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Explanations in Databases

Receives | R.1 | R.2 Store | S.1
2 51 52
53 53 53
S4 53 S4

Query: Are there pairs of official stores in a receiving
relationship?

Q: IxJy(Store(x) A Receives(x, y) A Store(y))
The query is true in D: D = Q
What tuples cause the query to be true?
How strong are they as causes?

We would expect tuples Receives(ss, s3) and Receives(ss, s3)
to be causes

Explanations for a query result ...

2/27



Explanations in Machine Learning

loan?

classifier

Client requesting a loan from a bank using a black-box
classifier

e = (john, 18, plumber, 70K, harlem)
Record of values for features Name, Age, Income, ...

Which are the feature values most relevant for the
classification outcome, i.e. the label “No"?

What is the contribution of each feature value to the
outcome?

Questions like these are at the core of Explainable Al
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A Score-Based Approach: Responsibility -1

e Causality has been developed in Al for 3 decades or so
e In particular, Actual Causality

e Also the quantitative notion of Responsibility: a measure of
causal contribution

e Both based on Counterfactual Interventions
e Hypothetical changes of values in a causal model to detect
other changes
By so doing identify actual causes
e Do deletions of certain database tuples make the query false?
e Do changes of feature values make the label change to “Yes"?
e We have investigated causality and responsibility in data
management and classification

e Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.
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A Score-Based Approach: Responsibility -2

For the gist: Receives [ R1 | R.2 Store | S.1
) s1 B /
3x3y(Store(x) N Receives(x, y) A Store(y)) % % 53 D /i& Q
s4 S3 $h

o Receives(ss, s3) is actual cause, with {Store(ss)} as
minimum-size contingency set

e Resp(Receives(ss,s3)) = m =1

o Resp(Store(s3)) = 1J1r0 = 1 a counterfactual cause

= (john, 18, plumber, 70K, harlem,...) ~ No
"= (john, 25, plumber, 70K, harlem,...)  Yes
" = (john, 18, plumber, 80K, brooklyn,...) Yes

e Value for Age is counterfactual cause with x-Resp(Age) =
Value for Income is actual cause with x-Resp(Income) =

NI =

e Second may be actionable, but not the first
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A Score-Based Approach: Shapley Values -1

e Database tuples and feature values can be seen as players in a
coalition game
Each of them contributing to a shared wealth function

e The Shapley value is a established measure of contribution by
players to the wealth function

e |t emerges as the only measure that enjoys certain desired
properties

e For each game one defines an appropriate wealth or game
function

e In the case of Q: IxTy(Store(x) A Receives(x, y) A Store(y)), the
game function can be the value of the query, i.e. 1 or O

e A set of tuples make it true or not, with some maybe
contributing more than others to making it true
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A Score-Based Approach: Shapley Values -2

Shapky(D,QLT):::E:SQD“f}hﬂﬂg&%étiﬂ(Q(SLJ{T})_'Q(S»

e Quantifies the contribution of tuple 7 to query result
e All possible permutations of subinstances of D

e Average of differences between having 7 or not

e Counterfactuals implicitly involved and aggregated

e We investigated algorithmic, complexity and approximation
problems

o Extended to aggregate queries

e It has been applied to measure contribution of tuples to
inconsistency of a database

e In these areas there are underlying and useful connections to
database repairs w.r.t. integrity constraints
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A Score-Based Approach: Shapley Values -3

e Assume the classifier is binary, with labels 0 and 1

e Set of players F contain features All relative to e
e Game function: Ge(S) :=E(L(€’) | €'s = es) (es: projection on S)
e For a feature F € F, compute: Shap(F, Ge, F)

S|I(|IF|=|S|—
Yscrvry EEEERE(L(E €5y ry = esugry) — E(L(e)]es = es)]

e Shap score has become popular (Lee & Lundberg; 2017)
e Assuming a probability distribution on entity population

e x-Resp can be generalized as expected value for multi-valued
features

e Both Resp and Shap may end up considering exponentially
many combinations

e We have experimentally compared Resp and Shap
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A Score-Based Approach: Shapley Values -4

7 “\y

e Can we do better when we have the classification model?

e What if we have a decision tree, or a random forest, or a
Boolean circuit?

e Can we compute Shap in polynomial time?

e We investigated this problem in detail in a AAAI'21 paper
e Tractable and intractable cases

e Provided algorithms for the former

e In particular, tractable for decision trees and random forests

e Investigated approximation algorithms
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Score-Based Approaches: General Remarks

e There are many interesting open problems to investigate

e Addition of semantic and domain knowledge being an
important one

e Reasoning about counterfactuals
e Connections to model-based diagnosis?
e Explanations are at the basis of fairness and bias analysis

e Identifying unexpected or undesirable high-score features
becomes relevant

e Another promising problem: higher-order analytics on
explanations

e What else can be learnt about the population or our
classification mechanism?

e These extensions belong to our ongoing research
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The Resp Score: Classification -1

e e = < ..,eF, .. .>, FeF (B, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD'20)
o Counter(e, F):=L(e) —E(L(e') | €., =€, ()

e Easy to compute, and gives reasonable results
e So as with SHAP, requires underlying probability space
e No need to access the internals of the classification model

e Changing one value may not switch the label

No explanations are obtained
e Extend it bringing in contingency sets of feature values!
e The Resp-score

e First a simplified version
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The Resp Score: Classification -2

Want explanation for label “1”

Through changes of feature

.
values, try to get “0

Fix a feature value x = ef

g

{zy) contingency setforx  x actual cause for 1

x counterfactual explanation for L(e) =1 if L(e)) =0,
for x' € Dom(F)

x actual explanation for L(e) =1 if there are values Y in e,
x ¢ Y, and new values Y’ U {x'}:

(@) LleY)=1 (b) L(eX%,)=0

If Y is minimum in size:  Resp(x) := ﬁ
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The Resp Score: Example
C

entity (id) F1 F> F3 L

o1 0 1 1 T

e 1 1 1 1

e3 1 1 0 1

ey 1 0 1 0

e5 1 0 0 1

e 0 1 0 1

e7 0 0 1 0

eg 0 0 0 0

e Due to e7, Fy(e;) is counterfactual explanation, with
=1

Resp(e, F2)

Due to e4, Fi(e1) is actual explanation; with {Fy(e;)} as

contingency set:

Resp(er, F1) = }

e For non-binary features, Resp can be expressed as an

expected value
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The Resp Score: General Definition -1

e e entity under classification, with L(e) =1, and F* € F
1. T € F~{F*}, setof features that may accompany F*
2. w=(wg)rer, wg € dom(F), wr # egr, new values for [
3. € :=e[l := W], i.e. reset e's values for [ as in w
4. L(e') = L(e) =1, same label, but maybe extra change ...
5. Pick v € dom(F*), e’ :=e[l :==w, F* = V]

e When F*(e) # v and L(e) # L(e") =0, F*(e) is an actual

causal explanation for L(e) = 1 with contingency (I', er)

e For “local” Resp-score make v vary randomly under 1.-5.

L U —E[L /" U = / .
Resp(e, F*, F,I,w) == (e)ElLeT) ‘lef‘F‘{F 1= Cr(rry] (*)

e Globally:  Resp(e, F*) := max Resp(e, F*, F,I,w)
IT| min., (%)>0

(T, W) =1.—4.
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Resp and Shap Scores: Experiments -1

e Several probability distributions can be used

e Among them, two coming from sample T C &

1 ifeeT

1
0 ifwgT °€°

e Empirical distribution: P(e) _{
e Product probability space over £:  (say, for binary features)
pi=P(Fi=1)~ w =: pi (empirical marginals)
P(e) =N, _.pi x N, _o(1—p;), for ec&
e Resp score computed on product space

e Not very good at capturing feature correlations

e Empirical distribution not suitable for Resp-score

15/27



Resp and Shap Scores: Experiments -2

Resp score computation for e € &:

e Expectations relative to product probability space
e Intervention values from feature domains determined by T
e Call the classifier

e Possibly restrict contingency sets to, say, two features

Shap score applied with empirical distribution

Already clear that computation on the product probability
could be # P-hard

Use sample T C &, test data
Labels L(e), e € T, computed with learned classifier

Shap with expectations over this space, directly over
data/labels in T
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The Shap Score: Boolean-Circuit Classifiers -1

hd Shap(]:a geaF) =
Yscrry UL EEVR(L(E €5y = esugry) — E(L(e))les = es)]
e Depends on e and (the classifier behind) L

e Dom(F;)={0,1}, F,eF,i=1,...,n, ec&:={0,1}"
L(e) € {0,1}

e There is also a probability distribution P on £

o We will identify the Boolean classifier with L
SAT(L) :={e | L(e) =1} #SAT (L) := |SAT (L)
Counting the number of inputs that get label 1

e Proposition: For the uniform distribution PY, and e € £

#SAT(L) = 21 x (L(e) — >3, Shap(F, Ge, Fi))

1Some slides borrowed from Pablo Barcelo
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The Shap Score: Boolean-Circuit Classifiers -2

#SAT <j7wie Shap

When #SAT (L) is hard for a Boolean classifier L,
computing Shap is also hard

Negative Corollary: Computing Shap is #P-hard for

e Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

e Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF [Provan & Ball, 1983]

Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?
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d-D Boolean-Circuits -1

e A Boolean circuit over set of variables X is a DAG C with:
e Each node without incoming edges (input) is labeled with
either a variable x € X or a constant in {0,1}
e Each other node is labeled with a gate in {—, A, V}
e There is a single sink node, O, called the output
e e: X —{0,1} (equivalently e c {0,1}/X) is accepted by C,
written C(e) =1, iff O takes value 1
e For a gate g of C, C(g) is the induced subgraph containing
gates on a path in C to g ® g
Var(g) is the set of variables of C(g) o 0
Var(g) = {x2, x3, x4} ‘
e C is deterministic if every V-gate g with input © ©
gates g1,8: C(g1)(e) # C(g2)(e), for every e
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d-D Boolean-Circuits -2

e C is decomposable if every A-gate g with
input gates g1, g>: Var(gy) N Var(g) =0

©
\@
b
©) ©)
e We will consider C to be deterministic and decomposable

circuit (d-D circuit)

e Several classes of Boolean models can be translated in
polynomial time into d-D Boolean circuits:

e Decision trees
e Ordered binary decision diagrams (OBDDs)
e Free binary decision diagrams (FBDDs)

e Deterministic-decomposable negation normal-form (d-D
NNFs)
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d-D Boolean-Circuits -3

Compiling binary decision trees into d-D Boolean Circuits

An inductive construction starting from the bottom of the DT
Leaves of DT become constant binary gates in d-DC

By induction one can prove the resulting circuit is d-D

Final d-DC is the compilation ¢(r) of root node r of DT

n7 @c(ns)
= @ @

R ICRO!
®

3
[}

1 0
T®, ,®,
nl @
Final equwalent d-DC: ¢(n7)

Computable in linear time

S
e

B

n
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The SHAP Score: d-D Boolean-Circuits -1

e Shap computation in polynomial time not precluded
e Proposition: For d-D circuits C, #SAT(C) can be computed
in polynomial time
Idea: Bottom-up procedure that inductively computes
#SAT(C(g)), for each gate g of C

e To show that Shap can be computed efficiently for d-D
circuits, we need a detailed analysis

e We assume the uniform distribution for the moment
e A related problem: “satisfiable circle of an entity”
SAT(C,e,0):=SAT(C) N { & | Je—¢€]|,=¢ }
————

£ value discrepancies

HSAT(C, e, () := |SAT(C, e, 0)|

e Proposition: If computing #SAT(C, e, ?) is tractable, so is
Shap(X)g97X)

22/27



The SHAP Score: d-D Boolean-Circuits -2

e Main Result: #SAT(C,e, /) can be solved in polynomial time
for d-D circuits C, entities e, and 1 < ¢ < |X]|
Idea: Inductively compute #SAT(C(g).e,,,,,. ) for each
gate g € C and integer ¢ < |Var(g)|
e Input gate: immediate
o —-gate:
HSAT(C(8), €y, 1) = (V1) — #SAT(C(8), ey 1)
e V-gate: (uses determinism)
HAT(C(81 VY 82): vuy vy £) =
#SAT(C(81), €y, )0 €) + #SAT(C(82): €1y, f)
e A-gate: (uses decomposition)
#SAT(C(g1 N &2), € € (g ) UVar(gy) ? ) =
ZJ-‘,—k (#SAT(C(g1), e Var(gy) ? J) X #SAT(C (g2)7eVar(g2)’k)
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The SHAP Score: d-D Boolean-Circuits -3

e Theorem: Shap can be computed in polynomial time for d-D
circuits under the uniform distribution

e Corollary: Shap can be computed in polynomial time for
decision trees and random forests, OBDDs, etc., under the
uniform distribution

e It can be extended to any product distribution on {0, 1}1X!
(uniform is a particular case)
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The SHAP Score: Beyond Binary Features

e “Binarize” features % T ?
e OutlookSunny (OS) \
OutlookOvercast, OutlookRain, etc. /
become propositional features

~</*

0OS
1.0
Hﬁ 00 Certain entities become
19 1 0 impossible (probability 0)
S, OR e=( 0,1,1 ,...) X
0 HN 1 P yeee
1 . ~—~—
YRR ETC. for 0S, 00, OR
¥ N
1 0
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Ordered Binary Decision Diagrams

e Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

e They are relevant for several reasons in Knowledge
Compilation

e In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

e Opening the ground for efficiently applying Shap to them

fx1,x2,x3) = (mx1 A =x2 A =x3) V (x1, Ax2) V (%2 A x3)

@ @ @II

Binary Decision Tr

Same variable order along full paths
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