
Counterfactual-Based Explanations
for

Classification Outcomes

Semantics and Reasoning

Leopoldo Bertossi
bertossi@scs.carleton.ca

10

F U N DA M E N TO S D E L O S DATO S / M A N UA L D E M A RC A L o g ot i p o

2022 Samsung AI Neuro-Symbolic WS “When Deep Learning Meets Logic”

Explanations in Machine Learning

classifier

e
loan?

No!

• Client e requests a loan from a bank
that uses a black-box classifier

• As an entity represented as a record of
feature values:

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩
For Name, Age, Activity, Income, ...

• Which are the most relevant feature values for the
classification outcome with label “No”?

What is the quantitative contribution of each feature value to
the outcome?

• A particular but not uncommon form of explanation for an
outcome from an ML model

We will concentrate on this kind of explanations

2 / 27

A Score-Based Approach

• We mentioned two crucial issues:

1. Relevance, and

2. An associated Degree of Contribution

• Without being the only possible way, we will approach them
from the side of Actual Causality (Halpern & Pearl, 2001)

• We identify relevant feature values as actual causes

Assign numerical scores to them on the basis of
Causal Responsibility, a measure of causal contribution

(Chockler & Halpern, 2004)

• Actual causes identified via Counterfactual Interventions

Hypothetically reasoning: Would the change of this (these)
feature value(s) lead to a change of label?

3 / 27

classifier

e
loan?

No!

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No

• Counterfactual versions:

e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes

e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• For the gist:

1. Value for Age is counterfactual cause with explanatory
responsibility x-Resp(Age) = 1

2. Value for Income is actual cause with x-Resp(Income) = 1
2

This one needs additional changes ...

• Still, we might “prefer” the second explanation, actually its
counterfactual version

We could do something with this explanation ...
4 / 27

• Responsibility would be one form of attribution score

There are others, most prominently Shap

• This counterfactual and score-based approach can be used
with open and black-box models

We do not need the internals of the model, only the
input/output relation

• Having the internals of the model can lead to much faster
score computation

What we did for Shap and a certain class of Boolean circuits
as classifiers (including decision trees, OBBDs, etc.)

(Arenas, Barcelo, Bertossi, Monet, AAAI’21)

• We will concentrate on x-Resp

Its counterfactual component is quite explicit ...

5 / 27

The Need for Reasoning

• We (or intelligent systems) receive attribution scores, and
counterfactual explanations

What do we do with them?

• We can reason about/with them, analyze them, select some
of them, aggregate them, etc.

In interaction with both attribution-score model/algorithm
and classifier for further exploration

• We need tools for conveying or imposing domain knowledge
(domain semantics)

Possibly only some counterfactuals make sense

Some combinations of feature values may not be allowed

Some changes may “trigger” other changes

To impose preferences on counterfactuals

6 / 27

• We need tools for doing reasoning

Some sort of logical reasoning

• We need tools for querying explanations

Are there explanations with this particular property?

Or any two that differ by ...?

• Specification of high-score actionable explanations (resources)

We want explanations we can do something with/about

To get the loan, I cannot decrease my age, but I could try to
change my job ...

We may want to compute those only

Or others with a different preferred property

• On-the-fly interaction with different ML models and scores

Do I get same score with this different ML system?

Or this other attribution score (definition, algorithm or
implementation)?

7 / 27

• Imposing conditions on feature values

What if I leave some feature values fixed?

Do I get same high-score feature with this “similar” entity?

Is there a high-score counterfactual version of the entity that
changes this specific feature?

Or never changes that one?

Why do I get this high score for this feature value?

Higher level “why” ...

• Summarizing, we need to:

1. Specify counterfactual interventions

2. Compute responsibility scores, and explanations

3. Reason about them, and about explanations

4. Answer different questions (queries)

8 / 27

Enabling Reasoning

• We need a logic and a general reasoning system for it

• Supporting the desiderata above

• Has the right constructs

• Has the right reasoning and computational power

• Without overkilling the tasks

• We know that reasoning/computational tasks belong to 2nd
level of the polynomial hierarchy (in data)

• We need in particular:

• Declarative language, and reasoning via QA

• Possibly several models (representing counterfactuals)

• Minimality of models, and closed-world assumption

• Non-monotonicity, and commonsense reasoning (persistence)

• Program constraints (domain semantics and model preference)

• Extensions: weak constraints, set and numerical aggregations,
interaction with external programs (classifiers)

9 / 27

• We have used Answer-Set Programming (ASP)
(Gelfond & Lifschitz, 1991)

A form of logic programming, with stable model semantics

Disjunctive rule heads come handy

Well known in the KR community

For KR, reasoning, and solving combinatorial problems

• We used the DLV System (with its extensions)

Developed at the U. of Calabria and T. U. Vienna

10 / 27

The x-Resp Score

x-Resp score for value of feature F ⋆: (simplified version)

- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for label “1”

• Through value changes for
feature F ⋆, try to get “0”

• Feature value x = e
F⋆

• x counterfactual explanation for L(e) = 1 if L(e x
x′) = 0,

for some x′ ∈ Dom(F)

• x actual explanation for L(e) = 1 if there are values Y in e,
x /∈ Y, and new values Y′ ∪ {x′}:

(a) L(e Y
Y′) = 1 (b) L(e xY

x′Y′) = 0

• For minimum-size contingency set Y: x-Resp(F ⋆, x) := 1
1+|Y|

11 / 27

• We are usually interested in maximum-responsibility feature
values

Associated to minimum (cardinality) contingency sets of
feature values

• Sometimes we may be interested in minimal contingency sets,
under set-inclusion

For non-maximum responsibility feature values

• For non-binary features, Resp may be better expressed as an
expected value (Bertossi, Li, Schleich, Suciu, Vagena; 2020)

12 / 27

Specifying Counterfactual Interventions

Joint work with Gabriela Reyes (PhD student, UAI)

• Reason in ASP about counterfactuals

In interaction with the classifier

Specified inside the ASP, or invoked as external predicate

• Counterfactual Intervention Programs (CIPs)

Specify counterfactual interventions on an entity under
classification (Bertossi; TPLP’21)

• ASP programs use rules of the form:

D1(...) ∨ · · · ∨ Dn(...)←− P1(...), . . . ,Pk (...), not N1(...), . . . , not Nm(...)

• ASP programs may have several (intended) models:
answer-sets (or stable models)

• Rule with empty head are program constraints: models are
not allowed to satisfy the RHS

Those that do are eliminated
13 / 27

• We will use DLV and DLV-Complex notation and
implementations

• Easily impose semantic constraints on counterfactuals

• Each counterfactual version leading to a new label
corresponds to a model

• Scores can be computed by means of set- and numerical
aggregations

For minimal and minimum contingency sets

Supported by DLV-Complex

• Reasoning is enabled by cautious and brave query answering

True in all models vs. true in some model

• Here we will classify and interact with decision-trees

For naive-Bayes classifiers, c.f. (Bertossi & Reyes, IJCLR’21)

14 / 27

• A decision tree (classic example) CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

Features F = {Outlook,Humidity,Wind}
Dom(Outlook) = {sunny, overcast, rain}
Dom(Humidity) = {high, normal}
Dom(Wind) = {strong, weak}

Entity e = ent(sunny, normal,weak) gets label Yes (1)

• Want to change label to No (0)

By successive attribute value changes (interventions)

• CIPs use annotation constants:

Annotation Intended Meaning
o original entity
do do counterfactual intervention

(change one feature value)
tr entity in transition
s stop, label has changed

E (..., o), E (..., do), E (..., tr), E (..., s)

15 / 27

• Specifying domains, entity, classification tree, annotations:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

• Next is the counterfactual rule (the most important one)

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

Only one disjunct in the head becomes true; one per feature

It uses the non-deterministic choice predicate

Chooses a new value in last argument for each combination of
the first three

While the label stays 1 (yes)

16 / 27

• Specification of the three choice predicates:

Example 22. (example 20 continued) We present now the CIP for the classi-
fier based on the decision-tree, in DLV-Complex notation. We use annotation
constants o, for “original entity”, do, for “do a counterfactual intervention” (a
single change of feature value), tr, for “entity in transition”, and s, for “stop,
the label has changed”. We explain the program as we present it, and also by
inserting comments in the DLV code.

Notice that after the facts, that include the domains and the input entity,
we find the rule-based specification of the decision tree. The ent predicate, for
“entity”, uses an entity identifier (eid) in its first argument.

% facts:

dom1(sunny). dom1(overcast). dom1(rain). dom2(high). dom2(normal).

dom3(strong). dom3(weak).

ent(e,sunny,normal,weak,o). % original entity at hand

% specification of the decision-tree classifier:

cls(X,Y,Z,1) :- Y = normal, X = sunny, dom1(X), dom3(Z).

cls(X,Y,Z,1) :- X = overcast, dom2(Y), dom3(Z).

cls(X,Y,Z,1) :- Z = weak, X = rain, dom2(Y).

cls(X,Y,Z,0) :- dom1(X), dom2(Y), dom3(Z), not cls(X,Y,Z,1).

% transition rules: the initial entity or one affected by a value change

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,o).

ent(E,X,Y,Z,tr) :- ent(E,X,Y,Z,do).

% counterfactual rule: alternative single-value changes

ent(E,Xp,Y,Z,do) v ent(E,X,Yp,Z,do) v ent(E,X,Y,Zp,do) :-

ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(Xp), dom2(Yp),

dom3(Zp), X != Xp, Y != Yp, Z!= Zp,

chosen1(X,Y,Z,Xp), chosen2(X,Y,Z,Yp),

chosen3(X,Y,Z,Zp).

In this rule’s body we find the “choice operator”. It is a predicate (to de
defined next in the program), say chosen1(x, y, z, x′), that, for each combination
of values (x, y, z) “chooses” a single value for x′. This new value can be used to
replace a value in the first argument of the entity. Similarly for chosen2(x, y, z, y′)
and chosen3(x, y, z, z′). They can be defined by means of the next rules in the
program [24].

% definitions of "chosen" predicates:

chosen1(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom1(U), U != X,

not diffchoice1(X,Y,Z,U).

diffchoice1(X,Y,Z, U) :- chosen1(X,Y,Z, Up), U != Up, dom1(U).

chosen2(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom2(U), U != Y,

not diffchoice2(X,Y,Z,U).

diffchoice2(X,Y,Z, U) :- chosen2(X,Y,Z, Up), U != Up, dom2(U).

chosen3(X,Y,Z,U) :- ent(E,X,Y,Z,tr), cls(X,Y,Z,1), dom3(U), U != Z,

not diffchoice3(X,Y,Z,U).

31

ETC.

Makes the program non-stratified (recursion via negation)

• A program constraint prohibiting going back to initial entitydiffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

Eliminates models that violate it

Also contributes to non-stratification

• Non-stratified negation is useful/needed

• Rule defining “stop” annotation, when label becomes 0

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

Last and desirable version of original entity

• Each counterfactual version represented by a model

17 / 27

• Models where entity does not change label can be discarded
via a program constraint

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

• Rules for collecting value changes per feature

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

Sets of changes (in each model) is minimal (for free with ASP)

• Rule with aggregation for counting number of feature value
changes

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

• For each counterfactual version (or model) this is a “local”
x-Resp-score associated to a minimal set of changes

Not necessarily the “global” Resp-score yet

18 / 27

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

−→

←−←−

←−←−

• Two stable models of the CIP

• Two counterfactual versions with minimal contingency sets

• Only first is minimum counterfactual version: x-Resp(e) = 1

• Want only maximum responsibility counterfactual versions?

19 / 27

diffchoice3(X,Y,Z, U) :- chosen3(X,Y,Z, Up), U != Up, dom3(U).

% Not going back to initial entity (program constraint):

:- ent(E,X,Y,Z,do), ent(E,X,Y,Z,o).

The last rule is a (hard) program constraint that avoids going back to the
initial entity by performing value changes. This constraint makes the ASP eval-
uation engine discard those models where this happen [28].

% stop when label has been changed:

ent(E,X,Y,Z,s) :- ent(E,X,Y,Z,do), cls(X,Y,Z,0).

% collecting changed values for each feature:

expl(E,outlook,X) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

expl(E,humidity,Y) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

expl(E,wind,Z) :- ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

entAux(E) :- ent(E,X,Y,Z,s). % auxiliary predicate to

% avoid unsafe negation

% in the constraint below

:- ent(E,X,Y,Z,o), not entAux(E). % discard models where

% label does not change

% computing the inverse of x-Resp:

invResp(E,M) :- #count{I: expl(E,I,_)} = M, #int(M), E = e.

The last rule returns, for a given entity, the number of values that have been
changed in order to reach a counterfactual version of that entity. The inverse of
this value can be used to compute a x-Resp score (the 1

1+|Y| in Section 11).

Two counterfactual versions of e are obtained, as represented by the two
essentially different stable models of the program, and determined by the atoms
with the annotation s (below, we keep in them only the most relevant atoms,
omitting initial facts and choice-related atoms):

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),

cls(sunny,normal,weak,1), cls(overcast,high,strong,1),

cls(overcast,high,weak,1), cls(rain,high,weak,1),

cls(overcast,normal,weak,1), cls(rain,normal,weak,1),

cls(overcast,normal,strong,1), cls(sunny,high,strong,0),

cls(sunny,high,weak,0), cls(rain,high,strong,0),

cls(rain,normal,strong,0), ent(e,sunny,high,weak,do),

ent(e,sunny,high,weak,tr), ent(e,sunny,high,weak,s),

expl(e,humidity,normal),invResp(e,1)}

{ent(e,sunny,normal,weak,o), cls(sunny,normal,strong,1),...,

cls(rain,normal,strong,0), ent(e,rain,normal,strong,do),

ent(e,rain,normal,strong,tr), ent(e,rain,normal,strong,s),

expl(e,outlook,sunny), expl(e,wind,weak), invResp(e,2)}

32

√

×
• Introduce weak program constraints

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �

33

Weak program constraints can be violated, but only a
minimum number of times

Minimize number of feature value differences between e and
counterfactual versions

Only first model is kept (and gives global responsibility)

20 / 27

Domain Knowledge and Extensions

• Adding domain knowledge is easy

There may never be rain with strong wind

Discard the model:

The first model shows the classifiers as a set of atoms, and, in its second last
line, that ent(e,sunny,high,weak,s) is a counterfactual version (with label 0)
of the original entity e, and is obtained from the latter by means of changes of val-
ues in feature Humidity, leading to an inverse score of 1. The second model shows
a different counterfactual version of e, namely ent(e,rain,normal,strong,s),
now obtained by changing values for features Outlook and Wind, leading to an
inverse score of 2.

Let us now add, at the end of the program the following weak constraints:

% Weak constraints to minimize number of changes: (*)

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), X != Xp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Y != Yp.

:~ ent(E,X,Y,Z,o), ent(E,Xp,Yp,Zp,s), Z != Zp.

If we run the program with them, the number of changes is minimized, and we
basically obtain only the first model above, corresponding to the counterfactual
entity e′ = ent(sunny, high,weak). This is a maximum-responsibility counterfac-
tual explanation. �
As can be seen at the light of this example, more complex rule-based classifiers
could be defined inside a CIP. It is also possible to invoke the classifier as an
external predicate [10].

10.1 Bringing-in domain knowledge

The CIP-based specifications we have considered so far allow all kinds of coun-
terfactual interventions on feature values. However, this may be undesirable or
unrealistic in certain applications. For, example, we may not end up producing,
and even less, using for score computation, some entities representing people who
have the combination of values yes and yes for the propositional features Married
and YoungerThan5. Declarative approaches to specification and computation of
counterfactual explanations have the nice feature that domain knowledge and
semantic constraints can be easily integrated with the base specification. Pro-
cedural approaches may, most likely, require changing the underlying code. We
use an example to illustrate the point. For more details and a discussion see [10].

Example 23. (example 22 continued) It could be that in a particular geographic
region, “raining with a strong wind at the same time” is never possible. When
producing counterfactual interventions for the entity e, such a combination
should not be produced or considered.

This can be done by imposing a hard program constraint

% hard constraint disallowing a particular combination

:- ent(E,rain,X,strong,tr).

that we add to the program in Example 22, from which we previously remove
the weak constraints we had in (*) (in order not to discard any model for
cardinality reasons). If we run the new program with DLV, we obtain only
the first model in Example 22, corresponding to the counterfactual entity e′ =
ent(sunny, high,weak). �

33

• Constraint has the effect of deleting models with this
combination

Computationally better: compile constraints into rule bodies
(conditions) (avoiding construction of models that will be discarded)

• Similarly for specifying actionability

• CIPs are quite generic

Most of their ingredients are general

Domain/application independent

• We have used DLV in interaction with an external classifier
programmed in Python

DLV offers the right interface
21 / 27

Reasoning via QA

• Counterfactuals can be queried

Reasoning enabled by query answering

• Under cautious and brave semantics:

- Responsibility of feature Outlook?

- A counterfactual version with less than 3 changes?

(brave semantics)invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have

13

- An intervened entity with combination of sunny outlook and
strong wind, and its label?

- All intervened entities that obtain label No?

invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have

13

- Does the wind not change under every counterfactual version?

(cautious semantics)

invResp(e,outlook,R)? %Q1

fullExpl(E,U,R,S), R<3? %Q2

Q1 returns 2, 3, and 4, then the responsibility for Outlook is 1
2 . Q2 returns all

the full explanations with inverse score 1 or 2, e.g. e,outlook,2,{humidity}.
We can also ask, under the brave semantics, if there is an intervened entity
exhibiting the combination of sunny outlook with strong wind, and its label
(Q3). Or perhaps, all the intervened entities that obtained label no (Q4):

cls(E,O,T,H,W,_), O = sunny, W = strong? %Q3

cls(E,O,T,H,W,no)? %Q4

For Q3 we obtain, for example, e,sunny,low,normal,strong,yes; and for
Q4, for example e,sunny,low,high,strong. We can ask, under the cautions
semantics, whether the wind does not change under every counterfactual version:

ent(e,_,_,_,Wp,s), ent(e,_,_,_,W,o), W = Wp? %Q5

We obtain the empty output, meaning Wind is indeed changed in at least
one counterfactual version (i.e. stable model). In fact, the same query under
the brave semantics returns the records where Wind remained unchanged, e.g.
rain,high,high,weak, along with the original entity rain,high,normal,weak.

7 Final Remarks

Explainable data management and explainable AI (XAI) are effervescent areas
of research. The relevance of explanations can only grow, as observed from- and
due to the legislation and regulations that are being produced and enforced in
relation to explainability, transparency and fairness of data management and
AI/ML systems.

Still fundamental research is needed in relation to the notions of explanation
and interpretation. An always present question is: What is a good explanation?.
This is not a new question, and in AI (and other disciplines) it has been in-
vestigated. In particular in AI, areas such as diagnosis and causality have much
to contribute. In relation to explanations scores, there is still a question to be
answered: What are the desired properties of an explanation score?

Our work is about interacting with classifiers via answer-set programs. For
our work it is crucial to be able to use an implementation of the ASP semantics.
We have used DLV, with which we are more familiar. In principle, we could have
used Clingo instead [20]. Those classifiers can be specified directly as a part of
the program, as we did in our running example, or they can be invoked by a
program as a external predicate [5]. From this point of view, our work is not
about learning programs.

We have used in this paper a responsibility score that has a direct origin
in actual causality and responsibility. When the features have many possible
values, it makes sense to consider the proportions of value changes that lead
to counterfactual versions of the entity at hand, and that of those that do not
change the label. In this case, the responsibility score can be generalized to
become an average or expected value of label differences [3, 5].

There are different approaches and methodologies in relation to explanations,
with causality, counterfactuals and scores being prominent approaches that have

13

22 / 27

Final Remarks

• Addition of semantic and domain knowledge is important

• Reasoning in general about scores, explanations and
counterfactuals is what intelligent agents do

Higher-level analytics and reasoning should be characterized,
formalized and automated:

• What can I learn through aggregation of attribution scores?

• Defining and aggregating at higher levels of abstraction

Categorizing features at a higher level:

“Your entire socio-economic situation is to be blamed for the
rejection of your loan application”

• Another higher-level ML-system that learns from attribution
scores (numbers)?

• Learning about the application domain and/or the lower level
ML system

23 / 27

• Explanations are at the basis of fairness and bias analysis

Identifying unexpected or undesirable high-score features
becomes relevant

• But possibly not enough

Understanding decisions in relation to protected features
becomes relevant

• Identifying undesirable decisions

….….
race

income

age

Loan?

No!Yes!

e1 e2

e1
e2

• We can query for (the existence of)
these cases

• ASP provides support for this

By keeping track of counterfactual
“histories” and their comparison

• Ongoing work:

• Use probabilistic extensions of ASP with probabilistic ML
• To impose statistical constraints on population

24 / 27

EXTRA PAGES

25 / 27

A Variation: No contingencies, but average labels

• For binary features the previous version of RESP works fine

• There could be many values that do not change the label, but
one of them does

Better consider all possible values; towards a generalization ...
(Bertossi, Li, Schleich, Suciu, Vagena; 20)

• e = ⟨. . . , eF , . . .⟩, F ∈ F

Counter(e,F) := L(e)− E(L(e′) | e′F∖{F} = eF∖{F})

• Easy to compute, and gives reasonable results

Requires underlying probability space on entity population

No need to access the internals of the classification model

• Changing one value may not switch the label

No explanations are obtained

• Bring in contingency sets of feature values!

26 / 27

General Version: Contingencies and average labels

• e entity under classification, with L(e) = 1, and F ⋆ ∈ F

• Local Resp-score Resp(e,F ⋆,F , Γ, w̄)

1. Γ ⊆ F ∖ {F ⋆}
2. e′ := e[Γ := w̄] with L(e′) = L(e) (no label change)

3. e′′ := e[Γ := w̄ ,F ⋆ := v], with v ∈ dom(F ⋆) (all possible)

• Resp(e,F ⋆,F , Γ, w̄) :=
L(e′)−E[L(e′′) | e′′F∖{F⋆}= e′F∖{F⋆}]

1+|Γ| (∗)

• (When F ⋆(e) ̸= v , L(e′′) ̸= L(e), F ⋆(e) is actual causal explanation for

L(e) = 1 with contingency ⟨Γ, eΓ⟩)

• Globally: Resp(e,F ⋆) := max Resp(e,F ⋆,F , Γ, w̄)
|Γ| min., (∗)>0

⟨Γ, w̄⟩

27 / 27

