf also difficult to compute: #P-hard in general

• We proved “Causal Effect” coincides with the Banzhaf Index!
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Explanations for Classification
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A Score-Based Approach: Responsibility

classifier

e
loan?

No!

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No

• The gist:
e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes
e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• Value for Age is counterfactual cause with x-Resp(Age) = 1
Value for Income is actual cause with x-Resp(Income) = 1

2

• Second may be actionable, but not the first

• For binary features this works fine

• We have investigated this case in some detail

• Otherwise, there could be many values that do not change the
label, but one of them does

• Better consider all possible values ...
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The Resp Score: Classification

First a simplified version

- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for label “1”

• Through changes of feature
values, try to get “0”

• Fix a feature value x = eF

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0,

for x′ ∈ Dom(F )

• x actual explanation for L(e) = 1 if there are values Y in e,
x /∈ Y, and new values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0

• If Y is minimum in size: x-Resp(x) := 1
1+|Y|
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Example:
C

entity (id) F1 F2 F3 L
e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

• Due to e7, F2(e1) is counterfactual explanation, with
Resp(e1,F2) = 1

• Due to e4, F1(e1) is actual explanation; with Γ = {F2(e1)}
as contingency set:

Resp(e1,F1) =
1
2

• Sometimes we may be interested in minimal contingency sets,
under set-inclusion

So as S-repairs vs. C-repairs

• For non-binary features, Resp can be expressed as an
expected value
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A Variation: No contingencies, but average labels

• e = ⟨. . . , eF , . . .⟩, F ∈ F (B, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• Counter(e,F ) := L(e)− E(L(e′) | e′F∖{F} = eF∖{F})

• Easy to compute, and gives reasonable results

• Requires underlying probability space on entity population

• No need to access the internals of the classification model

• Changing one value may not switch the label

No explanations are obtained

• Bring in contingency sets of feature values!
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General Version: Contingencies and average labels

• e entity under classification, with L(e) = 1, and F ⋆ ∈ F
• Local Resp-score

Resp(e,F ⋆,F , Γ, w̄) :=
L(e′)−E[L(e′′) | e′′F∖{F⋆}= e′F∖{F⋆}]

1+|Γ| (∗)
• Γ ⊆ F ∖ {F ⋆}
• e′ := e[Γ := w̄ ] L(e′) = L(e)

• e′′ := e[Γ := w̄ ,F ⋆ := v ], with v ∈ dom(F ⋆)

• ( When F ⋆(e) ̸= v , L(e′′) ̸= L(e), F ⋆(e) is actual causal
explanation for L(e) = 1 with contingency ⟨Γ, eΓ⟩ )

• Globally: Resp(e,F ⋆) := max Resp(e,F ⋆,F , Γ, w̄)
|Γ| min., (∗)>0

⟨Γ, w̄⟩
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A Score-Based Approach: Shapley Values

• Feature values can be seen as players in a coalition game
Each of them contributing to a shared wealth function

• The Shapley value is a established measure of contribution by
players to the wealth function

• It emerges as the only measure that enjoys certain desired
properties

• For each game one defines an appropriate wealth or game
function

• Assume the classifier is binary, with labels 0 and 1

• Set of players F contain features All relative to e

• Game function: Ge(S) := E(L(e′) | e′S = eS) (eS : projection on S)

S ⊆ F
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• For a feature F ⋆ ∈ F , compute: Shap(F ,Ge,F ⋆)∑
S⊆F\{F⋆}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})− E(L(e′)|e′S = eS)]

• Quantifies the contribution of feature value F ⋆(e) to
classification result

• All possible permutations of subsets of F ∖ {F ⋆}
• Average of differences between having F ⋆(e) and not having it

• Counterfactuals implicitly involved and aggregated

• Shap score has become popular (Lee & Lundberg; 2017)

• Assumes a probability distribution on entity population

• Both Resp and Shap may end up considering exponentially
many combinations
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FIGURE 3.1 
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree 
to the appropriate leaf node, then returning the classification associated with this leaf (in this case, 
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for 
playing tennis. 

from that node corresponds to one of the possible values for this attribute. An 
instance is classified by starting at the root node of the tree, testing the attribute 
specified by this node, then moving down the tree branch corresponding to the 
value of the attribute in the given example. This process is then repeated for the 
subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas- 
sifies Saturday mornings according to whether they are suitable for playing tennis. 
For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) 

would be sorted down the leftmost branch of this decision tree and would therefore 
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no). 
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm 
are adapted from (Quinlan 1986). 

In general, decision trees represent a disjunction of conjunctions of con- 
straints on the attribute values of instances. Each path from the tree root to a leaf 
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc- 
tion of these conjunctions. For example, the decision tree shown in Figure 3.1 
corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast)  

v (Outlook = Rain A Wind = Weak)  

• Can we do better when we have the classification model?

• What if we have a decision tree, or a random forest, or a
Boolean circuit?

• Can we compute Shap in polynomial time?

• We investigated this problem in detail in a AAAI’21 paper

• Tractable and intractable cases

• Provided algorithms for the former

• In particular, tractable for decision trees and random forests

• Investigated approximation algorithms
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d-D Boolean-Circuits

• A Boolean circuit over set of variables X is a DAG C with:

• Each node without incoming edges (input) is labeled with
either a variable x ∈ X or a constant in {0, 1}

• Each other node is labeled with a gate in {¬,∧,∨}
• There is a single sink node, O, called the output

• e : X → {0, 1} (equivalently e ∈ {0, 1}|X |) is accepted by C,
written C(e) = 1, iff O takes value 1

• For a gate g of C, C(g) is the induced subgraph containing
gates on a path in C to g

Var(g) is the set of variables of C(g)
Var(g) = {x2, x3, x4}

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2 ). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• C is deterministic if every ∨-gate g with input
gates g1, g2: C(g1)(e) ̸= C(g2)(e), for every e

• Intuitively, ∨-gates behave as ∨̄-gates
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• C is decomposable if every ∧-gate g with
input gates g1, g2: Var(g1) ∩ Var(g2) = ∅

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-
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Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2 ). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• We will consider C to be deterministic and decomposable
circuit (d-D circuit)

• Several classes of Boolean models can be translated in
polynomial time into d-D Boolean circuits:

• Decision trees

• Ordered binary decision diagrams (OBDDs)

• Etc.
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• Compiling binary decision trees into d-D Boolean Circuits

• An inductive construction starting from the bottom of the DT

• Leaves of DT become constant binary gates in d-DC

• By induction one can prove the resulting circuit is d-D

• Final d-DC is the compilation c(r) of root node r of DT

s
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• Final equivalent d-DC: c(n7)

• Computable in linear time
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The SHAP Score: d-D Boolean-Circuits

• Theorem: Shap can be computed in polynomial time for d-D
circuits under the uniform distribution

• Corollary: Shap can be computed in polynomial time for
decision trees and random forests, OBDDs, etc., under the
uniform distribution

• It can be extended to any product distribution on {0, 1}|X |
(uniform is a particular case)

51 / 74



Ordered Binary Decision Diagrams

• Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

• They are relevant for several reasons in Knowledge
Compilation

• In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

• Opening the ground for efficiently applying Shap to them
f (x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1,∧x2) ∨ (x2 ∧ x3)

                                              Binary Decision Tree  
BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0),  then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not.  If  an  edge  is  complemented, then it  refers to the negation  of  the  Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representin  BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables,  we start at  the
reference edge, which  points to the BDD's  root, and  follow the  path that  is  defined by  the  given  variable  values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Binary decision tree and truth table for the function

, described in notation for

Boolean operators.

BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0),  then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not.  If  an  edge  is  complemented,  then  it  refers  to  the  negation  of  the  Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representing BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables,  we start at  the
reference  edge,  which  points  to  the  BDD's  root,  and  follow the  path  that  is  defined  by  the  given  variable  values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Same variable order along full paths ↗ OBDD
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Idea of the Proof⋆

• Shap(F ,Ge,F ) =∑
S⊆F\{F}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F} = eS∪{F})− E(L(e′)|e′S = eS)]

• Depends on e and (the classifier behind) L

• Dom(Fi ) = {0, 1}, Fi ∈ F , i = 1, . . . , n, e ∈ E := {0, 1}n
L(e) ∈ {0, 1}
• There is also a probability distribution P on E
• We will identify the Boolean classifier with L

SAT (L) := {e | L(e) = 1} #SAT (L) := |SAT (L)|
Counting the number of inputs that get label 1

• Proposition: For the uniform distribution Pu, and e ∈ E
#SAT (L) = 2|F| × ( L(e)−∑n

i=1 Shap(F ,Ge,Fi ) )
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• #SAT ≤Turing
PTIME Shap

• When #SAT (L) is hard for a Boolean classifier L,
computing Shap is also hard

• Negative Corollary: Computing Shap is #P-hard for

• Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

• Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF [Provan & Ball, 1983]

• Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

• Shap computation in polynomial time not precluded
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• Proposition: For d-D circuits C, #SAT (C) can be computed
in polynomial time

Idea: Bottom-up procedure that inductively computes
#SAT (C(g)), for each gate g of C

• So, maybe Shap computable in polynomial time ...

• To show that Shap can be computed efficiently for d-D
circuits, we need a detailed analysis

• We assume the uniform distribution for the moment

• A related problem: “satisfiable circle of an entity”

SAT (C, e, ℓ) := SAT (C) ∩ { e ′ | ||e− e′||1 = ℓ︸ ︷︷ ︸
ℓ value discrepancies

}

#SAT (C, e, ℓ) := |SAT (C, e, ℓ)|
• Proposition: If computing #SAT (C, e, ℓ) is tractable, so is

Shap(F ,Ge,Fi )
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• Main Result: #SAT (C, e, ℓ) can be solved in polynomial time
for d-D circuits C, entities e, and 1 ≤ ℓ ≤ |X |
Idea: Inductively compute #SAT (C(g), e

Var(g)
, ℓ) for each

gate g ∈ C and integer ℓ ≤ |Var(g)|
• Input gate: immediate

• ¬-gate:
#SAT (C(¬g), e

Var(g)
, ℓ) =

(
Var(g)

ℓ

)
−#SAT (C(g), e

Var(g)
, ℓ)

• ∨-gate: (uses determinism)

#SAT (C(g1 ∨ g2), eVar(g1)∪Var(g2)
, ℓ) =

#SAT (C(g1), eVar(g1)
, ℓ) + #SAT (C(g2), eVar(g2)

, ℓ)

• ∧-gate: (uses decomposition)

#SAT (C(g1 ∧ g2), eVar(g1)∪Var(g2)
, ℓ) =∑

j+k=ℓ #SAT (C(g1), eVar(g1)
, j)×#SAT (C(g2), eVar(g2)

, k)
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Reasoning about Explanations

57 / 74



Reasoning about Counterfactual Interventions

• Given a classifier, one can reason in answer-set programming
(ASP) about counterfactuals

• In interaction with the classifier

• Specified inside the ASP, or invoked as an external predicate

• Have done this for decision-tree and naive-Bayes classifiers

• One can easily impose semantic constraints on counterfactuals

• Each (sensible) counterfactual leading to a change of
classification corresponds to a model of the ASP

• Recourses (actionable explanations) can be specified

• Scores can be computed by means of set- and numerical
aggregations

• The former for minimal and minimum contingency sets
The latter for Resp scores

• Reasoning is enabled by cautious and brave query answering

• Explanations can be queried
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ASPs for Counterfactual Interventions

• Counterfactual Intervention Programs (CIPs) specify
counterfactual interventions on a given entity under
classification

• We will use DLV and DLV-Complex notation

• So as with repair programs, we use annotation constants:

Annotation Intended Meaning
o original entity
do do counterfactual intervention
tr entity in transition
s stop, label has changed

(single change of feature value)

• Retake the decision tree on page 47
CHAPTER 3 DECISION TREE LEARNING 53 

Noma1 Strong Weak 

No 
\ 

Yes 
/ 

No 
\ 

Yes 

FIGURE 3.1 
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree 
to the appropriate leaf node, then returning the classification associated with this leaf (in this case, 
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for 
playing tennis. 

from that node corresponds to one of the possible values for this attribute. An 
instance is classified by starting at the root node of the tree, testing the attribute 
specified by this node, then moving down the tree branch corresponding to the 
value of the attribute in the given example. This process is then repeated for the 
subtree rooted at the new node. 

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas- 
sifies Saturday mornings according to whether they are suitable for playing tennis. 
For example, the instance 

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong) 

would be sorted down the leftmost branch of this decision tree and would therefore 
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no). 
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm 
are adapted from (Quinlan 1986). 

In general, decision trees represent a disjunction of conjunctions of con- 
straints on the attribute values of instances. Each path from the tree root to a leaf 
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc- 
tion of these conjunctions. For example, the decision tree shown in Figure 3.1 
corresponds to the expression 

(Outlook = Sunny A Humidity = Normal) 

V (Outlook = Overcast)  

v (Outlook = Rain A Wind = Weak)  

Features F = {Outlook,Humidity,Wind}
Dom(Outlook) = {sunny, overcast, rain}
Dom(Humidity) = {high, normal}
Dom(Wind) = {strong, weak}
Entity e = ent(sunny, normal,weak) gets label Yes
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• Specifying domains, entity, classification tree, annotations:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

• Classifier could be invoked as external predicate in Python

• The last is the counterfactual rule

• Only one disjunct in the head becomes true; one per feature

• It uses the non-deterministic choice predicate

Chooses a new value in last argument for each combination of
the first three

• As long as the label does not depart from 1, i.e. yes
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• Specification of choice predicate:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31
diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

• Choice makes the program non-stratified

• Last rule is program constraint prohibiting going back to
initial entity

Acts by eliminating models that violate it

Also contributes to non-stratification

• Non-stratified negation is what makes ASP necessary

• Each counterfactual version represented by a model
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diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

• First rule defines “stop” annotation, when label changes

• Next rules for collecting changes, leading to score computation

• Sets of changes (in each model) is minimal (for free with ASP)

• Second last is program constraint: gets rid of models with
unchanged label

• Last rule contains aggregation for counting number of feature
value changes

• For each counterfactual version (or model) this is a “local”
x-Resp-score associated to a minimal set of changes

• Not necessarily the “global” Resp-score yet
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diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}
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• These are the two stable models of the CIP

• Two counterfactual versions with minimal contingency sets

• Only first is minimum counterfactual version: x-Resp(e) = 1

• Want only maximum responsibility counterfactual versions?

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �

33

• Weak program constraints can be violated, but only a
minimum number of times

• Minimize number of feature value differences between e and
counterfactual versions

• Only first model is kept
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• Reasoning enabled by query answering

• Under certain and brave semantics

• Adding domain knowledge very easy

• In a particular domain, there may never be rain with strong
wind; discard such a model

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �
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Another Example: Naive-Bayes Classification

Example 1. We reuse a popular example from [27]. The set of features is F =
{Outlook,Temperature,Humidity,Wind}, with Dom(Outlook) = {sunny, overcast,
rain},Dom(Temperature) = {high,medium, low},Dom(Humidity) = {high, normal},
Dom(Wind) = {strong, weak}. We will always use this order for the features.

Now, assume we have a classifier, C, that allows us to decide if we play
tennis (label yes) or not (label no) under a given combination of weather fea-
tures. A concrete naive-Bayes classifier will be given in Section 3. For ex-
ample, a particular weather entity has a value for each of the features, e.g.
e = ent(rain, high, normal,weak). We want to decide about playing tennis or not
under the wether conditions represented by e. □

Score-based methodologies are sometimes based on counterfactual interven-
tions:What would happen with the label if we change this particular value, leaving
the others fixed? Or the other way around: What if we leave this value fixed, and
change the others? The resulting labels from these counterfactual interventions
can be aggregated in different ways, leading to a score for the feature value under
inspection.

Let us illustrate these questions by using the entity e in the preceding ex-
ample. If we use the naive-Bayes classifier with entity e, we obtain the la-
bel yes (c.f. Section 3). In order to detect and quantify the relevance (tech-
nically, the responsibility) of a feature value in e = ent(rain, high, normal,weak),
say, of feature Humidity (underlined), we hypothetically intervene its value. In
this case, if we change it from normal to high, we obtain a new entity e′ =
ent(rain, high, high,weak). If we input this entity e′ into the classifier, we now
obtain the label no. We say that e′ is a counterfactual version of e.

This change of label is an indication that the original feature value for
Humidity is indeed relevant for the original classification. Furthermore, the fact
that it is good enough to change only this individual value is an indication of
its strength. If, to change the label, we also had to change other values together
with that for Humidity, its strength would be lower. In Section 4, we revisit a
particular responsibility score, x-Resp, which captures this intuition, and can be
applied with black-box or open models.

3 A Naive-Bayes Classifier

Play

Outlook HumidityTemp Wind

Outlook Temperature Humidity Wind Play
sunny high high weak no
sunny high high strong no

overcast high high weak yes
rain medium high weak yes
rain low normal weak yes
rain low normal strong no

overcast low normal strong yes
sunny medium high weak no
sunny low normal weak yes
rain medium normal weak yes
sunny medium normal strong yes

overcast medium high strong yes
overcast high normal weak yes
rain medium high strong no

4• Classifier is based on Bayesian network on the LHS above

Associated probabilities learned from data on the RHS:

Example 2. (example 1 cont. ) We now we build a naive-Bayes classifier for the
binary variable Play, about playing tennis or not. A Bayesian network, that is
the basis for this classifier, is shown right here above (left). In addition to the
network structure, we have to assign probability distributions to the nodes in it.
These distributions are learned from the training data in the table (right).

In this case, the features stochastically depend on the output variable Play,
and are independent from each other given the output. To fully specify the
network, we need the absolute distribution for the top node; and the conditional
distributions for the lower nodes.

These are the distributions inferred from the frequencies in the training data:

P (Play = yes) = 9
14

P (Play = no) = 5
14

P (Outlook = sunny|Play = yes) = 2
9

P (Outlook = sunny|Play = no) = 3
5

P (Outlook = overcast|Play = yes) = 4
9
P (Outlook = overcast|Play = no) = 0

P (Outlook = rain|Play = yes) = 3
9

P (Outlook = rain|Play = no) = 2
5

P (Temp = high|Play = yes) = 2
9

P (Temp = high|Play = no) = 2
5

P (Temp = medium|Play = yes) = 4
9

P (Temp = medium|Play = no) = 2
5

P (Temp = low|Play = yes) = 3
9

P (Temp = low|Play = no) = 1
5

P (Humidity = high|Play = yes) = 3
9

P (Humidity = high|Play = no) = 4
5

P (Humidity = normal|Play = yes) = 6
9
P (Humidity = normal|Play = no) = 1

5

P (Wind = strong|Play = yes) = 3
9

P (Wind = strong|Play = no) = 3
5

P (Wind = weak|Play = yes) = 6
9

P (Wind = weak|Play = no) = 2
5

We can use them to decide, for example, about playing or not with the follow-
ing input data: Outlook = rain,Temp = high,Humidity = normal,Wind = weak.
If we keep this order of the features, we are classifying the weather entity
e = ⟨rain, high, normal,weak⟩. This is done by determining the maximum prob-
ability between the two probabilities:

P (Play = yes|Outlook = rain, Temp = high, Humidity = normal,Wind = weak), (1)

P (Play = no|Outlook = rain, Temp = high, Humidity = normal,Wind = weak). (2)

Now, for each of the probabilities of the form P (P|O,T,H,W) it holds:

P (P|O, T, H,W) = P (P, O, T, H,W)

P (O, T, H,W)
=

P (O|P)P (T|P)P (H|P)P (W|P)P (P)∑
P P (O|P)P (T|P)P (H|P)P (W|P)P (P)

. (3)

In particular, the numerators for (1) and (2) become, resp.:

P (Outlook = rain|Play = yes)P (Temp = high|Play = yes)P (Humidity = normal|Play = yes)×

×P (Wind = false|Play = yes)P (Play = yes) =
3

9

2

9

6

9

6

9

9

14
=

4

189
, (4)

P (Outlook = rain|Play = no)P (Temp = high|Play = no)P (Humidity = normal|Play = no)×

×P (Wind = false|Play = no)P (Play = no) =
2

5

2

5

1

5

2

5

5

14
=

4

875
. (5)

The denominator for both cases is the marginal probability, i.e. 4
189 + 4

875 .
Then, it is good enough to compare (4) and (5). Since the former is larger, the
decision (or classification) becomes: Play = yes. □

5

• Beginning of CIP is as before, with probabilities as facts

• Entity with label Yes: e = ⟨rain, high, normal,weak⟩
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The program has as facts also the contents of the domains. They are of
the form dom_f(feature value), with “f” suggesting the feature name again,
e.g. dom_h(high), for Humidity. Finally, among the facts we find the original
entity that will be intervened by means of the CIP. In this case, as in Example
1, ent(e,rain,high,normal,weak,o), where constant e is an entity identifier
(eid), and o is the annotation constant. This entity gets label yes, i.e. Play = yes.
Through interventions, we expect the label to become no, i.e. Play = no.

Aggregation functions over sets will be needed later in the program, to build
contingency sets (c.f. Section 4). So, we use DLV-Complex that supports this
functionality. “List and Sets” has to be specified at the beginning of the pro-
gram, together with the maximum integer value. This is the first part of the
CIP, showing the facts: (as usual, words starting with lower case are constants;
whereas with upper case, variables)

% DLV-COMPLEX #include<ListAndSet> #maxint = 100000000.

% domains:

dom_o(sunny). dom_o(overcast). dom_o(rain). dom_t(high). dom_t(medium).

dom_t(low). dom_h(high). dom_h(normal). dom_w(strong). dom_w(weak).

% original entity that gets label 1:

ent(e,rain,high,normal,weak,o).

% absolute probabilities for Play (as percentage)

p(yes, 64). p(no, 36).

% Outlook conditional probabilities (as percentage)

p_o_c(sunny, yes, 22). p_o_c(overcast, yes, 45). p_o_c(rain, yes, 33).

p_o_c(sunny, no, 60). p_o_c(overcast, no, 0). p_o_c(rain, no, 40).

% Temperature conditional probabilities (as percentage)

p_t_c(high, yes, 22). p_t_c(medium, yes, 45). p_t_c(low, yes, 33).

p_t_c(high, no, 40). p_t_c(medium, no, 40). p_t_c(low, no, 20).

% Humidity conditional probabilities (as percentage)

p_h_c(normal, yes, 67). p_h_c(high, yes, 33).

p_h_c(normal, no, 20). p_h_c(high, no, 80).

% Wind conditional probabilities (as percentage)

p_w_c(strong, yes, 33). p_w_c(weak, yes, 67).

p_w_c(strong, no, 60). p_w_c(weak, no, 40).

The classifier will compute posterior probabilities for Play according to equa-
tions (1) and (2) in Section 3. Next, they are compared, and the largest de-
termines the label. As we can see from equation (3), the denominator is irrele-
vant for this comparison. So, we need only the numerators. They are specified
by means of a predicate of the form pb_num(E,O,T,H,W,V,Fp), where the ar-
guments stand for: eid, (values for) Outlook, Temp, Humidity, Wind and Play,
resp.; and the probability as a percentage. The CIP has to specify predicate
pb_num(E,O,T,H,W,V,Fp). That part of the program is not particularly inter-
esting, and looks somewhat cumbersome due to the combination of simple arith-
metical operations with probabilities. C.f. the program in [7, Appendix B].

Next, we have to specify the transition annotation constant tr, that is used
in rule bodies below. It indicates that we are using an entity that is in transition.
This annotation is specified as follows:

8

• Classification based on probability comparison

P(Play = yes|Outlook = rain,Temp = high,Humidity = normal,Wind = weak)

P(Play = no|Outlook = rain,Temp = high,Humidity = normal,Wind = weak)

% transition rules: the initial entity or one affected by an intervention

ent(E,O,T,H,W,tr) :- ent(E,O,T,H,W,o).

ent(E,O,T,H,W,tr) :- ent(E,O,T,H,W,do).

Now we have to specify the classifier, or better, the classification criteria,
appealing to predicate pb_num(E, O, H, W, V, Fp). More precisely, we have
to compare Fp for Play value yes, denoted Fyes, with Fp for Play value no,
denoted Fno. If the former is larger, we obtain label yes; otherwise label no:

% spec of the classifier

cls(E,O,T,H,W,yes) :- ent(E,O,T,H,W,tr), pb_num(E,O,T,H,W,yes,Fyes),

pb_num(E,O,T,H,W,no,Fno), Fyes >= Fno.

cls(E,O,T,H,W,no) :- ent(E,O,T,H,W,tr), pb_num(E,O,T,H,W,yes,Fyes),

pb_num(E,O,T,H,W,no,Fno), Fyes < Fno.

Notice the use of annotation constant tr in the body, because we will be
classifying entities that are in transition. Next, the CIP specifies all the one-
step admissible counterfactual interventions on entities with label yes, which
produces entities in transition. This disjunctive rule is the main rule.

% counterfactual rule: alternative single-value changes

ent(E,Op,T,H,W,do) v ent(E,O,Tp,H,W,do) v

ent(E,O,T,Hp,W,do) v ent(E,O,T,H,Wp,do) :- ent(E,O,T,H,W,tr),

cls(E,O,T,H,W,yes), O != Op, T != Tp, H!= Hp, W!= Wp,

chosen_o(O,T,H,W,Op), chosen_t(O,T,H,W,Tp), chosen_h(O,T,H,W,Hp),

chosen_w(O,T,H,W,Wp), dom_o(Op), dom_t(Tp), dom_h(Hp), dom_w(Wp).

Here we are using predicates chosen, one for each of the four features.
For example, chosen_h(O,T,H,W,Hp) “chooses” for each combination of val-
ues, O,T,H,W for Outlook, Temp, Humidity, and Wind, a unique (and new) value
Hp for feature Humidity, and that value is taken from its domain dom_h. Through
an intervention, that value Hp replaces the original value H, as one of the four
possible value changes that are indicated in the rule head.

The semantics of ASPs makes only one of the possible disjuncts in the head
true (unless forced otherwise by other rules in the program, which does not
happen with CIPs). The chosen predicates can be specified in a generic manner
[17]. Here, we skip their specification, but they can be found in [7, Appendix B].

In order to avoid going back to the original entity through counterfactual
interventions, we may impose a hard program constraint [23]. These constraints
are rules with empty head, which capture a negation. They have the effect of
discarding the models where the body becomes true. In this case:

% not going back to initial entity

:- ent(E,O,T,H,W,do), ent(E,O,T,H,W,o).

Next, we stop performing interventions when we switch the label to no, which
introduces the annotation s:

% stop when label has been changed:

ent(E,O,T,H,W,s) :- ent(E,O,T,H,W,do), cls(E,O,T,H,W,no).

9

• Rest of CIP as in previous example, including counterfactual
rule, hard and weak constraints, etc.

66 / 74



• We can collect changes of feature values

Finally, we introduce an extra program constraint, to avoid computing models
where the original entity never changes label. Those models will not contain the
original eid with annotation s:

% extra constraint avoiding models where label does not change

:- ent(E,O,T,H,W,o), not entAux(E).

% auxiliary predicate to avoid unsafe negation right above

entAux(E) :- ent(E,O,T,H,W,s).

The rest of the program uses counterfactual interventions to collect individual
changes (next rules), sets of them, cardinalities of those sets, etc.

% collecting changed values for each feature:

expl(E,outlook,O) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), O != Op.

expl(E,temp,T) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), T != Tp.

expl(E,humidity,H) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), H != Hp.

expl(E,wind,W) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), W != Wp.

With them, we will obtain, for example, the atom expl(e,humidity,normal)

in some of the models of the program, because there is a counterfactual entity
that changes normal humidity into high (c.f. Section 2). The atom indicates that
original value normal for humidity is part of an explanation for entity e. Con-
tingency sets for a feature value are obtained with the rules below. Since we keep
everywhere the eid, it is good enough to collect the names of the features whose
values are changed. For this we use predicate cont(E,U,S). Here, U is a feature
(with changed value), S is the set of all feature names whose values are changed
together with that for U. These sets are build using the built-in set functions of
DLV-Complex. Similarly with the built-in set membership check.

% building contingency sets

cause(E,U) :- expl(E,U,X).

cauCont(E,U,I) :- expl(E,U,X), expl(E,I,Z), U != I.

preCont(E,U,{I}) :- cauCont(E,U,I).

preCont(E,U,#union(Co,{I})) :- cauCont(E,U,I), preCont(E,U,Co),

not #member(I,Co).

cont(E,U,Co) :- preCont(E,U,Co), not HoleIn(E,U,Co).

HoleIn(E,U,Co) :- preCont(E,U,Co), cauCont(E,U,I), not #member(I,Co).

tmpCont(E,U) :- cont(E,U,Co), not #card(Co,0).

cont(E,U,{}) :- cause(E,U), not tmpCont(E,U).

The construction is such that one keeps adding contingency features, using
pre-contingency sets, until there is nothing else to add. In this way the contin-
gency sets contain all the features that have to be changed with the one at hand U.
For example, in one of the models we will find the atom cont(e,humidity,{}),
meaning that a change of the humidity value alone, i.e. with empty contingency
set, suffices to switch the label. Each counterfactual version of entity e will be
represented by a model of the program. Due to model minimality, the associ-
ated set of changes of feature values that accompany a counterfactual change
of feature value, say x in e, will correspond to a minimal, but not necessarily
minimum, contingency set Y for x in e (c.f. Section 4).

10

• We can use DLV-Complex for building contingency sets

Finally, we introduce an extra program constraint, to avoid computing models
where the original entity never changes label. Those models will not contain the
original eid with annotation s:

% extra constraint avoiding models where label does not change

:- ent(E,O,T,H,W,o), not entAux(E).

% auxiliary predicate to avoid unsafe negation right above

entAux(E) :- ent(E,O,T,H,W,s).

The rest of the program uses counterfactual interventions to collect individual
changes (next rules), sets of them, cardinalities of those sets, etc.

% collecting changed values for each feature:

expl(E,outlook,O) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), O != Op.

expl(E,temp,T) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), T != Tp.

expl(E,humidity,H) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), H != Hp.

expl(E,wind,W) :- ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), W != Wp.

With them, we will obtain, for example, the atom expl(e,humidity,normal)

in some of the models of the program, because there is a counterfactual entity
that changes normal humidity into high (c.f. Section 2). The atom indicates that
original value normal for humidity is part of an explanation for entity e. Con-
tingency sets for a feature value are obtained with the rules below. Since we keep
everywhere the eid, it is good enough to collect the names of the features whose
values are changed. For this we use predicate cont(E,U,S). Here, U is a feature
(with changed value), S is the set of all feature names whose values are changed
together with that for U. These sets are build using the built-in set functions of
DLV-Complex. Similarly with the built-in set membership check.

% building contingency sets

cause(E,U) :- expl(E,U,X).

cauCont(E,U,I) :- expl(E,U,X), expl(E,I,Z), U != I.

preCont(E,U,{I}) :- cauCont(E,U,I).

preCont(E,U,#union(Co,{I})) :- cauCont(E,U,I), preCont(E,U,Co),

not #member(I,Co).

cont(E,U,Co) :- preCont(E,U,Co), not HoleIn(E,U,Co).

HoleIn(E,U,Co) :- preCont(E,U,Co), cauCont(E,U,I), not #member(I,Co).

tmpCont(E,U) :- cont(E,U,Co), not #card(Co,0).

cont(E,U,{}) :- cause(E,U), not tmpCont(E,U).

The construction is such that one keeps adding contingency features, using
pre-contingency sets, until there is nothing else to add. In this way the contin-
gency sets contain all the features that have to be changed with the one at hand U.
For example, in one of the models we will find the atom cont(e,humidity,{}),
meaning that a change of the humidity value alone, i.e. with empty contingency
set, suffices to switch the label. Each counterfactual version of entity e will be
represented by a model of the program. Due to model minimality, the associ-
ated set of changes of feature values that accompany a counterfactual change
of feature value, say x in e, will correspond to a minimal, but not necessarily
minimum, contingency set Y for x in e (c.f. Section 4).

10

• Inverse responsibility computation as before or via cardinality
of contingency sets

The generation of contingency sets is now useful for the computation of
the inverse of the x-Resp score. For this we can use the built-in set-cardinality
operation #card(S,M) of DLV-Complex. Here, M is the cardinality of set S. The
score will be the result of adding 1 to the cardinality M of a contingency set S:

% computing the inverse of x-Resp

invResp(E,U,R) :- cont(E,U,S), #card(S,M), R = M+1, #int(R).

For each counterfactual version of e, as represented by a model of the pro-
gram, we will obtain a local x-Resp score. So, a particular feature value, U, may
have several local x-Resp scores in different models of the program. For example,
in the model corresponding to the change of humidity (and nothing else) we
will get the atom invResp(e,humidity,1). Finally, full explanations will be of
the form fullExpl(E,U,R,S), where U is a feature name, R is its inverse x-Resp
score, and S is its contingency set (of feature names).
% full explanations:

fullExpl(E,U,R,S) :- expl(E,U,X), cont(E,U,S), invResp(E,U,R).

Following with our ongoing example, we will get in one model the atom
fullExpl(e,humidity,1,{}). Additional information, such as the new feature
values that lead to the change of label can be read-off from the associated model
(examples follow). The original feature values can be recovered via the eid e

from the original entity.
If we run the program starting with the original entity, we obtain ten different

counterfactual versions of e. They are represented by the ten essentially different
stable models of the program, and can be read-off from the atoms with the
annotation s, namely: (with value changes underlined)

1. ent(e,rain,high, high,weak,s)
2. ent(e,rain,high, high, strong,s), ent(e, sunny,high,normal, strong,s),

ent(e, sunny,high, high,weak,s)
3. ent(e,rain, medium, high, strong,s), ent(e,rain, low, high, strong,s),

ent(e, sunny, low, high,weak,s), ent(e, sunny, medium, high,weak,s);
4. ent(e, sunny, medium, high, strong,s), ent(e, sunny, low, high, strong,s).

Below we show only three of the obtained models (the others are found in [7,
Appendix B]). In the models we show only the most relevant atoms, omitting
initial facts, intermediate probabilities, and chosen-related atoms:
M1 {ent(e,rain,high,normal,weak,o), ent(e,rain,high,normal,weak,tr),

cls(e,rain,high,normal,weak,yes), ent(e,rain,high,high,weak,do),

ent(e,rain,high,high,weak,tr), cls(e,rain,high,high,weak,no),

ent(e,rain,high,high,weak,s), expl(e,humidity,normal),

cont(e,humidity,{}),invResp(e,humidity,1),fullExpl(e,humidity,1,{})}

M2 {ent(e,rain,high,normal,weak,o), ent(e,rain,high,high,strong,tr),

cls(e,rain,high,high,strong,no), ent(e,rain,high,high,strong,s),

invResp(e,humidity,2), fullExpl(e,humidity,2,{wind}),

invResp(e,wind,2), fullExpl(e,wind,2,{humidity})}

M3 {ent(e,rain,high,normal,weak,o), ent(e,sunny,high,normal,strong,tr),

cls(e,sunny,high,normal,strong,no),ent(e,sunny,high,normal,strong,s),

invResp(e,outlook,2), fullExpl(e,outlook,2,{wind}), ...}

The first model corresponds to our running example. The second model shows
that the same change of the previous model accompanied by a change for Wind

11

67 / 74



• Without weak constraints we obtain 10 different models

Each representing a counterfactual version of e

• Only three shown here:

The generation of contingency sets is now useful for the computation of
the inverse of the x-Resp score. For this we can use the built-in set-cardinality
operation #card(S,M) of DLV-Complex. Here, M is the cardinality of set S. The
score will be the result of adding 1 to the cardinality M of a contingency set S:

% computing the inverse of x-Resp

invResp(E,U,R) :- cont(E,U,S), #card(S,M), R = M+1, #int(R).

For each counterfactual version of e, as represented by a model of the pro-
gram, we will obtain a local x-Resp score. So, a particular feature value, U, may
have several local x-Resp scores in different models of the program. For example,
in the model corresponding to the change of humidity (and nothing else) we
will get the atom invResp(e,humidity,1). Finally, full explanations will be of
the form fullExpl(E,U,R,S), where U is a feature name, R is its inverse x-Resp
score, and S is its contingency set (of feature names).
% full explanations:

fullExpl(E,U,R,S) :- expl(E,U,X), cont(E,U,S), invResp(E,U,R).

Following with our ongoing example, we will get in one model the atom
fullExpl(e,humidity,1,{}). Additional information, such as the new feature
values that lead to the change of label can be read-off from the associated model
(examples follow). The original feature values can be recovered via the eid e

from the original entity.
If we run the program starting with the original entity, we obtain ten different

counterfactual versions of e. They are represented by the ten essentially different
stable models of the program, and can be read-off from the atoms with the
annotation s, namely: (with value changes underlined)

1. ent(e,rain,high, high,weak,s)
2. ent(e,rain,high, high, strong,s), ent(e, sunny,high,normal, strong,s),

ent(e, sunny,high, high,weak,s)
3. ent(e,rain, medium, high, strong,s), ent(e,rain, low, high, strong,s),

ent(e, sunny, low, high,weak,s), ent(e, sunny, medium, high,weak,s);
4. ent(e, sunny, medium, high, strong,s), ent(e, sunny, low, high, strong,s).

Below we show only three of the obtained models (the others are found in [7,
Appendix B]). In the models we show only the most relevant atoms, omitting
initial facts, intermediate probabilities, and chosen-related atoms:
M1 {ent(e,rain,high,normal,weak,o), ent(e,rain,high,normal,weak,tr),

cls(e,rain,high,normal,weak,yes), ent(e,rain,high,high,weak,do),

ent(e,rain,high,high,weak,tr), cls(e,rain,high,high,weak,no),

ent(e,rain,high,high,weak,s), expl(e,humidity,normal),

cont(e,humidity,{}),invResp(e,humidity,1),fullExpl(e,humidity,1,{})}

M2 {ent(e,rain,high,normal,weak,o), ent(e,rain,high,high,strong,tr),

cls(e,rain,high,high,strong,no), ent(e,rain,high,high,strong,s),

invResp(e,humidity,2), fullExpl(e,humidity,2,{wind}),

invResp(e,wind,2), fullExpl(e,wind,2,{humidity})}

M3 {ent(e,rain,high,normal,weak,o), ent(e,sunny,high,normal,strong,tr),

cls(e,sunny,high,normal,strong,no),ent(e,sunny,high,normal,strong,s),

invResp(e,outlook,2), fullExpl(e,outlook,2,{wind}), ...}

The first model corresponds to our running example. The second model shows
that the same change of the previous model accompanied by a change for Wind

11• With WCs only the first survives, corresponding to a
maximum responsibility counterfactual version

e′ = ⟨rain, high, high,weak⟩
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• We can add domain knowledge

• If there are functional relationships between feature values for
Temperature and Humidity:

high 7→ normal, {medium, low} 7→ high

We can drop disjuncts from counterfactual rule, or qualify
body conditions, or use program constraints, for not leading
to admissible counterfactuals

• Alternatively, we could use extra rules:

also leads to a change of label. We might prefer the first model. We will take
care of this next. The third model shows a different combination of changes: for
Outlook accompanied by Wind. In this model, the original Outlook value has 1

2
as x-Resp score.

If we are interested only in those counterfactual entities that are obtained
through a minimum number of changes, and then leading to maximum respon-
sibility scores, we can impose weak program constraints on the program [23]. In
contrast to hard constraints, as used above, they can be violated by a model
of the program. However, only those models where the number of violations is
a minimum are kept. In our case, the number of value differences between the
original and final entity is minimized:

% weak constraints to minimize number of changes

:~ ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), O != Op.

:~ ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), T != Tp.

:~ ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), H != Hp.

:~ ent(E,O,T,H,W,o), ent(E,Op,Tp,Hp,Wp,s), W != Wp.

Running the program with them, leaves only model M1 above, corresponding
to the counterfactual entity e′ = ent(rain, high, high,weak). This is a maximum-
responsibility counterfactual explanation. □

6 Exploiting Domain Knowledge and Query Answering

CIPs allows for the inclusion of domain knowledge. In our example, describing
a particular geographic region, it might be the case that there is never high
temperature with a strong wind. Such a combination might not be allowed in
counterfactuals, which could be done by imposing the program constraint:
:- ent(E,_,high,_,strong,tr).

If we run the program with this constraint, models M2 and M3 above would
be discarded, so as any other where the inadmissible combination appears [8].

In another geographic region, it could be the case that there is a functional
relationship between features, for example, between Temperature and Humidity :
high 7→ normal, {medium, low} 7→ high. In this case, from the head of the
counterfactual rule, the disjunct ent(E,O,T,Hp,W,do) could be dropped for not
representing an admissible counterfactual. Instead, we could add the extra rules:

ent(E,O,T,normal,W,tr) :- ent(E,O,high,H,W,tr).

ent(E,O,T,high,W,tr) :- ent(E,O,medium,H,W,tr).

ent(E,O,T,high,W,tr) :- ent(E,O,low,H,W,tr).

We can also exploit reasoning, which is enabled by query answering. Actually,
the models of the program are implicitly queried, as databases (the models do not
have to be returned, only the answers). Under the cautious semantics we obtain
the answers that are true in all models, whereas under the brave semantics,
the answers that are true in some model [23]. They can be used for different
kinds of queries. The query semantics is specified when calling the program
(naiveBayes.txt), so as the file containing the query (queries.txt):
\DLV>dlcomplex.exe -nofacts -nofdcheck -brave naiveBayes.txt queries.txt

If we do not use the weak constraints that minimize the responsibility, and
we want the responsibility of feature Outlook, we can pose the query Q1 below
under the brave semantics. The same to know if there is an explanation with
less than 3 changes (Q2):
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• Responsibility of feature value for Outlook?

• Remove weak constraints: Is there a counterfactual with less
than three changes?

• Use brave semantics:
invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have
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For Q3 we obtain, e.g., e, sunny , low , normal , strong , yes

For Q4, e.g., e, sunny , low , high, strong
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• Does the wind not change under every counterfactual version?

• Under cautions semantics:

invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4
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We obtain the empty output

Meaning Wind is changed in at least one counterfactual
version

• Different kinds of queries

• For explanatory and exploratory purposes

• For comparison of two different classifiers in a single program

• Etc.

71 / 74



Score-Based Approaches: Final Remarks

• There are many interesting open problems to investigate

• Investigated complexity and algorithmic aspects of Resp

• What if we have the classifier?

• Addition of semantic and domain knowledge is important

• Redefinition vs. hacked computation vs. change of
distribution?

• Reasoning about counterfactuals

• Connections to model-based diagnosis?

• Explanations vs. Interpretations?

• What is a good explanation?

• What is a good score?

• Maybe emerging from desiderata, so as the Shapley value
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• Explanations are at the basis of fairness and bias analysis

• Identifying unexpected or undesirable high-score features
becomes relevant

• But possibly not enough

• Understanding the decisions in relation to protected features
becomes relevant

• An analytical process that should be characterized, formalized
and automated

• Explaining how decisions are made

….….
race

income

age

Loan?

No!Yes!

e1 e2

e1
e2

Here race is a protected feature
Two entities with same path diverge at that
point, getting different labels

• Another promising problem: higher-order analytics
on explanations

• What else can be learnt about the population or our
classification mechanism?
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