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Duplicate Resolution and MDs

A database may contain several representations of the same external
entity

The database contains “duplicates”, usually considered to be undesir-
able

The database has to be cleaned ...

The problem of duplicate- or entity-resolution is about:

(a) detecting duplicates, and

(b) merging duplicate representations into single representations

This is a classic and complex problem in data management, and data
cleaning in particular
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We concentrate on merging, in a relational context

A generic way to approach the problem consists in specifying what at-
tribute values have to be matched (made identical) under what condi-
tions

A declarative language with a precise semantics could be used for this
purpose

Matching Dependencies (MDs) were proposed
(Fan et al., PODS’08, VLDB’09)

They are rules for resolving pairs of duplicate representations (two tu-
ples at a time)



4

Example: The similarities of phone and address indicate that the tuples
refer to the same person, and the names should be matched

People (P ) Name Phone Address

John Smith 723-9583 10-43 Oak St.

J. Smith (750) 723-9583 43 Oak St. Ap. 10

Here: 723-9583 ≈ (750) 723-9583 and 10-43 Oak St. ≈ 43 Oak St. Ap. 10

An MD capturing this cleaning policy:

P [Phone ] ≈ P [Phone ] ∧ P [Address ] ≈ P [Address ] →
P [Name ]

.
= P [Name ]

(an MD may involve two different relations)

Dynamic interpretation: The values on the RHS should be updated to
some (unspecified) common value
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Matching Dependencies

MDs are rules m of the form
∧

i,j

R[Ai] ≈ij S[Bj ] →
∧

k,l

R[Ak]
.
= S[Bl]

The left-hand side captures a similarity condition on pairs of tuples, in
relations R and S

Abbreviation: m : R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē]

LHS (m): set of attributes on the left-hand side of of the arrow

RHS (m): similarly

Attributes in RHS (m), for some m: changeable attributes
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The similarity operators ≈ satisfy:

(a) Symmetry: If x ≈ y, then y ≈ x

(b) Equality Subsumption: If x = y, then x ≈ y

Transitivity not always assumed (and may not hold)

MDs are to be “applied” iteratively until duplicates are solved

To keep track of changes and comparing tuples and instances, we use
global tuple identifiers, a non-changeable surrogate key

Usually shown as: R(t, x̄)

A position: A pair (t, A) with t a tuple id, A an attribute

The position’s value is t[A], the value for A in tuple (with id) t
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MD Semantics

A semantics for MDs acting on database instances was introduced in
(Gardezi and Bertossi; LID’11; FofCS’12)

Based on a chase procedure starting with original instance D

A resolved instance D′ is obtained from a finitely terminating sequence
of instances D �→ D1 �→ D2 �→ · · · �→ D′

D′ satisfies the MDs in the sense of the static interpretation, seeing
MDs as EGDs

The semantics specifies the one-step transitions (�→) or updates al-
lowed to go from Di−1 to Di

For a given instance, only values of modifiable positions allowed to
change in such a step, and as forced by the MDs

(syntactically and recursively depend on M and current instance)
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Example:

R[A] = R[A] → R[B]
.
= R[B]

R[B] = R[B] → R[C]
.
= R[C]

R(D) A B C
t1 a b d
t2 a c e
t3 a b e

Attribute R(C) is changeable

Position (t2, C) is not modifiable wrt M and D: No justification to
change its value in one step on the basis of an MD and D

Position (t1, C) is modifiable

Two resolved instances for D: D1 and D2

R(D1) A B C

t1 a b d
t2 a b d
t3 a b d

R(D2) A B C

t1 a b e
t2 a b e
t3 a b e

D1 cannot be obtained in a single (one step) update: the red value is
for a non-modifiable position D2 can ...
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Single-Step Semantics:

Each pair Di, Di+1 in an update sequence (a chase step) must satisfy
the set M of MDs relative to modifiable attributes,
denoted (Di, Di+1) �ma M

(Di, Di+1) �ma M holds iff:

1. For every MD, say R[Ā] ≈ S[B̄]→ R[C̄]
.
= S[D̄] and pair of

tuples tR and tS , if tR[Ā] ≈ tS[B̄] in Di, then tR[C̄] = tS[D̄]
in Di+1

2. The value of a position can only differ between Di and Di+1 if it
is modifiable wrt Di

Notice: A resolved instance D′ is stable in the sense that
(D′, D′) �ma M
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This semantics stays as close as possible to the spirit of the MDs as
originally introduced, and also uncommitted wrt values for matchings

Other semantics have been proposed (are being) and
investigated

• As above, but modifying the chase conditions, e.g.

- One MD at a time

- Previous resolutions cannot be unresolved

• Using matching functions to choose a value for a match

(Bertossi, Kolahi, Lakshmanan; ICDT’11, TofCSs 2013),

(Bahmani, Bertossi, Kolahi, Lakshmanan; KR’12)
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Minimally Resolved Instances:

Among the resolved instances we prefer those that are closest to the
original instance

A minimally resolved instance (MRI) of D is a resolved instance D′

such that the number of changes of attribute values comparing D with
D′ is a minimum

Instance D2 in Example 2 is an MRI, but not D1 (2 vs. 3)

Resolved Answers:

Given a conjunctive queryQ, a set of MDs M , and an instance D, the
resolved answers are invariant under the entity resolution process

That is, the resolved answers are those answers toQ that are true in all
MRIs of D
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The RQA decision problem:

RA(Q,M) = {D, ā | ā is resolved answer toQ from D wrt M}

Resolved query answering (RQA) in the spirit of consistent query an-
swering (CQA) from an instance that fails to satisfy a set of integrity
constraints (Arenas, Bertossi, Chomicki; PODS’99)

Developing (polynomial-time) query rewriting methodologies for
(conjunctive) CQA has been the focus of intensive research

Such rewritings, in cases when conjunctive CQA is polynomial-time,
have been first-order

Doing something similar for MDs has not been attempted before and
brings new challenges:
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• MDs contain the non-transitive similarity predicates

• Enforcing consistency of updates requires computing the transi-
tive closure of such operators

Example: R[A] ≈ R[A] → R[B]
.
= R[B]

R(D) A B
t1 a e
t2 b f
t3 c g

It holds a ≈ b ≈ c, a �≈ c

Consistently updating requires
≈’s transitive closure

Duplicate resolution requires
t1[B] and t3[B] to be
updated to the same value

• Minimality of value changes (as opposed to tuple changes as
usual in CQA) (but see below)
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(In)Tractability of RQA?

Deciding resolved query answers is generally intractable

E.g., it is intractable for the queryQ(x, z) : ∃yR(x, y, z) and MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[C]
.
= R[C]

The MDs here do not depend “cyclically” on each other ...

The query is very simple (Gardezi,Bertossi; LID’11)

There sets of MDs for which RQA is tractable, for a broad class of con-
junctive queries

Distinction between cyclic and acyclic cases is crucial
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Efficient Query Answering/Rewriting?

We developed a query rewriting methodology

The rewritten queries turn out to be Datalog queries

There are two main classes of sets of MDs that enjoy query rewriting:
(Gardezi, Bertossi; SUM’12, Datalog 2.0’12)

1. Sets where MDs do not depend on each other: non-interacting
sets of MDs

2. Some sets where MDs cyclically depend on each other

E.g. But not

R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[A]
.
= R[A]

R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[C]
.
= R[C]

(as seen, intractable for simple queries)
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Cyclic Cases of Sets of MDs

Example:

R(D) A B

1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

m1 : R[A] ≈ R[A]→ R[B]
.
= R[B]

m2 : R[B] ≈ R[B]→ R[A]
.
= R[A]

(with equality as similarity)

A possible update sequence:

R(D) A B

1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

�→

R(D1) A B

1 b2 d1
2 a2 d1
3 a2 e1
4 b2 e1

�→

R(D2) A B

1 a2 e1
2 a2 d1
3 b2 d1
4 b2 e1

�→

Instances exhibit an alternating behaviour, which can only terminate by
updating all values in the A and B columns to a (most frequent) com-
mon value MRIs have a simple form
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HSC Sets of MDs: (will enjoy query rewritability)

More generally, MRIs take a simple and easily characterizable form for
hit-simple-cyclic (HSC) sets of MDs

For M set of MDs, its directed graph MDG(M):

• Each MD m ∈M as a vertex

• An edge from m1 to m2 if there is an attribute on RHS of m1 that
is on LHS of m2

M in an HSC set when:

• For each m ∈ M , at most one attribute in LHS (m) is change-
able (i.e. appears in some RHS in M )

• Each vertex m1 in MDG(M) is on at least one cycle, or there is
an edge from m1 to a vertex m2 that is on a cycle
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Example: (a) An HSC set of MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[A]
.
= R[A] m1 m2

(b) A non-HSC set of MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[C]
.
= R[C]

m1 ◦ −→ ◦m2

(c) A non-interacting set of MDs

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[C] ≈ R[C] → R[D]
.
= R[D]

m1 ◦ ◦m2
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Example: Relation R about people

Attributes A and C for address and email

Tuples with very similar addresses or identical emails likely refer to the
same person

Two “key” MDs

m1 : R[A] ≈ R[A]→ R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C]→ R[A,F,G]
.
= R[A,F,G].

A common situation ...

An HSC set that enjoys query rewriting
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Here cycles help us, because the termination condition for the chase
imposes a relatively simple form on the minimally resolved instances
(easier to capture and characterize)

We haven’t mentioned queries yet ...

For HSC and non-interacting sets of MDs, conjunctive queries in a class
can be rewritten to retrieve the resolved answers
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Queries with no joins on existentially quantified join variables corre-
sponding to changeable attributes: unchangeable-join
-attribute conjunctive (UJCQ) queries (G&B; SUM’12)

Example: Schema R[A,B,C]

MD R[A] = R[A] → R[B,C]
.
= R[B,C]

Q : ∃x∃y∃z(R(x, y, c) ∧ R(z, y, d)) is not UJCQ

Q′ : ∃x∃z(R(x, y, z) ∧R(x, y′, z′) is UJCQ

Outside UJCQ, RQA tends to be intractable, with or without cycles in
MDs ...
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Tuple-Attribute Closure:

Given instance D and MDs M

TAM,D, the tuple-attribute closure, is the transitive closure of a binary
relation≈′ on positions

≈′ depends on D,M , and≈ (example below)

≈′ and its TC can be defined in Datalog

TAM,D turns out to be an equivalence relation

For an equivalence class E of TAM,D:

freqD(a,E) := | {(t, A) | (t, A) ∈ E, t[A] = a in D} |
In an MRI, all positions in each equivalence class E must take a com-
mon value a that maximizes freqD(a,E)
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Example: M = {R[A] ≈ R[A]→ R[B]
.
= R[B]}

It holds a ≈ b ≈ c

R(D) A B
t1 a e
t2 b e
t3 c g

→
R(D′) A B
t1 a e
t2 b e
t3 c e

TAM,D is TC of the relation (t1, B) ≈′ (t2, B) ≈′ (t3, B)

D′ is the only MRI
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The Rewriting:

Input: a conjunctive query

Output: a stratified Datalognot program with recursion and aggregation
(no disjunction)

Recursion arises in the computation of the TC TAM,D

Aggregation is needed to compute freqD(a,E)

Negation needed to maximize the frequency (or minimize value changes)

Notation for aggregation: P (x̄, count(ū)) ← Body(ȳ)

(count distinct with group-by, x̄ ∪ ū ⊆ ȳ)
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To retrieve the resolved answers toQ from D:

1. Generate a query rule defining auxiliary query predicate Q′ from
Q

2. Combine with the Datalog program above

3. Run on top of D

Resolved answers can be obtained in polynomial time (in data)
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Query Rewriting Example

Example: R[A,B] Query: Q(x, y) ← R(x, y)

M : R[A] ≈ R[A]→ R[B]
.
= R[B]

R[B] ≈ R[B]→ R[A]
.
= R[A]

We use tuple identifiers, so R(x, y) becomes R(t, x, y)

(t1, A) ≈′ (t2, A)← R(t1, x̄), R(t2, ȳ), t1[A] ≈ t2[A]

(t1, A) ≈′ (t2, A)← R(t1, x̄), R(t2, ȳ), t1[B] ≈ t2[B]

(t1, B) ≈′ (t2, B)← R(t1, x̄), R(t2, ȳ), t1[A] ≈ t2[A]

(t1, B) ≈′ (t2, B)← R(t1, x̄), R(t2, ȳ), t1[B] ≈ t2[B]

≈′ relates both attribute A and B positions of pairs of tuples satisfying
the similarity condition of either MD
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Now the transitive closure:

Reflexivity:
TA(t, A, t, A)← R(t, x̄)

TA(t, B, t, B)← R(t, x̄)

Symmetry:
TA(t1, A, t2, A)← TA(t2, A, t1, A)

TA(t1, B, t2, B)← TA(t2, B, t1, B)

Transitivity:

TA(t1, A, t2, A)← (t1, A) ≈′ (t2, A)
TA(t1, B, t2, B)← (t1, B) ≈′ (t2, B)

TA(t1, A, t3, A)← TA(t1, A, t2, A), (t2, A) ≈′ (t3, A)
TA(t1, B, t3, B)← TA(t1, B, t2, B), (t2, B) ≈′ (t3, B)



28

Frequencies:

CA(t1, u, count(t2))← TA(t1, A, t2, A), R(t1, x, y), R(t2, u, v)

CB(t1, v, count(t2))← TA(t1, B, t2, B), R(t1, x, y), R(t2, u, v)

InCA(t1, u, count(t2)), the value of the count expression is freq(u,E ),
where E is the equivalence class of TA to which (t1, A) belongs

Minimizing:

CompareA(t, x) ← CA(t, x, z1), C
A(t, x′, z2), z1 ≤ z2, x �= x′

CompareB(t, y) ← CB(t, y, z1), C
B(t, y′, z2), z1 ≤ z2, y �= y′

CompareA(t, x) is true iff there is a value x′ whose frequency in the
equivalence class of TA closure to which (t, A) belongs is at least as
large as that of x
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The query rule:

Resolved answers to original query

Q(x, y)← R(x, y)

are the answers to rewritten query (with answer predicate)Q′:

Q′(x, y) ← R(t, x, y), CA(t, x, z1), C
B(t, y, z2),

not CompareA(t, x),not CompareB(t, y),
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The Repairs and CQA Connection

We consider MDs with equality for similarity, and key constraints on the
CQA side

In some cases, computing the resolved answers can be reduced in
PTIME to consistent query answering, allowing us to take advantage
of results from CQA

In CQA, the repairs of an instance of a relation R that fails to satisfy a
key constraint R : A → B are obtained by restoring consistency with
the minimal number of tuple deletions

Instance Repairs
R(D) A B

a b
a c

R(D) A B

a b

R(D) A B

a c

Since duplicate tuples are discarded, the repairs coincide with the MRIs
for the MD R[A] = R[A]→ R[B]

.
= R[B]
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Resolved Answers from Consistent Answers:

Consider an instance D of a relation R[Ā, B̄] with MD

R[Ā] = R[Ā]→ R[B̄]
.
= R[B̄]

There is a transformation T such that the resolved answers to any query
Q for R(D) are the consistent answers to Q wrt the FD R : Ā → B̄
on instance T (R(D))

T is a first-order query with aggregation (counting)

First-order query rewriting can be used to find the consistent answers
wrt key constraints for important classes of conjunctive queries (Fuxman

and Miller; ICDT’05) (Wijsen; PODS’10)

IfQ′ is the rewriting ofQ, thenQ′ ◦ T will return the resolved answers
toQ when posed to the original instance D
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Example: Relation R[A,B,C] has key constraint R : A→ BC

R(D) A B C

a c e
a d e
b c e
b c f
b d f
b d h
b g h

T−→

T (R(D)) A B C

a c e
a d e
b c f
b c h
b d f
b d h

For each value of the key, the values of the other attributes are obtained
by taking the “cross product” of the most frequently-occurring values for
those attributes
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Example: For the query Q : ∃x∃y∃z∃w(R(x, y, w) ∧ S(y, w, z))
with relational predicates R[A,B,C] and S[C,E, F ] and KCs
R : A→ BC and R : CE → F ,

Q′ retrieves the consistent answers (Fuxman and Miller; ICDT’05)

Q′ : ∃x∃y∃z∃w[R(x, y, w) ∧ S(y, w, z) ∧
∀y′∀w′(R(x, y′, w′)→ ∃z′S(y′, w′, z′))

Transformation T maps R to R′

R′(x, y, w) := ∃w′{R(x, y, w′) ∧ ∀y′[Count{w′′ | R(x, y′, w′′)}
≤ Count{w′′ | R(x, y, w′′)}]} ∧ Count{w′′ | R(x, y, w′′)}]}
∧ ∃y′{R(x, y′, w) ∧ ∀v[Count{y′′ | R(x, y′′, v)} ≤

Count{y′′ | R(x, y′′, w)}]}
The resolved answers for the corresponding key MDs are obtained from
Q′ ◦ T (replace R by R′ inQ)
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An Intractability Result via CQA:

Consider the relational predicate R[A,B,C], the MD

m : R[A] = R[A]→ R[B,C]
.
= R[B,C]

and the query

Q : ∃x∃y∃y′∃z(R(x, y, c) ∧ R(z, y′, d) ∧ y = y′)

Deciding RQA is coNP -complete (in data)

This follows from a corresponding result for CQA with the FD corre-
sponding to the MD (the repairs are MRIs for the particular instance
produced in the reduction) (Chomicki et al.; IandC’04)

MD is non-interacting, and the query is not UCJQ

This shows that the tractability result for UCJQ queries cannot be ex-
tended to all conjunctive queries
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Some Intractability Results

Above we have seen mainly tractable cases of RQA
(Gardezi, Bertossi; SUM’12, Datalog 2.0’12)

But also an intractable case: For R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[C]
.
= R[C]

RQA is intractable for a simple UJCQ query: Q(x, z): ∃yR(x, y, z)

More general results concerning interacting, acyclic MDs?
[Corr arXiv:1309.1884v1, 2013]

In the absence of cycles, RQA tends to be intractable

We investigate RQA for a subclass of UJCQ: changeable
attribute queries (CHAQ)
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We still concentrate on UJCQ: Outside RQA can be intractable even for
single MDs; inside we find tractable and hard cases

We focus mainly on the kinds of interaction of MDS than in most general
classes of queries for which (in)tractability holds

This in contrast with CQA, where interaction of FDs (under tuple deletion
repairs) is less of an issue and mostly queries determine (in)tractability
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Set M of MDs involving predicates R,S, . . .

Q a UJCQ

Q is changeable attribute query (CHAQ) when it contains a conjunct
of the form R(x̄) with all variables free (a “free occurrence” of R)
(a source of intractability)

Example: (with M as above)

• Q(x) : ∃y∃zR(x, y, z) is not CHAQ

Actually, RQA is trivially tractable if x corresponds to an unchange-
able attribute (RAs are the usual answers)

• Q′(x, y, z) : ∃w∃t(R(x, y, z) ∧ S(x,w, t)) is CHAQ
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Some Terminology and Notation: M set of MDs

• M is hard: For every CHAQQ, RA(Q,M) is NP-hard

M is easy: For every CHAQQ, RA(Q,M) is in PTIME

Of course, M does not have to be hard or easy

• M is acyclic if MDG(M) is acyclic

Most of results hold for pairs of MDs, we concentrate on this case first,
say M = {m1,m2}
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Intractability Criteria for RQA

We first consider linear pairs of MDs M = (m1,m2): acyclic, on two
distinct relational predicates, an edge from m1 to m2

For m ∈M :

• LRel(m): Symmetric binary relation, relates attributes A,B
where R[A] ≈ S[B] appears in LHS (m)

• RRel(m): Similarly, with R[A]
.
= S[B], and RHS (m)

• L-component of m: Equivalence class of the reflexive and transi-
tive closure of LRel(m)

• R-component: Similarly, with RRel(m)

Example: m : R[A] ≈ S[B] ∧R[A] ≈ S[C] → R[E]
.
= S[F ] ∧R[G]

.
= S[H]

Only one L-component: {R[A], S[B], S[C]}
Two R-components: {R[E], S[F ]} and {R[G], S[H]}
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Equivalence Sets of Attributes: (m1,m2) a linear pair with
relational predicates R,S

• BR: Reflexive, symmetric, binary relation on Attr(R)

(R[U1], R[U2]) ∈ BR iffR[U1], R[U2] are in same R-component
of m1 or same L-component of m2 (similarly BS)

• R-equivalent set (R-ES): Equivalence class of TC (BR), with at
least one attribute in LHS (m2) (similarly S-ES)

• An (R or S)-ES E is bounded if E ∩ LHS (m1) �= ∅
(otherwise, unbounded)
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Example: Schema R[A,C, F,H, I,M ], S[B,D,E,G,N ]

Linear pair (m1,m2):

m1 : R[A] ≈ S[B]→ R[C]
.
= S[D] ∧ R[C]

.
= S[E]∧

R[F ]
.
= S[G] ∧R[H]

.
= S[G]

m2 : R[F ] ≈ S[E] ∧ R[I] ≈ S[E] ∧
R[A] ≈ S[E] ∧ R[F ] ≈ S[B] → R[M ]

.
= S[N ]

• BR(R[F ], R[H]) because of R[F ]
.
= S[G], R[H]

.
= S[G]

• BR(R[F ], R[I]) because of R[F ] ≈ S[E], R[I] ≈ S[E]

• BR(R[I], R[A]) because of R[I] ≈ S[E], R[A] ≈ S[E]

• {R[A], R[F ], R[I], R[H]} is an R-ES, and bounded due to
{R[A], R[F ], R[I], R[H]} ∩ LHS (m1) = {R[A]} �= ∅



42

Theorem 1: (m1,m2) linear pair, with relational predicates R and S,
ER, ES be the sets of R-ESs and S-ESs, resp.

(m1,m2) is hard if RHS (m1) ∩ RHS (m2) = ∅, and at least one
of (a) and (b) holds

(a) All of the following hold:

(i) Attr(R) ∩ (RHS (m1) ∩ LHS (m2 )) �= ∅
(ii) There are unbounded ESs in ER

(iii) For some L-component L of m1,
Attr(R) ∩ (L ∩ LHS (m2)) = ∅

(b) Same as (a), but with R replaced by S
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Example: The linear pair (m1,m2) is hard:

m1 : R[A] ≈ S[B]→ R[C]
.
= S[D]

m2 : R[C] ≈ S[D]→ R[E]
.
= S[F ]

First: RHS (m1) ∩ RHS (m2) = ∅
It satisfies condition (a):

Condition (a)(i) holds: R[C] ∈ RHS (m1) ∩ LHS (m2 )

Conditions (a)(ii) and (a)(iii) trivially satisfied:

There are no attributes of LHS (m1) in LHS (m2)
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A Dichotomy Result

All syntactic conditions/constructs on attributes above are
“orthogonal” to semantic properties of similarity

In particular, for all the transitive closures on attributes above

When similarity predicates are transitive, every linear pair not satisfying
the hardness criteria of Theorem 1 is easy

Theorem 2: Let (m1,m2) be a linear pair withRHS (m1)∩RHS (m2) =
∅
If the similarity predicates are transitive, then (m1,m2) is either easy
or hard
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Intractability Criteria beyond Acyclic Pairs

We consider finite sets of acyclic MDs of arbitrary size

The generalization from acyclic pairs of MDs is based on the notions of
pair-preserving acyclic and non-inclusive sets of MDs

A set M of MDs is pair-preserving if, for every attribute R[A] occurring
in M , there is only one attribute S[B] with R[A] ≈ S[B] or R[A]

.
=

S[B] occurring in MDs in M

This condition typically holds in entity resolution: Values of pairs of at-
tributes are normally compared only if they hold the same kind of infor-
mation (e.g. both addresses or both names)



46
Syntactic conditions on pairs (m1,m2) imply hardness (Th.1)

One of its requirements is the absence of certain attributes inLHS (m1)
from LHS (m2) (conditions (a)(iii) or (b)(iii))

Non-inclusiveness wrt subsets of M is a syntactic generalization that
ensures hardness for acyclic, pair-preserving Ms

Theorem 3: M acyclic and pair-preserving

If there is {m1,m2} ⊆ M , and attributes C ∈ RHS (m2),
B ∈ RHS (m1) ∩ LHS (m2) with:

(a) C is non-inclusive wrt {m1,m2}, and

(b) B is non-inclusive wrt {m2},
then M is hard

As expected, Theorem 3 reduces to Theorem 1 for pair-preserving
linear pairs



47

Final Remarks

• We have shown that resolved query answering is typically intractable
when the MDs have a non-cyclic dependence on each other

• Other definitions of resolved answer can be considered in our setting,
such as

(a) Answers that are true in all (not necessarily minimal) resolved in-
stances

(b) Answers in all (minimal) resolved instances obtained with a mod-
ified chase procedure that never makes unequal values that have
been made equal before

- The same rewriting techniques apply, but now to some sets of
MDs with non-cyclic dependencies

- For acyclic pairs of MDs, we may obtain different behaviors wrt
the semantics in this work
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Example:
R[A] ≈ R[A]→ R[B]

.
= R[B]

R[B] ≈ R[B]→ R[C]
.
= R[C]

RQA is tractable for every UJCQ under this alternative semantics

• Many open problems with the semantics used in this work, and the
alternative ones ...

• Some of them include the relationship between repairs/CQA and MRI/RQA

Results for/from CQA for value-based repairs?

• Implementation of the query rewriting approaches

Ongoing work ...


