
Score-Based Explanations in
Data Management

and
ML-Based Classification

Leopoldo Bertossi
leopoldo.bertossi@skema.edu

RBC Data Science Forum, Jan. 2023

Explanations in Machine Learning

• Bank client e = ⟨john, 18, plumber, 70K, harlem, . . .⟩
As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

• e requests a loan from a bank, which uses a classifier

classifier

e
loan?

No!

• The client asks Why?

• What kind of explanation?
How?
From what?

2 / 22

Explanations in AI

• A problem that is common in applications of AI systems

• Users and stakeholders affected by their results need
explanations

• Whole new area of AI: Explainable AI (XAI)

• Part of AI because:

• AI systems should be extended with explanation capabilities

• AI researchers and professionals understand those systems

So as mathematical logicians study the methods and scope of
Math (with the methods of Math)

• Humans explanations are part of intelligent behaviour

Hence, explanation building should be a capability of AI agents

Then, explanations have to be understood, modeled,
implemented, ... as part of AI

3 / 22

• XAI is of interest to many other people

• Stakeholders are being affected by outcomes from AI systems

Assessments (e.g. a credit score), classifications (good/bad
client), decisions (approve/reject loan), etc.

• There is a need for more transparent, trustable, fair,
unbiased, responsible AI systems

• A whole discipline has emerged: Ethical AI

• It touches many others, including AI itself, but beyond: Law,
Sociology, Philosophy, ..., Business, ...

• Also, interpretable AI systems

classifier???

e
loan?

No!

It may really be a “black box”!
• New legislation forces (owners of)
AI systems affecting users to
provide explanations and guarantee all of the above

4 / 22

Explanations (in AI)

• Search for explanations belongs to the nature of human beings

The quest has been around since the inception of humans

• Ancient Greeks already concerned with causes (and effects)

• Are explanations a new subject in AI?

• Yes and No

• Explanations have been studied in AI for some decades by
now, and in related disciplines, e.g. Logic, Statistics, Logic,
Philosophy, Physics, ...

• Some forms of explanations are new in AI

Others have roots in already existing ones

5 / 22

Explanations in Databases

Receives R.1 R.2
s2 s1
s3 s3
s4 s3

Store S .1
s2
s3
s4

• Query: Are there pairs of official stores in a receiving
relationship?

• Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

The query is true in D: D |= Q
• What tuples cause the query to be true?

• How strong are they as causes?

• We would expect tuples Receives(s3, s3) and Receives(s4, s3)
to be causes

• Explanations for query answering (QA) (could be violation of ICs, etc.)

6 / 22

Explanations in Machine Learning (back)

classifier

e
loan?

No!• Client requesting a loan from a bank
using a black-box classifier

• It may have been learned from data, and became a very
complicated model (and implementation)

• e = ⟨john, 18, plumber, 70K, harlem, ...⟩
Record of values for features Name, Age, Income, ...

• Which are the feature values most relevant for the
classification outcome, i.e. the label “No”?

• What is the contribution of each feature value to the
outcome?

• Questions like these are at the core of Explainable AI

7 / 22

Causality and Responsibility -1

• Causality has been developed in AI for 3 decades or so

In particular, Actual Causality (Halpern & Pearl, 2001)

• Also the quantitative notion of Responsibility: A measure of
causal contribution (Chockler & Halpern, 2004)

• Both based on Counterfactual Interventions

Hypothetical changes of values in a (causal) model to detect
other changes To identify actual causes

• Do deletions of certain database tuples make the query false?

Do changes of feature values change the label to “Yes”?

• We have investigated causality, counterfactual explanations,
and responsibility in data management and classification

Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

8 / 22

Causality and Responsibility -2

Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

Receives R.1 R.2
s2 s1
s3 s3
s4 s3

Store S.1
s2
s3
s4

D ′ ̸ |= Q

• Receives(s3, s3) is actual cause

With {Store(s4)} as minimum-size contingency set

It needs company to invalidate the query, extra deletions

• Resp(Receives(s3, s3)) := 1
1 + |{Store(s4)}| = 1

2

• Resp(Store(s3)) := 1
1 + 0 = 1 a counterfactual cause

It has the highest possible responsibility (Meliou et al., 2010;

B. & Salimi, TOCS 2017)

• Also explored in QA the causal-effect (score) of causality in
observational studies

9 / 22

Causality and Responsibility -3

classifier

e
loan?

No!

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No

• Counterfactual versions:

e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes

e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• For the gist:

1. Value for feature Age is counterfactual cause with explanatory
responsibility Resp(e,Age) = 1

2. Value for Income is actual cause with Resp(e, Income) = 1
2

This one needs additional (contingent) changes ...

10 / 22

Causality and Responsibility -4

• For binary features the previous definition of responsibility
(as for DBs) works fine

• In the case of the classifier, possibly many new values for a
feature do not change the label, and few of them do

• Then, the original value is not great explanation

• Responsibility score has to be generalized (B. et al., Deem@SIGMOD20)

• Better consider contingent features and values for them, and
average labels!

• We are considering binary classifiers, with labels 1 or 0

Assume label 1 is the one we want to explain

• Resp is a “local” explanation score: for a feature value in a
particular entity

11 / 22

Generalized Responsibility -1

• e classified entity, L(e) = 1, F ⋆ ∈ F (set of features)

• “Local” Resp-score: for fixed contingent assignment Γ := w̄

Γ ⊆ F ∖ {F ⋆} (potential contingent set of features)

• e′ := e[Γ := w̄] (potential contingent values), with L(e′) = L(e)

Resp(e,F ⋆, Γ, w̄) :=
L(e)−E[L(e′′) | e′′F∖{F⋆}= e′F∖{F⋆}]

1+|Γ| (∗)

• e′′ := e[Γ := w̄ ,F ⋆ := v], with v ∈ dom(F ⋆)

• eS is projection of e on S ⊆ F
• When (∗) > 0, F ⋆(e) is actual causal explanation for L(e) = 1

with contingency ⟨Γ, eΓ⟩

• Global score: Resp(e,F ⋆) := max Resp(e,F ⋆, Γ, w̄)
⟨Γ, w̄⟩, |Γ| min., (∗) > 0

12 / 22

Generalized Responsibility -2

• (∗) requires multiple “passes” through the classifier ...

• Resp requires (assumes) a probability distribution on the
entity population E
Several probability distributions can be used

(B. et al., Deem@SIGMOD20)

Among them, two coming from sample T ⊆ E
• Empirical distribution: P(e) :=

{ 1
|T | if e ∈ T

0 if ω /∈ T
e ∈ E

• Product probability space over E : (say, for binary features)

pi = P(Fi = 1) ≈ |{e∈T | ωi=1}|
|T | =: p̂i (empirical marginals)

P(e) := Πei=1 p̂i × Πej=0(1− p̂j), for e ∈ E

• In our experiments, Resp score computed on product space

Not very good at capturing feature correlations

Empirical distribution not suitable for Resp score
13 / 22

Shapley Values: Shap

• Based on the general Shapley value of coalition game theory

• For each application of Shapley one needs an appropriate
game function that maps (sub)sets of players to real numbers

• Our case: Set of players F contain features, but relative to e

• Game function: For S ⊆ F , and eS the projection of e on S

Ge(S) := E(L(e′) | e′ ∈ E & e′S = eS)

• For a feature F ⋆ ∈ F , compute: Shap(F ,Ge,F ⋆)∑
S⊆F\{F⋆}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})︸ ︷︷ ︸

Ge(S∪{F⋆})

−E(L(e′)|e′S = eS)︸ ︷︷ ︸
Ge(S)

]

• Shap score has become popular (Lee & Lundberg, 2017)

• Assumes a probability distribution on entity population

14 / 22

Experimenting with Scores

• In general, Resp and Shap consider exponentially many value
combinations

Still, Resp is in general simpler to compute

• We experimented with Resp and Shap (B. et al., Deem@SIGMOD20)

• 13 features of the Kaggle dataset for fraudulent card
transactions

Experiments

13 features of the Kaggle loan dataset: (first 2 are categorical)

0. credit.policy
1. purpose
2. int.rate
3. installment
4. log.annual.inc
5. dti
6. fico

7. days.with.cr.line

8. revol.bal

9. revol.util

10. inq.last.6mths

11. delinq.2yrs

12. pub.rec

Classification about grating a loan (0) or not (1)

Classification done with XGBoost with Python library (rather opaque model)

8K training entities, 2K test entities

18

Classification about “fraudulent” (1) or not (0)

• XGBoost classifier using Python library (rather opaque
model, basically black-box)

15 / 22

• Also experimented with FICO dataset for loan assignment
(“Fair, Isaac and Company”, https://www.fico.com)

Computed Resp, Shap, Banzhaf, and FICO-Rudin scores

• C. Rudin uses internals of open-box model

Coefficients of two coupled logistic regressions

• 23 features plus bucketization

Requires approximate and optimized computations of
black-box score computation

• Resp gave quite reasonable results

16 / 22

Shap: Tractability -1

• Both Resp and Shap may end up considering exponentially
many combinations

And multiple passes through the black-box classifier

• Both provably intractable in the general case

• Can we do better with an open-box classifier?

classifier

e
loan?

No!

X1

X2

Xn

.

.

.

L

O

CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

;

Exploiting its elements and internal structure?

• What if we have a decision tree, or a random forest, or a
Boolean circuit?

• Can we compute Shap in polynomial time?

17 / 22

Shap: Tractability -2

• We investigated this problem in detail (Arenas, Barcelo, B., Monet; AAAI21)

• Tractable and intractable cases, with algorithms for the
former

Investigated existence (or not) of good approximation
algorithms

• Choosing the right abstraction (model) is crucial

• We used Boolean classifiers (BCs), i.e. propositional formulas
with (binary) output gate

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

• We established early on that computing
Shap is at least as hard as counting the
satisfying truth assignments of the BC
(intractable in general)

• So, it has to be a broad and interesting class of BCs for which
the latter problem is not intractable

18 / 22

Shap: Tractability -3

• We concentrated on the class of deterministic and
decomposable Boolean circuits (dDBCs) (example above)

• Input gates are variables (features) or constants

• An ∨-gate never has both inputs true (determinism)

• An ∧-gate do not has inputs sharing variables
(decomposability)

• A class of BCs that includes -possibly via efficient
compilation- many interesting ones, syntactic and not ...

• Decision trees (and random forests)

• Ordered binary decision diagrams (OBDDs)

• Free binary decision diagrams (FBDDs)

• Deterministic-decomposable negation normal-form (dDNNFs)

• Theorem: For dDBCs, under the uniform or product
distribution, Shap can be computed in polynomial time

19 / 22

Shap: Tractability -4

• Binary decision trees can be inductively compiled into dDBCs

• Non-binary ones can be binarized first

• OBDDs can also be compiled into dDBCs

f (x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1 ∧ x2) ∨ (x2 ∧ x3)

 Binary Decision Tree
BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representin BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Binary decision tree and truth table for the function

, described in notation for

Boolean operators.

BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representing BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

OBDD (same variable order along paths)

• Etc.

• We obtain tractability of Shap for all these classes of classifiers

20 / 22

Final Remarks and Ongoing Research

• Binary Neural Networks (BNNs) -usually considered black-box
models- can be compiled into OBDDs (Shi et al., KR20)

• Opening the ground for efficient Shap computation for BNNs
(via additional compilation into dDBC)

• We are experimenting with Shap computation with a
black-box BNN and with its compilation into a dDBC

With considerably gain in efficiency

Scores are well-aligned w.r.t. those obtained via “black-box”

• More generally: Bringing domain knowledge (logical or
probabilistic) into score definition and computation

• Causality and scores in multidimensional DBs (e.g. DWHs)

Including causality at different levels of abstraction and score
aggregation/analytics

21 / 22

• Reasoning with counterfactuals and scores (ASP-based approach)
(B., TPLP22; B. & Reyes, IJCLR21)

• E.g., to specify actionable explanations, and reason therewith

• Explainability in AI is related to other dimensions of Ethical AI

Causality and explanations for a basis for fairness

• Reasoning and QA help specify and detect unfair behaviors

• For example, about decisions related
to protected features, e.g. Race

….….
race

income

age

Loan?

No!Yes!

e1 e2

e1
e2

Paths in Decision Tree for two entities
diverge at that point, getting different
labels

• We can keep track of counterfactual
“histories” and compare them

22 / 22

