Carleton

UNIVERSITY

Consistent Query Answering in Databases
Under Minimum Cardinality Semantics

Leopoldo Bertossi
Carleton University

Ottawa, Canada

Joint work with:

Andrei Lopatenko (U. Bolzano-Bozen)

Introduction

Databases may become inconsistent wrt a given set of integrity
constraints (I1Cs)

s DBMS has no mechanism to maintain certain classes of

|ICs

= Data of different sources are being integrated

Even if the independent data sources are consistent, in-
tegrated data may be inconsistent

= New constraints are imposed on pre-existing, legacy data

s Soft, user, or informational constraints, to be considered
at query answering, but without being enforced

Most likely most of the data in the DB is still “consistent”

3

Considerable amount of research on consistent query answering
(CQA) has been carried out in the last 6 years

In [Arenas, Bertossi, Chomicki. PODS 99]:

= Characterization of consistent answers to queries as those
that are invariant under minimal repairs of the original
database; i.e. true in all minimally repaired versions of

the DB

= Mechanism for computing them (for certain classes of
queries and 1Cs)

Here, repairs of databases are consistent instances that minimi-
ze under set inclusion the set of insertions/deletions of whole
database tuples

D (set of ground atoms); inconsistent wrt IC': A repair D’ of D
satisfies /C' and makes A(D, D’) minimal under set inclusion

Example 1: Inconsistent DB instance D wrt
FD: Name — Salary, actually a Key Dependency (KD)

Employee | Name Salary

Page 5000

Page 8000

Smaith 3000

Stowe 7000

Repairs D1, resp. D,

Employee | Name Salary Employee | Name Salary
Page 5000 Page 8000
Smith 3000 Smith 3000
Stowe 7000 Stowe 7000

Consistent answers to the queries:

s Employee(x,y)?: (Smith,3000), (Stowe, 7000)

» JyEmployee(z,y)?: Page, Smith, Stowe

First algorithm for CQA was based on FO query rewriting

Example 2: (continued)
FD: VXY Z (mEmployee(X,Y) V —Employee(X,Z) VY = Z)
Query: Employee(x,y)?

Consistent answers can be obtained by means of the transfor-
med query

T(Employee(x,y)) := Employee(x,y) A
Vz (mEmployee(x,z) V y = z)

... those tuples (x,y) in the relation for which x does not have
and associated z different from vy ...

6

FO query rewriting is defined (or works) for limited classes of
queries and ICs

A more general mechanism is based on specifying database
repairs using disjunctive logic programs with stable model se-
mantics

It is a general methodology, that can be applied to any FO
query (and beyond)

CQA using these programs gets an upper bound on data com-
plexity of 112

(Greco, Greco, Zumpano. IEEE TKDE 2003]
[Arenas, Bertossi, Chomicki. TPLP 2003]
Barcelo, Bertossi. PADL 2003]

7

Today we have quite a clear picture of tractable/intractable
cases for CQA

s Complete analysis of complexity of CQA for simple ag-
gregate queries under FDs

Most cases are NP-complete
[Arenas, Bertossi, Chomicki. ICDT 01]
s Complexity results for conjunctive queries under denial
|ICs and referential 1Cs
[15-complete cases identified (and below)
Even undecidability (cyclic referential 1Cs)
[Chomicki, Marcinkowski. 1&C 05], [Cali, Lembo, Rosati. PODS 2003]
= Conjunctive queries, FDs, and KDs: Broad and tight trac-
table classes identified
[Chomicki, Marcinkowski. 1&C 05], [Fuxman, Miller. ICDT 2005]

Other Forms of Repairs

Except for a few exceptions, most of the research has concen-
trated on this repair semantics

Repairs minimize under set inclusion the set of insertions or
deletions of whole database tuples

In different forms, and exploiting different aspects, two alter-
native repair semantics have been considered in the literature

e Cardinality-based repair semantics:

A repair D’ minimizes the cardinality of the set of whole tuples
oy which it differs from the original DB D

A(D, D")| is minimum

[Arenas, Bertossi, Chomicki. TPLP 2003]

Example 4: DB schema P(X,Y,Z7), FD: X —Y
D ={P(a,b,c), P(a,c,d), P(a,c,e)}
D has two repairs wrt set inclusion

They have a set-minimal difference with D

» Dy ={P(a,b,c)}: A(D,D;)={P(a,cd),P(a,c,e)}
» Dy ={P(a,c,d),Pla,c,e)}: A(D,Dsy) ={P(a,b,c)}

Only Dy is a cardinality-based repair: |A(D, Dy)| is minimum

10

e Attribute-based repair semantics:
Repairs are obtained by fixing attribute values [Wijsen. ICDT 03]
Most common of them:

Repairs minimize a numerical aggregation function over diffe-
rences between attribute values in the original tuples and their
repaired versions

Usually the number of changes is minimized:

[Franconi, Laureti Palma, Leone, Perri, Scarcello. LPAR 01]
[Flesca, Furfaro, Parisi. DBPL 05]

But may be more general ...

11

|[Bertossi, Bravo, Franconi, Lopatenko. DBPL 05]:

= Schemas with key constraints that are always satisfied
= Some attributes take possibly erroneous numerical values

= |Cs are expressed by denial constraints that prohibit cer-
tain combinations of data values

= Changes in values of numerical and fixable attributes are
allowed to restore consistency

= Quadratic distance is kept to a minimum

Example 5:

IC1: VID, P, A, M—~(Buy(ID, I, P), Client(ID, A, M), A < 18, P > 25)
[Cy: VID, A, M—(Client(ID, A, M), A < 18, M > 50)

D:
Client ID A M
1 15 52
2 16 51
3 60 900
Buy 1D I P
1 CD 27
1 DVD 26
3 DVD | 40

A (minimal) fix D" with cost = 1% + 2% + 1% + 2% = 10

Client’ ID A M
1 15 52 50
2 16 51 50
3 60 900

Buy’ D | 1 P
1 CD | 27 25
1 | DVD | 26 25
3 | DVD | 40

A fix D" with cost = 1% + 3% = 10

Client” ID A M
1 15 18 52
2 16 51 50
3 60 900

Buy” ID I P
1 CD 27
1 DVD 26
3 DVD 40

14

We concentrated on the complexity of deciding the existence
of a fix close enough to the original instance: NP-complete

Relevant for the kind of applications that motivated this re-
search: editing of census data

Provably no PTAS exists ...

Provide PTIME approximation within a constant factor
CQA for ground atomic queries: P -hard

15

Terminology: (repair semantics)

= S-repairs: Repairs based on minimal set difference

s C-repairs: Repairs based on minimum cardinality set dif-
ference

s A-repairs: Repairs based on minimization of aggregation
over attribute changes

Rep(D, IC,S): The repairs of a database instance D (a finite
set of ground atoms) wrt integrity constraints /C', and a repair
semantics S

CQA(Q,IC,S):={ (D,t) | D'EQ(t) for all D' € Rep(D, IC,S) }
(the decision problem of CQA)

We are interested in data complexity

16

Motivation for this Research

e Provide a better understanding of complexity of CQA under
the C-repair semantics

Formulation in graph-theoretic terms allows us to find interes-
ting relationships between:

= CQA (a certain semantics), and

= The possible semantics
(an answer is consistently true when true in some repair)

There has been relevant research in belief revision/update wrt
complexity of different semantics; but it is not clear how and
if they can be applied here [Eiter, Gottlob. AlJ 92]

17

e Provide the first steps towards a study of CQA in a dynamic
setting, when the DB undergoes some updates

The complexity analysis considers all the three (families of)
semantics above

An assumption is that the DB is (was) consistent wrt the given
|Cs before the updates

Dynamic aspects of CQA have been largely ignored; but more
research on incremental properties and algorithms is necessary
to make ideas and techniques applicable

In general, what is the complexity of CQA from the instance
U(D) obtained by applying a finite sequence U of update
operations to the consistent instance D?

18

We started this research motivated by the analysis of incre-
mental complexity

C-repairs seemed to have better properties from this point of
view (see later ...)

Then we decided to investigate also the “static’ complexity of
CQA under C-repairs

Which had not been investigated before ...

We concentrated mostly on denial ICs

19

Example 6: (example 4 continued)
Instance Dy = {P(a,c,d), P(a,c,e)} is consistent

After the update operation insert(P(a, f,d)) it becomes in-
consistent

The only C-repair of Dy U{P(a, f,d)} is Dy itself

Thus, CQA from Dy U{P(a, f,d)} amounts to classic query
answering from D,

If we start from the consistent instance Dy = {P(a,c,d)},
the same update action leads to two C-repairs: Ds, but al-

so {P(a, f,d)}
Now CQA from D, is different from classic query answering
from Dy (two repairs to consider)

20

Graph-Theoretic Representation of C-Repairs

Given: IC, a set of denial ICs: and D, a DB instance, we
consider the conflict hyper-graph:

= Vertices are the DB tuples

s Hyper-edges are formed by DB tuples that simultaneously
violate the same ground instance of one of the ICs

[Arenas, Bertossi, Chomicki. ICDT 01], [Chomicki, Marcinkowski. 1&C 05]
Repairs obtained by tuple deletions only

There is a one-to-one correspondence between C-repairs of D
wrt /C' and the maximum independent sets, i.e. independent
sets of maximum cardinality (MIS)

A ground atomic query is consistently true if it is a vertex in
every MIS

21

Every tuple in D belongs to an S-repair, but not necessarily to
a C-repair; so testing membership of vertices to some (or all,
of course) MIS becomes relevant

We can prove these useful polynomial time self-reducibility pro-
perties of MIS independent sets:

s Given a graph GG and a vertex v in it, there is a graph &’
extending G, such that v belongs to some MIS of GG iff v
belongs to all MIS of G’ iff the sizes of MIS in G and G’

differ by one

= Given a graph G and a vertex v, there is a graph G’
extending G, such that v belongs to all MISs of G iff v
belongs to some MIS of G’

(In both cases, |G| is polynomial in |G])

22

Computing the size of a maximum clique in a graph belongs
to FPNPU09(n) [entel. JCSS 88): We obtain:

Proposition: The problems of deciding for a vertex in a graph

if it belongs to some MIS and if it belongs to all MISs are both
in PNP(log(n))

As a consequence: For denial constraints and ground atomic
queries, CQA under C-repair semantics belongs to PNF(log(n))

The results above show that the problems of CQA under the
certain and possible C-repair semantics are polynomially redu-
cible to each other

(which is not true for the S-repair semantics)

What about completeness? (hardness)

23

Before that, a useful representation theorem:

Lemma: There is a fixed database schema D and a denial
constraint, such that for every graph G, there is an instance
D over D, whose C-repairs are in one-to-one correspondence

with the MISs of GG

D can be built in polynomial time in the size of G

From this lemma and the PYP(09(7)_completeness of determi-
ning the size of a maximum clique [Krentel. Op. cit.], we obtain:

Determining the size of a C-repair for denial constraints is
PNPUog(n))_complete

Coming back to CQA ... (hardness pending)

For hardness, we establish first
a useful graph-theoretic poly-time
construction: the block By(G,t)

s (51, G5 are copies of a given
graph G

m k£ a natural number

= t is a distinguished vertex

= Two internally disconnected
subgraphs Iy, I} 11, with k
and k + 1 nodes, resp.

= Every vertex in GG; (G3) connected to every vertex in [},
(Lk+1)

It holds: The cardinality of a MIS of GG is equal to &k iff t
belongs to all MISs of By(G,t)

20

Theorem: Deciding if a vertex belongs to all MISs of a graph
G is PNPUog(n))_hard

Can be proved by reduction from this PN?(l9(")_complete
[Krentel. Op. cit.]: Given a graph GG and an integer k, is the
size of a maximum clique in G equivalent to 0 mod k7

(z is reduced to a graph G’ that is built by combining a
number of versions of the block construction

(G in the theorem can be represented as a database consistency
problem (the representation lemma):

Corollary: For denial constraints, CQA for ground atomic que-
ries under the C-repair semantics is PN"U09(")_complete

Notice: For S-repair semantics this problem can be solved in
polynomial time [Chomicki, Marcinkowski. 1&C 05]

26

Incremental CQA and Parameterized Complexity

Given:
= D IC, with D = IC

» U: Uy,...,Upy, with m < c-|D|, and each U; is an in-
sertion, deletion or attribute change
What about incremental CQA, i.e. CQA from U(D) wrt IC?
In contrast to what we had for the “static’ case:

Proposition: For the C-repair semantics, first-order boolean
queries, and denial constraints: incremental CQA is in PTIME
in the size of D

How does the algorithm do in terms of m?

The proof of this proposition provides an upper bound of
O(n x n™), which is exponential in m

27

Can we do better? Say in time O(f(m) x n®)?

A natural question in the context of fixed parameter tractabi-
lity, i.e. we are considering:

CQAP(Q,IC,S) :={(D,U,t)|U is an update sequence, and
Q(t) is consistently true in U (D)
under repair semantics S}

The parameter is the update sequence U (or its size m)

Proposition: Incremental CQA for ground atomic queries and
functional dependencies under the C-repair semantics is in
FPT, actually in time O(log(m) x (1,2852™ +m - n))

Proof uses the FPT of Vertex Cover

28

Again conflict graph G (totally disconnected by consistency)
Update: m tuples are inserted, conflict graph G’

VC(G', k) decides if there is a vertex cover of size not bigger
than £

Use binary search starting from m with VC(G’,) to deter-
mine the size of a minimum vertex cover

This is the minimum number of tuples that have to be removed
to restore consistency

A ground atomic query (a vertex v of GG') is consistently true
iIf it does not belong to any minimum vertex cover

Answer is yes iff the sizes of minimum vertex covers for GG’ and
G’ ~ {v} are the same

29

For FDs we have conflict graphs: two database atoms per IC

For denial ICs we have hyper-graphs ...

The FPT of incremental CQA still holds for denial ICs if the
number d of atoms in them is fixed

We can use the FPT of the d-Hitting Set: Finding the size of
a minimum HS for a hyper-graph with hyper-edges bounded in
size by d

30

Incremental CQA: S-Repair Semantics

For conjunctive boolean queries and denial ICs, static CQA is:

n PNPUog(n))_complete under the C-repair semantics

(this work)

s coNP-complete under the S-repair semantics
[Chomicki, Marcinkowski. 1&C 05]

For boolean queries and denial ICs, incremental CQA is:
= In PTIMFE under the C-repair semantics (this work)

However: For boolean conjunctive queries and denial ICs, incre-
mental CQA is in coNP-complete under the S-repair semantics

(can be obtained by reduction of the static case for the same
semantics)

31

Why the difference?

The cost of a C-repair cannot exceed the size of an update,
whereas the cost of an S-repair may be unbounded wrt the size
of an update

Example 7: Schema R(-), S(-); denial VaVy—(R(z) A S(y))
Consistent D = {R(1),...,R(n)} (empty table for .5)

After U = insert(S(0)), the database becomes inconsistent,
and the S-repairs are {R(1),...,R(n)} and {S(0)}

Only the former is a C-repair, at a distance 1 from D

The second S-repair is at a distance n

32

Incremental CQA: A-Semantics

For comparison with the static case, we consider first a quite
general, weighted version of the A-repair semantics

Numerical weight function w on tuples of the form

(R(t), A, newValue)
= R(t) e D
= A is an attribute of R, and

= newValue is a new value for A in R(t)

The wA-repairs are consistent instances that minimize an ag-
gregate function g on the values w(R(t), A, new Value)

Typically: w(R(t), A, newValue) = 0(R(t).A, newValue) and
g := sum, i.e. only number of changes is counted

33

In Example 5, we can take:

s w((R(t), A, newValue) := (R(t).A — newValue)?

. g = sum

Proposition: Static CQA for ground atomic queries and denial
constraints under the wA-repair semantics is P¥*-hard

Obtained by reduction from the P¥*-complete problem:

Given a Boolean formula ¢ (X7, - - - , X,,) in 3CNF, decide if the
last variable X, is equal to 1 in the lexicographically maximum
satisfying assignment (answer is No if 1) is not satisfiable)
[Krentel. Op.cit.]

34
For the incremental part:

We use: 3-Colorability for 4-colorable regular graphs of degree
4 is NP-complete

Next we reduce to CQA the problem of 3-colorability of a 4-
colorable and 4-regular graph G with a fixed set of first-order
constraints:

= Schema E(X,Y), Coloring(X,V), Colors(X)
= Colors must be legal (belong to Colors)
= Usual colorability condition

m etc.

(i is 4-colorable and uses all four values available in a table of
colors as specified through a constraint

39

Update part: Delete one color, say C', from Colors

To restore consistency, we have to color the graph with 3 colors;
so colors have to be reassigned

There are wA-repairs iff the graph is colorable with 3 colors

Then, the query Colors(C') is (trivially) consistently true iff
there are no wA-repairs iff the graph is not colorable with 3
colors

We obtain:

Theorem: For wA-repairs, ground atomic queries, first-order

|Cs, and update sequences consisting of tuple deletions, incre-
mental CQA is coNP-hard

36

What about denial |Cs?

In this case, deletions are trivial; they do not introduce any
violations

Theorem: Incremental CQA wrt denial constraints and atomic
queries under the wA-repair semantics is P¥*-hard

By reduction from static CQA for A-repairs as in
[Bertossi, Bravo, Franconi, Lopatenko. DBPL 05]

Here one tuple insertion is good enough for the update part

Attribute values changes are used to restore consistency

37

Ongoing and Future Work

Analyze the complexity of CQA from the point of view of

e Dynamic complexity [Immerman; 99]

e Incremental complexity
[Miltersen, Subramanian, Vitter, Tamassia. TCS 94]

Here the DB is not necessarily consistent before the up-
date

Auxiliary data structures can be used for incremental compu-
tation

Parameterized complexity

In many forms in CQA, both static and incremental

38

Several parameters naturally offer themselves:

e number of inconsistencies in the database

e degree of inconsistency, i.e. the maximum number of
violations per database tuple

e complexity of inconsistency, i.e. the length of the lon-
gest path in the conflict graph or hypergraph

These parameters are practically relevant in many appli-
cations, where inconsistencies are “local”

[Bertossi, Bravo, Franconi, Lopatenko. DBPL 05]

