
Score-Based Explanations for
Classification Results

Leopoldo Bertossi
leopoldo.bertossi@uai.cl

1 / 27

Explanations in Databases

Receives R.1 R.2
s2 s1
s3 s3
s4 s3

Store S .1
s2
s3
s4

• Query: Are there pairs of official stores in a receiving
relationship?

• Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

The query is true in D: D |= Q
• What tuples cause the query to be true?

• How strong are they as causes?

• We would expect tuples Receives(s3, s3) and Receives(s4, s3)
to be causes

• Explanations for a query result ...

2 / 27

Explanations in Machine Learning -1

classifier

e
loan?

No!

• Client requesting a loan from a bank using a black-box
classifier

• e = ⟨john, 18, plumber, 70K, harlem⟩
Record of values for features Name, Age, Income, ...

• Which are the feature values most relevant for the
classification outcome, i.e. the label “No”?

• What is the contribution of each feature value to the
outcome?

• Questions like these are at the core of Explainable AI

3 / 27

A Score-Based Approach: Responsibility -1

• Causality has been developed in AI for 3 decades or so

• In particular, Actual Causality

• Also the quantitative notion of Responsibility: a measure of
causal contribution

• Both based on Counterfactual Interventions

• Hypothetical changes of values in a causal model to detect
other changes
By so doing identify actual causes

• Do deletions of certain database tuples make the query false?

• Do changes of feature values make the label change to “Yes”?

• We have investigated causality and responsibility in data
management and classification

• Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

4 / 27

A Score-Based Approach: Responsibility -2

For the gist: Receives R.1 R.2
s2 s1
̸s3 ̸s3
s4 s3

Store S.1
s2
s3
̸s4

∃x∃y(Store(x) ∧ Receives(x, y) ∧ Store(y))
D ′ ̸ |= Q

• Receives(s3, s3) is actual cause, with {Store(s4)} as
minimum-size contingency set

• Resp(Receives(s3, s3)) := 1
1 + |{Store(s4)}| = 1

2

• Resp(Store(s3)) := 1
1 + 0 = 1 a counterfactual cause

• e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No
e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes
e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• Value for Age is counterfactual cause with x-Resp(Age) = 1
Value for Income is actual cause with x-Resp(Income) = 1

2

• Second may be actionable, but not the first

5 / 27

A Score-Based Approach: Shapley Values -1

• Database tuples and feature values can be seen as players in a
coalition game
Each of them contributing to a shared wealth function

• The Shapley value is a established measure of contribution by
players to the wealth function

• It emerges as the only measure that enjoys certain desired
properties

• For each game one defines an appropriate wealth or game
function

• In the case of Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y)), the
game function can be the value of the query, i.e. 1 or 0

• A set of tuples make it true or not, with some maybe
contributing more than others to making it true

6 / 27

A Score-Based Approach: Shapley Values -2

Shapley(D,Q, τ) := ∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

• Quantifies the contribution of tuple τ to query result

• All possible permutations of subinstances of D

• Average of differences between having τ or not

• Counterfactuals implicitly involved and aggregated

• We investigated algorithmic, complexity and approximation
problems

• Extended to aggregate queries

• It has been applied to measure contribution of tuples to
inconsistency of a database

• In these areas there are underlying and useful connections to
database repairs w.r.t. integrity constraints

7 / 27

A Score-Based Approach: Shapley Values -3

• Assume the classifier is binary, with labels 0 and 1

• Set of players F contain features All relative to e

• Game function: Ge(S) := E(L(e′) | e′S = eS) (eS : projection on S)

• For a feature F ∈ F , compute: Shap(F ,Ge,F)∑
S⊆F\{F}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F} = eS∪{F})− E(L(e′)|e′S = eS)]

• Shap score has become popular (Lee & Lundberg; 2017)

• Assuming a probability distribution on entity population

• x-Resp can be generalized as expected value for multi-valued
features

• Both Resp and Shap may end up considering exponentially
many combinations

• We have experimentally compared Resp and Shap

8 / 27

A Score-Based Approach: Shapley Values -4

classifier

e
loan?

No!

X1

X2

Xn

.

.

.

L

O

CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

• Can we do better when we have the classification model?

• What if we have a decision tree, or a random forest, or a
Boolean circuit?

• Can we compute Shap in polynomial time?

• We investigated this problem in detail in a AAAI’21 paper

• Tractable and intractable cases

• Provided algorithms for the former

• In particular, tractable for decision trees and random forests

• Investigated approximation algorithms

9 / 27

Score-Based Approaches: General Remarks

• There are many interesting open problems to investigate

• Addition of semantic and domain knowledge being an
important one

• Reasoning about counterfactuals

• Connections to model-based diagnosis?

• Explanations are at the basis of fairness and bias analysis

• Identifying unexpected or undesirable high-score features
becomes relevant

• Another promising problem: higher-order analytics on
explanations

• What else can be learnt about the population or our
classification mechanism?

• These extensions belong to our ongoing research

10 / 27

The Resp Score: Classification -1

• e = ⟨. . . , eF , . . .⟩, F ∈ F (B, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• Counter(e,F) := L(e)− E(L(e′) | e′F∖{F} = eF∖{F})

• Easy to compute, and gives reasonable results

• So as with SHAP, requires underlying probability space

• No need to access the internals of the classification model

• Changing one value may not switch the label

No explanations are obtained

• Extend it bringing in contingency sets of feature values!

• The Resp-score

• First a simplified version

11 / 27

The Resp Score: Classification -2

- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for label “1”

• Through changes of feature
values, try to get “0”

• Fix a feature value x = eF

• x counterfactual explanation for L(e) = 1 if L(e x
x′) = 0,

for x′ ∈ Dom(F)

• x actual explanation for L(e) = 1 if there are values Y in e,
x /∈ Y, and new values Y′ ∪ {x′}:

(a) L(e Y
Y′) = 1 (b) L(e xY

x′Y′) = 0

• If Y is minimum in size: Resp(x) := 1
1+|Y|

12 / 27

The Resp Score: Example
C

entity (id) F1 F2 F3 L
e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

• Due to e7, F2(e1) is counterfactual explanation, with
Resp(e1,F2) = 1

Due to e4, F1(e1) is actual explanation; with {F2(e1)} as
contingency set:

Resp(e1,F1) =
1
2

• For non-binary features, Resp can be expressed as an
expected value

13 / 27

The Resp Score: General Definition -1

• e entity under classification, with L(e) = 1, and F ⋆ ∈ F
1. Γ ⊆ F ∖ {F ⋆}, set of features that may accompany F ⋆

2. w̄ = (wF)F∈Γ, wF ∈ dom(F), wF ̸= eF , new values for Γ

3. e′ := e[Γ := w̄], i.e. reset e’s values for Γ as in w̄

4. L(e′) = L(e) = 1, same label, but maybe extra change ...

5. Pick v ∈ dom(F ⋆), e′′ := e[Γ := w̄ ,F ⋆ := v]

• When F ⋆(e) ̸= v and L(e) ̸= L(e′′) = 0, F ⋆(e) is an actual
causal explanation for L(e) = 1 with contingency ⟨Γ, eΓ⟩

• For “local” Resp-score make v vary randomly under 1.-5.

Resp(e,F ⋆,F , Γ, w̄) :=
L(e′)−E[L(e′′) | e′′F∖{F⋆}= e′F∖{F⋆}]

1+|Γ| (∗)

• Globally: Resp(e,F ⋆) := max Resp(e,F ⋆,F , Γ, w̄)
|Γ| min., (∗)>0

⟨Γ, w̄⟩ |= 1.−4.

14 / 27

Resp and Shap Scores: Experiments -1

• Several probability distributions can be used

• Among them, two coming from sample T ⊆ E

• Empirical distribution: P(e) :=

{ 1
|T | if e ∈ T

0 if ω /∈ T
e ∈ E

• Product probability space over E : (say, for binary features)

pi = P(Fi = 1) ≈ |{e∈T | ωi=1}|
|T | =: p̂i (empirical marginals)

P(e) := Πei=1 p̂i × Πej=0(1− p̂j), for e ∈ E
• Resp score computed on product space

• Not very good at capturing feature correlations

• Empirical distribution not suitable for Resp-score

15 / 27

Resp and Shap Scores: Experiments -2

• Resp score computation for e ∈ E :
• Expectations relative to product probability space

• Intervention values from feature domains determined by T

• Call the classifier

• Possibly restrict contingency sets to, say, two features

• Shap score applied with empirical distribution

• Already clear that computation on the product probability
could be #P-hard

• Use sample T ⊆ E , test data

Labels L(e), e ∈ T , computed with learned classifier

• Shap with expectations over this space, directly over
data/labels in T

16 / 27

The Shap Score: Boolean-Circuit Classifiers1 -1

• Shap(F ,Ge,F) =∑
S⊆F\{F}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F} = eS∪{F})− E(L(e′)|e′S = eS)]

• Depends on e and (the classifier behind) L

• Dom(Fi) = {0, 1}, Fi ∈ F , i = 1, . . . , n, e ∈ E := {0, 1}n
L(e) ∈ {0, 1}
• There is also a probability distribution P on E
• We will identify the Boolean classifier with L

SAT (L) := {e | L(e) = 1} #SAT (L) := |SAT (L)|
Counting the number of inputs that get label 1

• Proposition: For the uniform distribution Pu, and e ∈ E
#SAT (L) = 2|F| × (L(e)−∑n

i=1 Shap(F ,Ge,Fi))

1Some slides borrowed from Pablo Barcelo
17 / 27

The Shap Score: Boolean-Circuit Classifiers -2

• #SAT ≤Turing
PTIME Shap

• When #SAT (L) is hard for a Boolean classifier L,
computing Shap is also hard

• Negative Corollary: Computing Shap is #P-hard for

• Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

• Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF [Provan & Ball, 1983]

• Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

18 / 27

d-D Boolean-Circuits -1

• A Boolean circuit over set of variables X is a DAG C with:

• Each node without incoming edges (input) is labeled with
either a variable x ∈ X or a constant in {0, 1}

• Each other node is labeled with a gate in {¬,∧,∨}
• There is a single sink node, O, called the output

• e : X → {0, 1} (equivalently e ∈ {0, 1}|X |) is accepted by C,
written C(e) = 1, iff O takes value 1

• For a gate g of C, C(g) is the induced subgraph containing
gates on a path in C to g

Var(g) is the set of variables of C(g)
Var(g) = {x2, x3, x4}

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• C is deterministic if every ∨-gate g with input
gates g1, g2: C(g1)(e) ̸= C(g2)(e), for every e

19 / 27

d-D Boolean-Circuits -2

• C is decomposable if every ∧-gate g with
input gates g1, g2: Var(g1) ∩ Var(g2) = ∅

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• We will consider C to be deterministic and decomposable
circuit (d-D circuit)

• Several classes of Boolean models can be translated in
polynomial time into d-D Boolean circuits:

• Decision trees

• Ordered binary decision diagrams (OBDDs)

• Free binary decision diagrams (FBDDs)

• Deterministic-decomposable negation normal-form (d-D
NNFs)

20 / 27

d-D Boolean-Circuits -3

• Compiling binary decision trees into d-D Boolean Circuits

• An inductive construction starting from the bottom of the DT

• Leaves of DT become constant binary gates in d-DC

• By induction one can prove the resulting circuit is d-D

• Final d-DC is the compilation c(r) of root node r of DT

s

h w

1 0

0 1 0 1

1 0 1 0

n1 n2 n3 n4

n5 n6

n7

7→s

h w

1 0

0 1 0 1

1 0 1 0

n1 n2 n3 n4

n5 n6

n7

h

h

not

^ ^

v
c(n5)

c(n2) c(n1)
1 0

• Final equivalent d-DC: c(n7)

• Computable in linear time

21 / 27

The SHAP Score: d-D Boolean-Circuits -1

• Shap computation in polynomial time not precluded

• Proposition: For d-D circuits C, #SAT (C) can be computed
in polynomial time

Idea: Bottom-up procedure that inductively computes
#SAT (C(g)), for each gate g of C

• To show that Shap can be computed efficiently for d-D
circuits, we need a detailed analysis

• We assume the uniform distribution for the moment

• A related problem: “satisfiable circle of an entity”

SAT (C, e, ℓ) := SAT (C) ∩ { e ′ | ||e− e′||1 = ℓ︸ ︷︷ ︸
ℓ value discrepancies

}

#SAT (C, e, ℓ) := |SAT (C, e, ℓ)|
• Proposition: If computing #SAT (C, e, ℓ) is tractable, so is

Shap(X ,Ge, x)
22 / 27

The SHAP Score: d-D Boolean-Circuits -2

• Main Result: #SAT (C, e, ℓ) can be solved in polynomial time
for d-D circuits C, entities e, and 1 ≤ ℓ ≤ |X |
Idea: Inductively compute #SAT (C(g), e

Var(g)
, ℓ) for each

gate g ∈ C and integer ℓ ≤ |Var(g)|
• Input gate: immediate

• ¬-gate:
#SAT (C(¬g), e

Var(g)
, ℓ) =

(
Var(g)

ℓ

)
−#SAT (C(g), e

Var(g)
, ℓ)

• ∨-gate: (uses determinism)

#SAT (C(g1 ∨ g2), eVar(g1)∪Var(g2)
, ℓ) =

#SAT (C(g1), eVar(g1)
, ℓ) + #SAT (C(g2), eVar(g2)

, ℓ)

• ∧-gate: (uses decomposition)

#SAT (C(g1 ∧ g2), eVar(g1)∪Var(g2)
, ℓ) =∑

j+k=ℓ #SAT (C(g1), eVar(g1)
, j)×#SAT (C(g2), eVar(g2)

, k)

23 / 27

The SHAP Score: d-D Boolean-Circuits -3

• Theorem: Shap can be computed in polynomial time for d-D
circuits under the uniform distribution

• Corollary: Shap can be computed in polynomial time for
decision trees and random forests, OBDDs, etc., under the
uniform distribution

• It can be extended to any product distribution on {0, 1}|X |

(uniform is a particular case)

24 / 27

The SHAP Score: Beyond Binary Features
CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

• “Binarize” features

• OutlookSunny (OS)
OutlookOvercast, OutlookRain, etc.
become propositional features

OS

HH

0 HN

1 0

1 0

1

1 0

OO

1

1 OR

ETC.

0

Certain entities become
impossible (probability 0)

e = ⟨ 0, 1, 1︸ ︷︷ ︸
for OS, OO, OR

, . . .⟩ ×

25 / 27

Ordered Binary Decision Diagrams

• Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

• They are relevant for several reasons in Knowledge
Compilation

• In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

• Opening the ground for efficiently applying Shap to them
f (x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1,∧x2) ∨ (x2 ∧ x3)

 Binary Decision Tree
BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representin BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Binary decision tree and truth table for the function

, described in notation for

Boolean operators.

BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representing BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Same variable order along full paths OBDD

26 / 27

References (self-references for this presentation)

- Bertossi, L. and Salimi, B. “From Causes for Database Queries to Repairs and
Model-Based Diagnosis and Back”. Theory of Computing Systems, 2017,
61(1):191-232.

- Bertossi, L. and Salimi, B. “Causes for Query Answers from Databases: Datalog
Abduction, View-Updates, and Integrity Constraints”. International Journal of
Approximate Reasoning, 2017, 90:226-252.

- E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “The Shapley Value of Tuples in
Query Answering”. In Proc. ICDT 2020.

- L. Bertossi, J. Li, M. Schleich, D. Suciu and Z. Vagena. “Causality-based
Explanation of Classification Outcomes”. Proc. 4th International Workshop on ”Data
Management for End-to-End Machine Learning” (DEEM) at ACM SIGMOD/PODS,
2020, pp. 6.1-6.10.

- L. Bertossi. “Score-Based Explanations in Data Management and Machine
Learning”. Proc. Int. Conf. Scalable Uncertainty Management (SUM 20), Springer
LNCS 2322, pp. 17-31.

- Marcelo Arenas, Pablo Barcelo, Leopoldo Bertossi, Mikael Monet. “The Tractability
of SHAP-scores over Deterministic and Decomposable Boolean Circuits”. Proc. AAAI
2021.

27 / 27

