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2Introdu
tionDatabases may be
ome in
onsistent wrt a given set of integrity
onstraints (ICs)DBMS has no me
hanism to maintain 
ertain 
lasses ofICsData of di�erent sour
es are being integratedEven if the independent data sour
es are 
onsistent, in-tegrated data may be in
onsistentNew 
onstraints are imposed on pre-existing, lega
y dataSoft, user, or informational 
onstraints, to be 
onsideredat query answering, but without being enfor
edMost likely most of the data in the DB is still �
onsistent�



3Considerable amount of resear
h on 
onsistent query answering(CQA) has been 
arried out in the last 6 yearsIn [Arenas, Bertossi, Chomi
ki. PODS 99℄:Chara
terization of 
onsistent answers to queries as thosethat are invariant under minimal repairs of the originaldatabase; i.e. true in all minimally repaired versions ofthe DBMe
hanism for 
omputing them (for 
ertain 
lasses ofqueries and ICs)Here, repairs of databases are 
onsistent instan
es that minimi-ze under set in
lusion the set of insertions/deletions of wholedatabase tuples

D (set of ground atoms); in
onsistent wrt IC : A repairD′ ofDsatis�es IC and makes ∆(D,D′) minimal under set in
lusion



4Example 1: In
onsistent DB instan
e D wrt

FD : Name → Salary , a
tually a Key Dependen
y (KD)

Employee Name Salary

Page 5000

Page 8000

Smith 3000

Stowe 7000Repairs D1, resp. D2

Employee Name Salary

Page 5000
Smith 3000
Stowe 7000

Employee Name Salary

Page 8000

Smith 3000

Stowe 7000Consistent answers to the queries:
Employee(x, y)?: (Smith, 3000), (Stowe , 7000)

∃yEmployee(x, y)?: Page,Smith,Stowe



5First algorithm for CQA was based on FO query rewriting

Example 2: (
ontinued)
FD : ∀XY Z (¬Employee(X,Y ) ∨ ¬Employee(X,Z) ∨ Y = Z)Query: Employee(x, y)?Consistent answers 
an be obtained by means of the transfor-med query

T (Employee(x, y)) := Employee(x, y) ∧

∀z (¬Employee(x, z) ∨ y = z)

... those tuples (x, y) in the relation for whi
h x does not haveand asso
iated z di�erent from y ...



6FO query rewriting is de�ned (or works) for limited 
lasses ofqueries and ICsA more general me
hanism is based on spe
ifying databaserepairs using disjun
tive logi
 programs with stable model se-manti
sIt is a general methodology, that 
an be applied to any FOquery (and beyond)CQA using these programs gets an upper bound on data 
om-plexity of ΠP
2

[Gre
o, Gre
o, Zumpano. IEEE TKDE 2003℄[Arenas, Bertossi, Chomi
ki. TPLP 2003℄[Bar
elo, Bertossi. PADL 2003℄



7Today we have quite a 
lear pi
ture of tra
table/intra
table
ases for CQAComplete analysis of 
omplexity of CQA for simple ag-gregate queries under FDsMost 
ases are NP -
omplete[Arenas, Bertossi, Chomi
ki. ICDT 01℄Complexity results for 
onjun
tive queries under denialICs and referential ICs
ΠP

2 -
omplete 
ases identi�ed (and below)Even unde
idability (
y
li
 referential ICs)[Chomi
ki, Mar
inkowski. I&C 05℄, [Cali, Lembo, Rosati. PODS 2003℄Conjun
tive queries, FDs, and KDs: Broad and tight tra
-table 
lasses identi�ed[Chomi
ki, Mar
inkowski. I&C 05℄, [Fuxman, Miller. ICDT 2005℄



8Other Forms of Repairs

Ex
ept for a few ex
eptions, most of the resear
h has 
on
en-trated on this repair semanti
sRepairs minimize under set in
lusion the set of insertions ordeletions of whole database tuplesIn di�erent forms, and exploiting di�erent aspe
ts, two alter-native repair semanti
s have been 
onsidered in the literature

• Cardinality-based repair semanti
s:A repair D′ minimizes the 
ardinality of the set of whole tuplesby whi
h it di�ers from the original DB D

|∆(D,D′)| is minimum[Arenas, Bertossi, Chomi
ki. TPLP 2003℄



9Example 4: DB s
hema P (X,Y, Z), FD : X → Y

D = {P (a, b, c), P (a, c, d), P (a, c, e)}

D has two repairs wrt set in
lusionThey have a set-minimal di�eren
e with D
D1 = {P (a, b, c)}: ∆(D,D1) = {P (a, c, d), P (a, c, e)}

D2 = {P (a, c, d), P (a, c, e)}: ∆(D,D2) = {P (a, b, c)}Only D2 is a 
ardinality-based repair: |∆(D,D2)| is minimum



10

• Attribute-based repair semanti
s:Repairs are obtained by �xing attribute values [Wijsen. ICDT 03℄Most 
ommon of them:Repairs minimize a numeri
al aggregation fun
tion over di�e-ren
es between attribute values in the original tuples and theirrepaired versionsUsually the number of 
hanges is minimized:[Fran
oni, Laureti Palma, Leone, Perri, S
ar
ello. LPAR 01℄[Fles
a, Furfaro, Parisi. DBPL 05℄But may be more general ...



11[Bertossi, Bravo, Fran
oni, Lopatenko. DBPL 05℄:S
hemas with key 
onstraints that are always satis�edSome attributes take possibly erroneous numeri
al valuesICs are expressed by denial 
onstraints that prohibit 
er-tain 
ombinations of data valuesChanges in values of numeri
al and �xable attributes areallowed to restore 
onsisten
yQuadrati
 distan
e is kept to a minimum



12Example 5:
IC 1 : ∀ID , P, A, M¬(Buy(ID , I, P ),Client(ID , A, M), A < 18, P > 25)

IC 2 : ∀ID , A, M¬(Client(ID , A, M), A < 18,M > 50)

D: Client ID A M1 15 522 16 513 60 900Buy ID I P1 CD 271 DVD 263 DVD 40



13A (minimal) �x D′ with cost = 12 + 22 + 12 + 22 = 10Client' ID A M1 15 652 502 16 651 503 60 900Buy' ID I P1 CD 627 251 DVD 626 253 DVD 40A �x D′′ with cost = 12 + 32 = 10Client� ID A M1 615 18 522 16 651 503 60 900Buy� ID I P1 CD 271 DVD 263 DVD 40



14We 
on
entrated on the 
omplexity of de
iding the existen
eof a �x 
lose enough to the original instan
e: NP -
ompleteRelevant for the kind of appli
ations that motivated this re-sear
h: editing of 
ensus dataProvably no PTAS exists ...Provide PTIME approximation within a 
onstant fa
torCQA for ground atomi
 queries: PNP -hard



15Terminology: (repair semanti
s)S-repairs: Repairs based on minimal set di�eren
eC-repairs: Repairs based on minimum 
ardinality set dif-feren
eA-repairs: Repairs based on minimization of aggregationover attribute 
hanges
Rep(D, IC ,S): The repairs of a database instan
e D (a �niteset of ground atoms) wrt integrity 
onstraints IC , and a repairsemanti
s S
CQA(Q, IC ,S) := { (D, t̄) | D′ |= Q(t̄) for all D′ ∈ Rep(D, IC ,S) }(the de
ision problem of CQA)We are interested in data 
omplexity



16Motivation for this Resear
h

• Provide a better understanding of 
omplexity of CQA underthe C-repair semanti
sFormulation in graph-theoreti
 terms allows us to �nd interes-ting relationships between:CQA (a 
ertain semanti
s), andThe possible semanti
s(an answer is 
onsistently true when true in some repair)There has been relevant resear
h in belief revision/update wrt
omplexity of di�erent semanti
s; but it is not 
lear how andif they 
an be applied here [Eiter, Gottlob. AIJ 92℄



17

• Provide the �rst steps towards a study of CQA in a dynami
setting, when the DB undergoes some updatesThe 
omplexity analysis 
onsiders all the three (families of)semanti
s aboveAn assumption is that the DB is (was) 
onsistent wrt the givenICs before the updatesDynami
 aspe
ts of CQA have been largely ignored; but moreresear
h on in
remental properties and algorithms is ne
essaryto make ideas and te
hniques appli
able

In general, what is the 
omplexity of CQA from the instan
e

U (D) obtained by applying a �nite sequen
e U of updateoperations to the 
onsistent instan
e D?



18We started this resear
h motivated by the analysis of in
re-mental 
omplexityC-repairs seemed to have better properties from this point ofview (see later ...)Then we de
ided to investigate also the �stati
� 
omplexity ofCQA under C-repairsWhi
h had not been investigated before ...

We 
on
entrated mostly on denial ICs



19Example 6: (example 4 
ontinued)Instan
e D1 = {P (a, c, d), P (a, c, e)} is 
onsistentAfter the update operation insert(P (a, f, d)) it be
omes in-
onsistentThe only C-repair of D1 ∪ {P (a, f, d)} is D1 itselfThus, CQA from D1 ∪ {P (a, f, d)} amounts to 
lassi
 queryanswering from D1If we start from the 
onsistent instan
e D2 = {P (a, c, d)},the same update a
tion leads to two C-repairs: D2, but al-so {P (a, f, d)}Now CQA from D2 is di�erent from 
lassi
 query answeringfrom D2 (two repairs to 
onsider)



20Graph-Theoreti
 Representation of C-RepairsGiven: IC , a set of denial ICs; and D, a DB instan
e, we
onsider the 
on�i
t hyper-graph:Verti
es are the DB tuplesHyper-edges are formed by DB tuples that simultaneouslyviolate the same ground instan
e of one of the ICs[Arenas, Bertossi, Chomi
ki. ICDT 01℄, [Chomi
ki, Mar
inkowski. I&C 05℄Repairs obtained by tuple deletions onlyThere is a one-to-one 
orresponden
e between C-repairs of Dwrt IC and the maximum independent sets, i.e. independentsets of maximum 
ardinality (MIS)A ground atomi
 query is 
onsistently true if it is a vertex inevery MIS



21Every tuple in D belongs to an S-repair, but not ne
essarily toa C-repair; so testing membership of verti
es to some (or all,of 
ourse) MIS be
omes relevantWe 
an prove these useful polynomial time self-redu
ibility pro-perties of MIS independent sets:Given a graph G and a vertex v in it, there is a graph G′extending G, su
h that v belongs to some MIS of G i� vbelongs to all MIS of G′ i� the sizes of MIS in G and G′di�er by oneGiven a graph G and a vertex v, there is a graph G′extending G, su
h that v belongs to all MISs of G i� vbelongs to some MIS of G′

(In both 
ases, |G′| is polynomial in |G|)



22Computing the size of a maximum 
lique in a graph belongsto FPNP(log(n)) [Krentel. JCSS 88℄: We obtain:Proposition: The problems of de
iding for a vertex in a graphif it belongs to some MIS and if it belongs to all MISs are bothin PNP(log(n))As a 
onsequen
e: For denial 
onstraints and ground atomi
queries, CQA under C-repair semanti
s belongs to PNP(log(n))The results above show that the problems of CQA under the
ertain and possible C-repair semanti
s are polynomially redu-
ible to ea
h other(whi
h is not true for the S-repair semanti
s)

What about 
ompleteness? (hardness)



23Before that, a useful representation theorem:Lemma: There is a �xed database s
hema D and a denial
onstraint, su
h that for every graph G, there is an instan
e

D over D, whose C-repairs are in one-to-one 
orresponden
ewith the MISs of G
D 
an be built in polynomial time in the size of G

From this lemma and the PNP(log(n))-
ompleteness of determi-ning the size of a maximum 
lique [Krentel. Op. 
it.℄, we obtain:Determining the size of a C-repair for denial 
onstraints is

PNP(log(n))-
omplete

Coming ba
k to CQA ... (hardness pending)



24For hardness, we establish �rsta useful graph-theoreti
 poly-time
onstru
tion: the blo
k Bk(G, t) t
b

Ik

Ik+1

G1

G2

G1, G2 are 
opies of a givengraph G
k a natural number
t is a distinguished vertexTwo internally dis
onne
tedsubgraphs Ik, Ik+1, with kand k + 1 nodes, resp.Every vertex in G1 (G2) 
onne
ted to every vertex in Ik(Ik+1)It holds: The 
ardinality of a MIS of G is equal to k i� tbelongs to all MISs of Bk(G, t)



25Theorem: De
iding if a vertex belongs to all MISs of a graph

G is PNP(log(n))-hardCan be proved by redu
tion from this PNP(log(n))-
omplete[Krentel. Op. 
it.℄: Given a graph G and an integer k, is thesize of a maximum 
lique in G equivalent to 0 mod k?

G is redu
ed to a graph G′ that is built by 
ombining anumber of versions of the blo
k 
onstru
tion

G in the theorem 
an be represented as a database 
onsisten
yproblem (the representation lemma):Corollary: For denial 
onstraints, CQA for ground atomi
 que-ries under the C-repair semanti
s is PNP(log(n))-
omplete

Noti
e: For S-repair semanti
s this problem 
an be solved inpolynomial time [Chomi
ki, Mar
inkowski. I&C 05℄



26In
remental CQA and Parameterized ComplexityGiven:
D, IC , with D |= IC

U : U1, . . . , Um, with m < c · |D|, and ea
h Ui is an in-sertion, deletion or attribute 
hangeWhat about in
remental CQA, i.e. CQA from U(D) wrt IC ?In 
ontrast to what we had for the �stati
� 
ase:Proposition: For the C-repair semanti
s, �rst-order booleanqueries, and denial 
onstraints: in
remental CQA is in PTIMEin the size of DHow does the algorithm do in terms of m?The proof of this proposition provides an upper bound of
O(n× nm), whi
h is exponential in m



27Can we do better? Say in time O(f(m) × nc)?A natural question in the 
ontext of �xed parameter tra
tabi-lity, i.e. we are 
onsidering:

CQAp(Q, IC ,S) := {(D,U, t̄) | U is an update sequen
e, and

Q(t̄) is 
onsistently true in U(D)under repair semanti
s S}The parameter is the update sequen
e U (or its size m)Proposition: In
remental CQA for ground atomi
 queries andfun
tional dependen
ies under the C-repair semanti
s is in

FPT , a
tually in time O(log(m) × (1,2852m +m · n))Proof uses the FPT of Vertex Cover



28Again 
on�i
t graph G (totally dis
onne
ted by 
onsisten
y)Update: m tuples are inserted, 
on�i
t graph G′

VC (G′, k) de
ides if there is a vertex 
over of size not biggerthan kUse binary sear
h starting from m with VC (G′,_) to deter-mine the size of a minimum vertex 
overThis is the minimum number of tuples that have to be removedto restore 
onsisten
yA ground atomi
 query (a vertex v of G′) is 
onsistently trueif it does not belong to any minimum vertex 
overAnswer is yes i� the sizes of minimum vertex 
overs for G′ and

G′
r {v} are the same



29For FDs we have 
on�i
t graphs: two database atoms per IC

For denial ICs we have hyper-graphs ...

The FPT of in
remental CQA still holds for denial ICs if thenumber d of atoms in them is �xedWe 
an use the FPT of the d-Hitting Set: Finding the size ofa minimum HS for a hyper-graph with hyper-edges bounded insize by d



30In
remental CQA: S-Repair Semanti
sFor 
onjun
tive boolean queries and denial ICs, stati
 CQA is:

PNP(log(n))-
omplete under the C-repair semanti
s(this work)
coNP -
omplete under the S-repair semanti
s[Chomi
ki, Mar
inkowski. I&C 05℄For boolean queries and denial ICs, in
remental CQA is:In PTIME under the C-repair semanti
s (this work)However: For boolean 
onjun
tive queries and denial ICs, in
re-mental CQA is in coNP -
omplete under the S-repair semanti
s(
an be obtained by redu
tion of the stati
 
ase for the samesemanti
s)



31Why the di�eren
e?The 
ost of a C-repair 
annot ex
eed the size of an update,whereas the 
ost of an S-repair may be unbounded wrt the sizeof an updateExample 7: S
hema R(·), S(·); denial ∀x∀y¬(R(x) ∧ S(y))Consistent D = {R(1), . . . , R(n)} (empty table for S)After U = insert(S(0)), the database be
omes in
onsistent,and the S-repairs are {R(1), . . . , R(n)} and {S(0)}Only the former is a C-repair, at a distan
e 1 from DThe se
ond S-repair is at a distan
e n



32In
remental CQA: A-Semanti
s

For 
omparison with the stati
 
ase, we 
onsider �rst a quitegeneral, weighted version of the A-repair semanti
sNumeri
al weight fun
tion w on tuples of the form

(R(t̄), A,newValue)

R(t̄) ∈ D

A is an attribute of R, and
newValue is a new value for A in R(t̄)The wA-repairs are 
onsistent instan
es that minimize an ag-gregate fun
tion g on the values w(R(t̄), A,newValue)Typi
ally: w(R(t̄), A,newValue) = δ(R(t̄).A,newValue) and

g := sum, i.e. only number of 
hanges is 
ounted



33In Example 5, we 
an take:

w((R(t̄), A,newValue) := (R(t̄).A− newValue)2

g = sumProposition: Stati
 CQA for ground atomi
 queries and denial
onstraints under the wA-repair semanti
s is PNP -hard

Obtained by redu
tion from the PNP -
omplete problem:Given a Boolean formula ψ(X1, · · · , Xn) in 3CNF, de
ide if thelast variable Xn is equal to 1 in the lexi
ographi
ally maximumsatisfying assignment (answer is No if ψ is not satis�able)[Krentel. Op.
it.℄



34For the in
remental part:We use: 3-Colorability for 4-
olorable regular graphs of degree4 is NP -
ompleteNext we redu
e to CQA the problem of 3-
olorability of a 4-
olorable and 4-regular graph G with a �xed set of �rst-order
onstraints:
S
hema E(X,Y ),Coloring(X,V ),Colors(X)Colors must be legal (belong to Colors)Usual 
olorability 
onditionet
.

G is 4-
olorable and uses all four values available in a table of
olors as spe
i�ed through a 
onstraint



35Update part: Delete one 
olor, say C, from ColorsTo restore 
onsisten
y, we have to 
olor the graph with 3 
olors;so 
olors have to be reassignedThere are wA-repairs i� the graph is 
olorable with 3 
olorsThen, the query Colors(C) is (trivially) 
onsistently true i�there are no wA-repairs i� the graph is not 
olorable with 3
olorsWe obtain:Theorem: For wA-repairs, ground atomi
 queries, �rst-orderICs, and update sequen
es 
onsisting of tuple deletions, in
re-mental CQA is 
oNP-hard



36What about denial ICs?In this 
ase, deletions are trivial; they do not introdu
e anyviolationsTheorem: In
remental CQA wrt denial 
onstraints and atomi
queries under the wA-repair semanti
s is PNP -hardBy redu
tion from stati
 CQA for A-repairs as in[Bertossi, Bravo, Fran
oni, Lopatenko. DBPL 05℄Here one tuple insertion is good enough for the update partAttribute values 
hanges are used to restore 
onsisten
y



37Ongoing and Future Work

Analyze the 
omplexity of CQA from the point of view of

• Dynami
 
omplexity [Immerman; 99℄

• In
remental 
omplexity[Miltersen, Subramanian, Vitter, Tamassia. TCS 94℄Here the DB is not ne
essarily 
onsistent before the up-dateAuxiliary data stru
tures 
an be used for in
remental 
ompu-tationParameterized 
omplexityIn many forms in CQA, both stati
 and in
remental



38Several parameters naturally o�er themselves:

• number of in
onsisten
ies in the database

• degree of in
onsisten
y, i.e. the maximum number ofviolations per database tuple

• 
omplexity of in
onsisten
y, i.e. the length of the lon-gest path in the 
on�i
t graph or hypergraph

• ...These parameters are pra
ti
ally relevant in many appli-
ations, where in
onsisten
ies are �lo
al�[Bertossi, Bravo, Fran
oni, Lopatenko. DBPL 05℄


