
Query Answering in Peer-to-Peer Data
Exchange Systems

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

bertossi@scs.carleton.ca
www.scs.carleton.ca/∼bertossi

Join work with: Loreto Bravo (Carleton University)

2

The Context

Consider a system consisting of peers who exchange
data when they answer local queries

Each peer has a local and autonomous database

Different peer’s databases may have a different (re-
lational) schemas

Data at two different peers’ sites may be related by
data exchange constraints (DECs)

Each peer has a set of DECs expressed as first order
formulas that relate its schema with those of some
other peers

3

Each peer does not update its instance according to
its DECs and other peers’ instances

However, if a peer P is answering a (local) query QP,
it may, at query time

Import data from other peers to complement
its data

Ignore part of its own data

All this depending upon its own DECs and the peers’
instances

But also upon the trust relationships that P has with
other peers

4

An additional element to consider is P’s local seman-
tic constraints

Example 1: Peers, their schemas, instances, DECs,
trust relationships:

P1, R1 = {R1}, r(P1) = {R1(a, b), R1(s, t)}

Σ(P1, P2) : ∀x∀y(R2(x, y) → R1(x, y))

Σ(P1, P3) : ∀x∀y∀z(R1(x, y) ∧ R3(x, z) → y = z)

P1 trusts P2 more than itself

P1 trusts P3 the same as itself

(also some local ICs IC (P1))

5

Those answers returned by P to QP that give an ac-
count of all these extra elements are P’s peer con-
sistent answers (PCAs) to QP

In this presentation:

We make these intuitions precise

We give a semantics to PCAs

Specification can be used as the basis for com-
puting them

We establish connections to virtual data inte-
gration

6

The Solutions for a Peer

Assume the peers’s schemas are disjoint, with the
possible exception of a shared domain

The union of all peers’ instances r(P) can be seen as
a single global instance r̄

A solution for a peer P is a global instance that
respects P’s DECs and trust relationships with its
immediate neighbors and stays “as close as possi-
ble” to r̄

P’s peer consistent answers (PCA) are those answers
that can be retrieved from P’s portion of data in
every solution for P

7

The notion of solution can be captured by means of
the notion of repair used to characterize the notion
of consistent answer to a query in a database r that
fails to satisfy given ICs
(Arenas, Bertossi, Chomicki; PODS’99)

A repair satisfies the originally violated ICs and
minimizes the sets of tuples by which it departs
from r

A solution may virtually change P’s data

Solutions -as repairs in consistent query answering
(CQA)- are virtual and used as an auxiliary tool to
semantically characterize the notion of PCA

8

Then correct, intended answer to queries posed to a
peer are captured by appealing to alternative mod-
els

Emphasis is not on computing repairs, but on defin-
ing and computing PCAs

Ideally, P should be able to obtain its PCAs just by
querying its and its neighbors’ instances

We are first dealing with the direct case, that con-
siders the immediate neighbors; the transitive case
is examined later

9

Example 1: (cont.)

P1, R1 = {R1}, r(P1) = {R1(a, b), R1(s, t)}

Σ(P1, P2) : ∀x∀y(R2(x, y) → R1(x, y))

Σ(P1, P3) : ∀x∀y∀z(R1(x, y) ∧ R3(x, z) → y = z)

P1 trusts P2 more than itself

P1 trusts P3 the same as itself

P2, R2 = {R2}, r(P2) = {R2(c, d), R2(a, e)}
P3, R3 = {R3}, r(P3) = {R3(a, f), R3(s, u)}

Global instance does not satisfy the DECs

r̄ = {R1(a, b), R1(s, t), R2(c, d), R2(a, e), R3(a, f), R3(s, u)}

10

P does not change its or other peers’ data

Rather P solves its conflicts at query time, when it
queries its own and other peers’ databases

Obtained answers should be sanctioned as correct
wrt to the “solution based semantics”

The solutions for P1 are obtained by:

1. First repairing r̄ wrt Σ(P1, P2)

Changing P1’s data only (less trustable that P2)

Only one repair is obtained:

r̄1 = {R1(a, b), R1(s, t), R1(c, d), R1(a, e), R2(c, d), R2(a, e),
R3(a, f), R3(s, u)}

11

2. This repair has to be repaired on its own wrt
Σ(P1, P3)

Keeping Σ(P1, P2) satisfied

Now, data in P1 or P3 can change (equally trustable)

Two repairs are obtained; and then solutions:

r̄′ = {R1(a, b), R1(s, t), R1(c, d), R1(a, e), R2(c, d), R2(a, e)}

r̄′′ = { R1(a, b), R1(c, d), R1(a, e), R2(c, d), R2(a, e), R3(s, u)}
There is a precise model theoretic definition of so-
lution that corresponds to this process

It involves a minimization with fixed predicates as
found in non-monotonic reasoning

12

Actually these two layered process can be merged
into a single one

Definition: Given a FO query Q(x̄) ∈ L(P), posed to
peer P, a ground tuple t̄ is a peer consistent answer
for P iff r̄′|P |= Q(t̄) for every solution r̄′ for P

Example 1: (cont.) The query Q : R1(x, y) posed to P1

(in the language of P1) has the PCAs: (a, b), (c, d), (a, e)

This answer has values that did not exists in P1’s
instance

Data originally in P1 is now missing in the set of
PCAs

13

Computation of PCAs

In example 1, the PCAs can be obtained by a FO
rewriting of Q using first Σ(P1, P2) and then Σ(P1, P3)

Q′′ : [R1(x, y) ∧ ∀z1((R
3(x, z1) ∧ ¬∃z2R

2(x, z2)) →
z1 = y)] ∨ R2(x, y)

I.e. P1 first issues a query to P2 to retrieve the tuples
in R2

Next, a query is sent to P3 to discard tuples from
R1 with the same first but not the same second ar-
gument in R3

(as long as there does not exist a tuple in R2 that
“protects” the tuple in R1)

14

Rewritten query gives exactly the PCAs to Q

This FO query rewriting approach cannot be ex-
tended much

It inherits the limitations of FO query rewriting for
CQA

Better look for alternative methodologies

A general approach: answer set programming based
specification of a peer’s solutions ...

15

Mixed Referential DECs

In most applications we may expect the DECs Σ(P, Q)
for peer P to consist of formulas of the form

∀x̄∃ȳ(RQ(x̄) ∧ ϕ → RP(z̄, ȳ) ∧ ψ)

with RQ, RP relations for peers Q and P, resp., ϕ, ψ
formulas in terms of built-ins, z̄ ⊆ x̄

Peer P wants to import data from the more trusted
peer Q

The same kind of formula could belong to Q, if Q

wants to validate its own data against P’s data

16

We may have even more involved cases of referen-
tial DECs

Mixing tables from the two peers on each side of
the implication

Example 2: Peers: P with schema {R1(·, ·), R2(·, ·)}
Q with schema {S1(·, ·), S2(·, ·)}

P’s DEC:

∀x∀y∀z∃w(R1(x, y) ∧ S1(z, y) → R2(x, w) ∧ S2(z, w))

Assume P considers Q’s data more reliable than its
own

(the case where P and Q are equally trustable ac-
cording to P can be handled similarly)

17

If P’s DEC is not satisfied by the combination of the
data in P and Q, alternative solutions for P have to
be found, keeping Q’s data fixed in the process

This is the case, when it holds: R1(d, m), S1(a,m), but
for no t both R2(d, t) and S2(a, t)

Obtaining PCAs for P amounts to virtually restoring
the satisfaction of P’s DEC by virtually modifying
P’s data

In order to specify P’s (virtually) modified relations,
introduce virtual versions R′

1, R
′
2 of R1, R2

P’s queries will be expressed in terms of relations
R′

1, R
′
2 only (plus built-ins)

18

Contents for R′
1, R

′
2 are obtained from the material

sources R1, R2, S1, S2

Since S1, S2 are fixed, the satisfaction of P’s DEC re-
quires R′

1 to be a subset of R1, and R′
2, a superset of

R2

Specification of R′
1, R

′
2 is done by means of a dis-

junctive extended logic program Π with answer set
semantics

First rules:
R′

1(x, y) ← R1(x, y), not ¬R′
1(x, y) (1)

R′
2(x, y) ← R2(x, y), not ¬R′

2(x, y) (2)

i.e. by default, the tuples in the sources are copied
into the virtual versions, with some exceptions ...

19

Some of the exceptions for R′
1:

¬R′
1(x, y) ← R1(x, y), S1(z, y), not aux 1(x, z), not aux2(z) (3)

aux 1(x, z) ← R2(x,w), S2(z, w) (4)

aux 2(z) ← S2(z, w) (5)

I.e. R1(x, y) is deleted if simultaneously:

It participates in a violation of DEC

(captured by the first three literals in (3) plus
rule (4))

There is no way to restore consistency by insert-
ing a tuple into R2, because there is no possible
matching tuple in S2 for the possibly new tuple
in R2

(captured by last literal in (3) plus rule (5))

20

In case there is such a tuple in S2, we can either
delete a tuple from R1 or insert a tuple into R2:

¬R′
1(x, y) ∨ R′

2(x,w) ← R1(x, y), S1(z, y), not aux 1(x, z),

S2(z, w), choice((x, z), w) (6)

I.e. in case of a violation of DEC, when there is tuple
of the form (a, t) in S2 for the combination of values
(d, a), then the choice operator non-deterministically
chooses a unique value for t, so that the tuple (d, t)
is inserted into R2

(to minimize differences between material and vir-
tual versions)

(as an alternative to deleting (d,m) from R1)

21

choice predicate can be replaced by a standard pred-
icate plus extra rules

Modified program has a usual answer set semantics

No exceptions are specified for R′
2, which makes

sense since R′
2 is a superset of R2

Then, the negative literal in the body of (2) can be
eliminated

However, new tuples can be inserted into R′
2 (cap-

tured by rule (6)

Finally, the program contains as facts the tuples in
the material relations R1, R2, S1, S2

22

If P equally trusts itself and Q, both P and Qs’ rela-
tions are flexible when searching for a solution

Since S1, S2 may also change, virtual versions for
them must be introduced and specified, and the pro-
gram becomes more involved

Program Π represents in a compact form all the so-
lutions for a peer

PCAs for a peer can be obtained by running a query
program expressed in terms of the virtually repaired
tables, in combination with program Π

The combined program is run under the skeptical
answer set semantics

23

E.g. the query Q(x, z) : ∃y(R1(x, y) ∧ R2(z, y)) to
P is peer consistently answered by running program
Π together with

AnsQ(x, z) ← R′
1(x, y), R′

2(x, y)

Only the virtual versions of P’s relations appear in
the query, but the program will make P import Q’s
data

24

Other Considerations

(A) With referential DECs, the choice operator
may have to choose values from the infinite domain

Several alternatives considered in the literature

The notion of solution in this regard and the class
of referential DECs to deal with will have an impact
on decidability, complexity, ...

1. Open infinite domain, repairing picking up ele-
ments from it

PCA becomes undecidable with cyclic referen-
tial DECs (Cali, Lembo, Rosati; PODS’03)

25

2. Repair assigning null values which do not prop-
agate through DECs
(Barcelo, Bertossi, Bravo; 2003)

It becomes decidable even with cyclic referen-
tial DECs

3. Consider an appropriate finite and closed prop-
er superset of the active domains
(Bravo, Bertossi; IJCAI’03)

4. Introduce fresh constants whenever needed from
a separate domain
(Calvanese, Damaggio,DeGiacomo,Lenzerini,Rosati;
DBISP2P’03)

26

(B) A peer may have local ICs, e.g. a FD

∀x∀y∀z(R1(x, y) ∧ R1(x, z) → y = z)

The peer’s program that specifies its solutions should
take care of them, at query time

They can be integrated in our framework by treat-
ing them as DECs Σ(P, P) with (P, P, same) in the
trust relationship

27

Interaction of Peers’ DECs

Peers may be indirectly related by “composition”
of DECs, by transitivity ...

Peer A gets a query, then gets data from peer B, who
requests data from peer C, ...

A may not even know about C’s existence ...

There won’t be any explicit DECs from A to C; and
we do not want to derive them

We propose that the semantics for such a global ex-
change system should be given by the “stabilized
interaction” of the pair-based solutions

28

More precisely, by those global instances that cor-
respond to the stable models of the program that
combines the specification programs we had for one
peer and its direct neighbors

In particular, the absence of solutions is reflected in
the absence of stable models for the program

29

Example 2: (cont.)

P: schema {R1(·, ·), R2(·, ·)}
instance r(P) with r1 = {(a, b)}, r2 = {}

Σ(P, Q):

∀x∀y∀z∃w(R1(x, y)∧S1(z, y) → R2(x,w)∧S2(z, w))

P trusts Q more than itself

Q: schema {S1(·, ·), S2(·, ·)}
instance r(Q) with s1 = {}, s2 = {(c, e), (c, f)}

Σ(Q, C): ∀x∀y(U(x, y) → S1(x, y))

Q trusts C more than itself

C: schema {U(·, ·)}
instance r(C) with u = {(c, b)}

30

Now Q’s relations may also change, actually in this
case only S1, so we also need a virtual version S ′

1

Rules (3), (6) are replaced by (7) and (8), resp.

¬R′
1(x, y) ← R1(x, y), S ′

1(z, y), not aux 1(x, z),

not aux2 (z) (7)

¬R′
1(x, y) ∨ R′

2(x,w) ← R1(x, y), S ′
1(z, y), not aux 1(x, z),

S2(z, w), choice((x, z), w) (8)

Combination program consists of (1), (2),(4), (5),
(7), (8) plus

S ′
1(x, y) ← S1(x, y), not ¬S ′

1(x, y) (9)

S ′
1(x, y) ← U(x, y), not S1(x, y). (10)

(9) is a persistence rule for S1, and (10) enforces
Σ(Q, C)

31

The solutions obtained from the stable models of
the combined program (plus the material sources)
are the expected ones:

r̄′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b), R

′
2(a, f), R′

1(a, b)},

r̄′′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b)}

r̄′′′ = {S2(c, e), S2(c, f), U(c, b), S ′
1(c, b), R′

2(a, e), R′
1(a, b)}

32

P2P Data Exchange and Data Integration

There are clear connections between PCAs and query-
ing virtual data integration systems

The logic programming-based apprach can be seen
as global-as-view (GAV) approach: relations in the
solutions are specified as views over the peers’ orig-
inal schemas

We explore the connection to the local-as-view (LAV)
approach, where relations in the (local) data sources
are expressed as views of virtual global relations

In example 2, we introduce virtual, global versions
S ′

1, S
′
2 of S1, S2

33

We propose the following specification:

View definitions label source

R1(x, y) ← R′
1(x, y) closed r1

R2(x, y) ← R′
2(x, y) open r2

S1(x, y) ← S ′
1(x, y) clopen s1

S2(x, y) ← S ′
2(x, y) clopen s2

Labels (for the sources) in the second column de-
pend on the kind of DECs & the trust relationships

They indicate that S1, S2 do not change; R1, R2 do
change, by deletion or insertion of tuples, resp.

A query posed to P has to be first reformulated in
terms of R′

1, R
′
2

34

Its PCAs can be obtained by querying the integra-
tion system subject to the global IC:

∀xyz∃w(R′
1(x, y) ∧ S ′

1(z, y) → R′
2(x,w) ∧ S ′

2(z, w))

There are methodologies for obtaining consistent
answers to queries posed to virtual data integra-
tion systems with open sources

Also for the LAV approach with mixed sources
(Bertossi & Bravo, to appear)

Again this is a specification based on answer set
programming of repairs of the virtual system

Some small adjustments required in the P2P sce-
nario

35

Final Remarks

(A) What we have presented provides semantics
and specifications for peer consistent aswers

In principle it is possible to compute answers from
those specifications (and the data available)

As ongoing work, most urgent future work on peer
consistent query answering (PCQA):

“Translate” the specifications into concrete algo-
rithms to query the peers’ databases and integrate
their answers

36

(B) At the answer set programming level:

It becomes necessary to derive specialized spec-
ifications, that are easier to handle and com-
pute for particular classes of DECs and queries

And from them also specialized algorithms for
PCQA (c.f. (A))

The specifications themselves have to be opti-
mized (as logic programs)

37

Computations of/under the answer set seman-
tics have to be optimized

Avoid extra complexity in cases where complex-
ity of PCQA is lower that general data complex-
ity of disjunctive answer set programming

(The latter is not higher that the general data
complexity of peer consistent query answering)

The interaction between the logic programming
system and the data sources has to be optimized
(Eiter, Fink, G.Greco, Lembo; ICLP’03)

38

Appendix I: Definition of solution

Definition: (direct case) Given a peer P in a P2P
data exchange system and an instance r̄ on R, an
instance r̄′ on R is a solution for P if r̄′ is a repair of
r̄ wrt to Σ(P)∪ IC (P) that does not change the more
trusted relations

More precisely:
(a) r̄′ |= ⋃{Σ(P, Q) | (P, less , Q) or (P, same, Q) ∈ trust} ∪
IC (P)
(b) r̄′|P = r̄|P for every predicate P ∈ R(Q), where Q

is a peer with (P, less , Q) ∈ trust
(c) r̄′ minimally differs from r̄ in the sense that (r̄′ �
r̄) ∪ (r̄ � r̄′) is minimal under set inclusion among
those instances that satisfy (a) and (b)

39

Intuitively, a solution for P repairs the global in-
stance wrt the DECs with peers that P trusts more
than or the same as itself, but leaving unchanged
the tables that belong to more trusted peers

As a consequence of the definition, tables belong-
ing to peers that are not related to P or are less
trustable are not changed

That is, P tries to change its own tables according to
what the dependencies to more or equally trusted
peers prescribe

40

Appendix II: Program with three peers, direct case

Example 1: (cont.) R1, R3 have to be flexible in the
repair process, and we get interacting rules for R1

The logic program should have the effect of repair-
ing the database

The repair process may need to execute several steps
until it stabilizes

We use program rules with annotations as intro-
duced for CQA in the presence of interacting ICs

Annotations are constants that are used in an extra
argument introduced in each database relation

41

td: used to annotate the atoms that are in the orig-
inal database instance

Single repair steps are obtained by deriving the an-
notations ta or fa (atoms getting them are advised
to be made true, resp. false)

This when each IC is considered in isolation, but
there may be interacting ICs, which requires an it-
erative process; for this we use annotations t�, f�

E.g. td groups together the annotations td and ta

for the same atom

42

Derived annotations are used to propagate changes
through several ICs

Annotations t�� and f�� are just used to read off the
literals that are inside (resp. outside) a repair

Generic rules; to be found in any repair program
with annotations

R1(X,Y, t�) ← R1(X, Y, td).

R1(X,Y, t�) ← R1(X, Y, ta).

R1(X,Y, f�) ← R1(X, Y, fa).

R1(X,Y, f�) ← dom(X), dom(Y), not R1(X, Y, td).

R1(X,Y, t��) ← R1(X, Y, td), not R1(X, Y, fa).

43

R1(X,Y, t��) ← R1(X, Y, ta).

← R1(X, Y, ta), R1(X, Y, fa).

R2(X,Y, t�) ← R2(X, Y, td).

R2(X,Y, t�) ← R2(X, Y, ta).

R2(X,Y, f�) ← R2(X, Y, fa).

R2(X,Y, f�) ← dom(X), dom(Y), not R2(X, Y, td).

R2(X,Y, t��) ← R2(X, Y, td), not R2(X, Y, fa).

R2(X,Y, t��) ← R2(X, Y, ta).

← R2(X, Y, ta), R2(X, Y, fa).

R3(X,Y, t�) ← R3(X, Y, td).

R3(X,Y, t�) ← R3(X, Y, ta).

R3(X,Y, f�) ← R3(X, Y, fa).

44

R3(X,Y, f�) ← dom(X), dom(Y), not R3(X, Y, td).

R3(X,Y, t��) ← R3(X, Y, td), not R3(X, Y, fa).

R3(X,Y, t��) ← R3(X, Y, ta).

← R3(X, Y, ta), R3(X, Y, fa).

Now we have only two specific rules, they express
how to repair the databases when a violation of the
DECs occurs:

R1(X,Y, ta) ← R2(X, Y, t�), R1(X,Y, f�).

R1(X,Y, fa) ∨ R3(X,Z, fa) ← R1(X, Y, t�), R3(X,Z, t�), Y
= Z.

The first one corresponds to a violation of Σ(P1, P2);
the second one, to a violation of Σ(P1, P3)

45

The facts of the program:

R1(a, b, td). R1(s, t, td). R2(c, d, td). R2(a, e, td).R2(t, h, td).
R3(a, f, td). R3(s, u, td). R3(t, u, td). dom(a). dom(b).
dom(s). dom(t). dom(c). dom(d). dom(e). dom(f). dom(u).
dom(h).

The non domain atoms say that originally
R1 = {(a, b), (s, t)}
R2 = {(c, d), (a, e), (t, h)}
R3 = {(a, f), (s, u), (t, u)}

Here we do not need virtual versions R′
1, R

′
3 for R1, R2,

because their final contents will be read off from
atoms annotated with t��

46

Appendix III: Comparison with data integration

Methodology for CQA under LAV and mixed sources
is based on a three-layered specification of the re-
pairs:

A first layer specifies the contents of the global
relations in the minimal legal instances (to this
layer only open and clopen sources contribute)

A second layer consisting of program denial con-
straints that prunes the models that violate the
closure condition for the closed sources

A third layer specifying the minimal repairs of
the legal instances left by the other layers wrt
the global ICs (repairs may violate the source
labels)

47

In the P2P scenario we consider only legal instances
that:

Satisfy the mapping in the table

In the case of closed sources, include the maxi-
mum amount of tuples from them (virtual rela-
tions must be kept as close as possible to their
original, material versions)

This can be achieved using the same specifications
as for the mixed case, but considering the closed
sources as clopen

They contribute with rules that import their con-
tents into the system (maximizing tuples in the glob-
al relation) and denial program constraints

48

Trust relation also makes a difference: virtual rela-
tions must satisfy the original labels (which capture
the trust relationships)

Then repairs of legal instances are based only on
tuple deletions (insertions) for global relations cor-
responding to closed (resp. open) sources

For clopen sources the rules can neither add nor
delete tuples

This preference criterion on repairs is similar to
the loosely-sound semantic for integration of open
sources under GAV
(Lembo, Lenzerini, Rosati; KRDB’02)

49

Methodology handles universal and acyclic referen-
tial DECs

This is when arbitrary elements from the infinite
underlying domain can be picked up to satisfy the
DECs

When repairs are done using null values that do not
propagate through ICs, then cycles are allowed

The DEC in example 2 is not a typical referential
IC, but the repair layer can be adjusted in order to
generate the solutions for P

50

Assume the peers have the following instances:

r1 = {(a, b)}, s1 = {(c, b)}, r2 = {} and s2 = {(c, e), (c, f)}

The layer that specifies the preferred legal instances:

R′
1(X,Y, td) ← R1(X, Y).

S ′
1(X,Y, td) ← S1(X, Y).

R′
2(X,Y, td) ← R2(X, Y).

S ′
2(X,Y, td) ← S2(X, Y).

← R′
1(X, Y, td), R1(X, Y).

← S ′
1(X, Y, td), S1(X,Y).

← S ′
2(X, Y, td), S2(X,Y).

51

The layer that specifies the repairs of the legal in-
stances:

(The annotation constants are used as auxiliary el-
ements in the repairs process)

R′
1(X,Y, t��) ← R′

1(X, Y, td), not R′
1(X,Y, fa).

R′
1(X,Y, t��) ← R′

1(X, Y, ta).

← R′
1(X, Y, ta), R

′
1(X, Y, fa).

S ′
1(X,Y, t��) ← S ′

1(X, Y, td), not S ′
1(X,Y, fa).

S ′
1(X,Y, t��) ← S ′

1(X, Y, ta).

← S ′
1(X, Y, ta), S

′
1(X, Y, fa).

R′
2(X,Y, t��) ← R′

2(X, Y, td), not R′
2(X,Y, fa).

52

R′
2(X,Y, t��) ← R′

2(X, Y, ta).

← R′
2(X, Y, ta), R

′
2(X,Y, fa).

S ′
2(X,Y, t��) ← S ′

2(X, Y, td), not S ′
2(X,Y, fa).

S ′
2(X,Y, t��) ← S ′

2(X, Y, ta).

← S ′
2(X, Y, ta), S

′
2(X,Y, fa).

R′
1(X,X, fa) ← R′

1(X, Y, td), S ′
1(Z, Y, td),

not aux1 (X ,Z), not aux2 (Z).

aux1(X,Z) ← R′
2(X, U, td), S ′

2(Z,U, td).

aux2(Z) ← S ′
2(Z,W, td).

R′
1(X,Y, fa) ∨ R′

2(X,W, ta) ← R′
1(X, Y, td), S ′

1(Z, Y, td),

not aux1 (X ,Z), S ′
2 (Z ,W , td),

choice((X,Z), W).

53

Running this program with DLV, we obtain the fol-
lowing solutions (they can be obtained by selecting
only the tuples with annotation t�� from a stable
model):

r̄1 = {S ′
1(c, b), S ′

2(c, e), S ′
2(c, f), R′

1(a, b), R′
2(a, f)}

r̄2 = {S ′
1(c, b), S ′

2(c, e), S ′
2(c, f)}

r̄3 = {S ′
1(c, b), S ′

2(c, e), S ′
2(c, f), R′

1(a, b), R′
2(a, e)}

r̄4 = {S ′
1(c, b), S ′

2(c, e), S ′
2(c, f)}

