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2IntrodutionDatabases may beome inonsistent wrt a given set of integrityonstraints (ICs)DBMS has no mehanism to maintain ertain lasses ofICsData of di�erent soures are being integratedEven if the independent data soures are onsistent, in-tegrated data may be inonsistentNew onstraints are imposed on pre-existing, legay dataSoft, user, or informational onstraints, to be onsideredat query answering, but without being enforedMost likely most of the data in the DB is still �onsistent�



3Considerable amount of researh on onsistent query answering(CQA) has been arried out in the last 6 yearsIn [Arenas, Bertossi, Chomiki. PODS 99℄:Charaterization of onsistent answers to queries as thosethat are invariant under minimal repairs of the originaldatabase; i.e. true in all minimally repaired versions ofthe DBMehanism for omputing them (for ertain lasses ofqueries and ICs)Here, repairs of databases are onsistent instanes that minimi-ze under set inlusion the set of insertions/deletions of wholedatabase tuples

D (set of ground atoms); inonsistent wrt IC : A repairD′ ofDsatis�es IC and makes ∆(D,D′) minimal under set inlusion



4Example 1: Inonsistent DB instane D wrt

FD : Name → Salary , atually a Key Dependeny (KD)

Employee Name Salary

Page 5000

Page 8000

Smith 3000

Stowe 7000Repairs D1, resp. D2

Employee Name Salary

Page 5000
Smith 3000
Stowe 7000

Employee Name Salary

Page 8000

Smith 3000

Stowe 7000Consistent answers to the queries:
Employee(x, y)?: (Smith, 3000), (Stowe , 7000)

∃yEmployee(x, y)?: Page,Smith,Stowe



5First algorithm for CQA was based on FO query rewriting

Example 2: (ontinued)
FD : ∀XY Z (¬Employee(X,Y ) ∨ ¬Employee(X,Z) ∨ Y = Z)Query: Employee(x, y)?Consistent answers an be obtained by means of the transfor-med query

T (Employee(x, y)) := Employee(x, y) ∧

∀z (¬Employee(x, z) ∨ y = z)

... those tuples (x, y) in the relation for whih x does not haveand assoiated z di�erent from y ...



6FO query rewriting is de�ned (or works) for limited lasses ofqueries and ICsA more general mehanism is based on speifying databaserepairs using disjuntive logi programs with stable model se-mantisIt is a general methodology, that an be applied to any FOquery (and beyond)CQA using these programs gets an upper bound on data om-plexity of ΠP
2

[Greo, Greo, Zumpano. IEEE TKDE 2003℄[Arenas, Bertossi, Chomiki. TPLP 2003℄[Barelo, Bertossi. PADL 2003℄



7Today we have quite a lear piture of tratable/intratableases for CQAComplete analysis of omplexity of CQA for simple ag-gregate queries under FDsMost ases are NP -omplete[Arenas, Bertossi, Chomiki. ICDT 01℄Complexity results for onjuntive queries under denialICs and referential ICs
ΠP

2 -omplete ases identi�ed (and below)Even undeidability (yli referential ICs)[Chomiki, Marinkowski. I&C 05℄, [Cali, Lembo, Rosati. PODS 2003℄Conjuntive queries, FDs, and KDs: Broad and tight tra-table lasses identi�ed[Chomiki, Marinkowski. I&C 05℄, [Fuxman, Miller. ICDT 2005℄



8Other Forms of Repairs

Exept for a few exeptions, most of the researh has onen-trated on this repair semantisRepairs minimize under set inlusion the set of insertions ordeletions of whole database tuplesIn di�erent forms, and exploiting di�erent aspets, two alter-native repair semantis have been onsidered in the literature

• Cardinality-based repair semantis:A repair D′ minimizes the ardinality of the set of whole tuplesby whih it di�ers from the original DB D

|∆(D,D′)| is minimum[Arenas, Bertossi, Chomiki. TPLP 2003℄



9Example 4: DB shema P (X,Y, Z), FD : X → Y

D = {P (a, b, c), P (a, c, d), P (a, c, e)}

D has two repairs wrt set inlusionThey have a set-minimal di�erene with D
D1 = {P (a, b, c)}: ∆(D,D1) = {P (a, c, d), P (a, c, e)}

D2 = {P (a, c, d), P (a, c, e)}: ∆(D,D2) = {P (a, b, c)}Only D2 is a ardinality-based repair: |∆(D,D2)| is minimum



10

• Attribute-based repair semantis:Repairs are obtained by �xing attribute values [Wijsen. ICDT 03℄Most ommon of them:Repairs minimize a numerial aggregation funtion over di�e-renes between attribute values in the original tuples and theirrepaired versionsUsually the number of hanges is minimized:[Franoni, Laureti Palma, Leone, Perri, Sarello. LPAR 01℄[Flesa, Furfaro, Parisi. DBPL 05℄But may be more general ...



11[Bertossi, Bravo, Franoni, Lopatenko. DBPL 05℄:Shemas with key onstraints that are always satis�edSome attributes take possibly erroneous numerial valuesICs are expressed by denial onstraints that prohibit er-tain ombinations of data valuesChanges in values of numerial and �xable attributes areallowed to restore onsistenyQuadrati distane is kept to a minimum



12Example 5:
IC 1 : ∀ID , P, A, M¬(Buy(ID , I, P ),Client(ID , A, M), A < 18, P > 25)

IC 2 : ∀ID , A, M¬(Client(ID , A, M), A < 18,M > 50)

D: Client ID A M1 15 522 16 513 60 900Buy ID I P1 CD 271 DVD 263 DVD 40



13A (minimal) �x D′ with cost = 12 + 22 + 12 + 22 = 10Client' ID A M1 15 652 502 16 651 503 60 900Buy' ID I P1 CD 627 251 DVD 626 253 DVD 40A �x D′′ with cost = 12 + 32 = 10Client� ID A M1 615 18 522 16 651 503 60 900Buy� ID I P1 CD 271 DVD 263 DVD 40



14We onentrated on the omplexity of deiding the existeneof a �x lose enough to the original instane: NP -ompleteRelevant for the kind of appliations that motivated this re-searh: editing of ensus dataProvably no PTAS exists ...Provide PTIME approximation within a onstant fatorCQA for ground atomi queries: PNP -hard



15Terminology: (repair semantis)S-repairs: Repairs based on minimal set di�ereneC-repairs: Repairs based on minimum ardinality set dif-fereneA-repairs: Repairs based on minimization of aggregationover attribute hanges
Rep(D, IC ,S): The repairs of a database instane D (a �niteset of ground atoms) wrt integrity onstraints IC , and a repairsemantis S
CQA(Q, IC ,S) := { (D, t̄) | D′ |= Q(t̄) for all D′ ∈ Rep(D, IC ,S) }(the deision problem of CQA)We are interested in data omplexity



16Motivation for this Researh

• Provide a better understanding of omplexity of CQA underthe C-repair semantisFormulation in graph-theoreti terms allows us to �nd interes-ting relationships between:CQA (a ertain semantis), andThe possible semantis(an answer is onsistently true when true in some repair)There has been relevant researh in belief revision/update wrtomplexity of di�erent semantis; but it is not lear how andif they an be applied here [Eiter, Gottlob. AIJ 92℄



17

• Provide the �rst steps towards a study of CQA in a dynamisetting, when the DB undergoes some updatesThe omplexity analysis onsiders all the three (families of)semantis aboveAn assumption is that the DB is (was) onsistent wrt the givenICs before the updatesDynami aspets of CQA have been largely ignored; but moreresearh on inremental properties and algorithms is neessaryto make ideas and tehniques appliable

In general, what is the omplexity of CQA from the instane

U (D) obtained by applying a �nite sequene U of updateoperations to the onsistent instane D?



18We started this researh motivated by the analysis of inre-mental omplexityC-repairs seemed to have better properties from this point ofview (see later ...)Then we deided to investigate also the �stati� omplexity ofCQA under C-repairsWhih had not been investigated before ...

We onentrated mostly on denial ICs



19Example 6: (example 4 ontinued)Instane D1 = {P (a, c, d), P (a, c, e)} is onsistentAfter the update operation insert(P (a, f, d)) it beomes in-onsistentThe only C-repair of D1 ∪ {P (a, f, d)} is D1 itselfThus, CQA from D1 ∪ {P (a, f, d)} amounts to lassi queryanswering from D1If we start from the onsistent instane D2 = {P (a, c, d)},the same update ation leads to two C-repairs: D2, but al-so {P (a, f, d)}Now CQA from D2 is di�erent from lassi query answeringfrom D2 (two repairs to onsider)



20Graph-Theoreti Representation of C-RepairsGiven: IC , a set of denial ICs; and D, a DB instane, weonsider the on�it hyper-graph:Verties are the DB tuplesHyper-edges are formed by DB tuples that simultaneouslyviolate the same ground instane of one of the ICs[Arenas, Bertossi, Chomiki. ICDT 01℄, [Chomiki, Marinkowski. I&C 05℄Repairs obtained by tuple deletions onlyThere is a one-to-one orrespondene between C-repairs of Dwrt IC and the maximum independent sets, i.e. independentsets of maximum ardinality (MIS)A ground atomi query is onsistently true if it is a vertex inevery MIS



21Every tuple in D belongs to an S-repair, but not neessarily toa C-repair; so testing membership of verties to some (or all,of ourse) MIS beomes relevantWe an prove these useful polynomial time self-reduibility pro-perties of MIS independent sets:Given a graph G and a vertex v in it, there is a graph G′extending G, suh that v belongs to some MIS of G i� vbelongs to all MIS of G′ i� the sizes of MIS in G and G′di�er by oneGiven a graph G and a vertex v, there is a graph G′extending G, suh that v belongs to all MISs of G i� vbelongs to some MIS of G′

(In both ases, |G′| is polynomial in |G|)



22Computing the size of a maximum lique in a graph belongsto FPNP(log(n)) [Krentel. JCSS 88℄: We obtain:Proposition: The problems of deiding for a vertex in a graphif it belongs to some MIS and if it belongs to all MISs are bothin PNP(log(n))As a onsequene: For denial onstraints and ground atomiqueries, CQA under C-repair semantis belongs to PNP(log(n))The results above show that the problems of CQA under theertain and possible C-repair semantis are polynomially redu-ible to eah other(whih is not true for the S-repair semantis)

What about ompleteness? (hardness)



23Before that, a useful representation theorem:Lemma: There is a �xed database shema D and a denialonstraint, suh that for every graph G, there is an instane

D over D, whose C-repairs are in one-to-one orrespondenewith the MISs of G
D an be built in polynomial time in the size of G

From this lemma and the PNP(log(n))-ompleteness of determi-ning the size of a maximum lique [Krentel. Op. it.℄, we obtain:Determining the size of a C-repair for denial onstraints is

PNP(log(n))-omplete

Coming bak to CQA ... (hardness pending)



24For hardness, we establish �rsta useful graph-theoreti poly-timeonstrution: the blok Bk(G, t) t
b

Ik

Ik+1

G1

G2

G1, G2 are opies of a givengraph G
k a natural number
t is a distinguished vertexTwo internally disonnetedsubgraphs Ik, Ik+1, with kand k + 1 nodes, resp.Every vertex in G1 (G2) onneted to every vertex in Ik(Ik+1)It holds: The ardinality of a MIS of G is equal to k i� tbelongs to all MISs of Bk(G, t)



25Theorem: Deiding if a vertex belongs to all MISs of a graph

G is PNP(log(n))-hardCan be proved by redution from this PNP(log(n))-omplete[Krentel. Op. it.℄: Given a graph G and an integer k, is thesize of a maximum lique in G equivalent to 0 mod k?

G is redued to a graph G′ that is built by ombining anumber of versions of the blok onstrution

G in the theorem an be represented as a database onsistenyproblem (the representation lemma):Corollary: For denial onstraints, CQA for ground atomi que-ries under the C-repair semantis is PNP(log(n))-omplete

Notie: For S-repair semantis this problem an be solved inpolynomial time [Chomiki, Marinkowski. I&C 05℄



26Inremental CQA and Parameterized ComplexityGiven:
D, IC , with D |= IC

U : U1, . . . , Um, with m < c · |D|, and eah Ui is an in-sertion, deletion or attribute hangeWhat about inremental CQA, i.e. CQA from U(D) wrt IC ?In ontrast to what we had for the �stati� ase:Proposition: For the C-repair semantis, �rst-order booleanqueries, and denial onstraints: inremental CQA is in PTIMEin the size of DHow does the algorithm do in terms of m?The proof of this proposition provides an upper bound of
O(n× nm), whih is exponential in m



27Can we do better? Say in time O(f(m) × nc)?A natural question in the ontext of �xed parameter tratabi-lity, i.e. we are onsidering:

CQAp(Q, IC ,S) := {(D,U, t̄) | U is an update sequene, and

Q(t̄) is onsistently true in U(D)under repair semantis S}The parameter is the update sequene U (or its size m)Proposition: Inremental CQA for ground atomi queries andfuntional dependenies under the C-repair semantis is in

FPT , atually in time O(log(m) × (1,2852m +m · n))Proof uses the FPT of Vertex Cover



28Again on�it graph G (totally disonneted by onsisteny)Update: m tuples are inserted, on�it graph G′

VC (G′, k) deides if there is a vertex over of size not biggerthan kUse binary searh starting from m with VC (G′,_) to deter-mine the size of a minimum vertex overThis is the minimum number of tuples that have to be removedto restore onsistenyA ground atomi query (a vertex v of G′) is onsistently trueif it does not belong to any minimum vertex overAnswer is yes i� the sizes of minimum vertex overs for G′ and

G′
r {v} are the same



29For FDs we have on�it graphs: two database atoms per IC

For denial ICs we have hyper-graphs ...

The FPT of inremental CQA still holds for denial ICs if thenumber d of atoms in them is �xedWe an use the FPT of the d-Hitting Set: Finding the size ofa minimum HS for a hyper-graph with hyper-edges bounded insize by d



30Inremental CQA: S-Repair SemantisFor onjuntive boolean queries and denial ICs, stati CQA is:

PNP(log(n))-omplete under the C-repair semantis(this work)
coNP -omplete under the S-repair semantis[Chomiki, Marinkowski. I&C 05℄For boolean queries and denial ICs, inremental CQA is:In PTIME under the C-repair semantis (this work)However: For boolean onjuntive queries and denial ICs, inre-mental CQA is in coNP -omplete under the S-repair semantis(an be obtained by redution of the stati ase for the samesemantis)



31Why the di�erene?The ost of a C-repair annot exeed the size of an update,whereas the ost of an S-repair may be unbounded wrt the sizeof an updateExample 7: Shema R(·), S(·); denial ∀x∀y¬(R(x) ∧ S(y))Consistent D = {R(1), . . . , R(n)} (empty table for S)After U = insert(S(0)), the database beomes inonsistent,and the S-repairs are {R(1), . . . , R(n)} and {S(0)}Only the former is a C-repair, at a distane 1 from DThe seond S-repair is at a distane n



32Inremental CQA: A-Semantis

For omparison with the stati ase, we onsider �rst a quitegeneral, weighted version of the A-repair semantisNumerial weight funtion w on tuples of the form

(R(t̄), A,newValue)

R(t̄) ∈ D

A is an attribute of R, and
newValue is a new value for A in R(t̄)The wA-repairs are onsistent instanes that minimize an ag-gregate funtion g on the values w(R(t̄), A,newValue)Typially: w(R(t̄), A,newValue) = δ(R(t̄).A,newValue) and

g := sum, i.e. only number of hanges is ounted



33In Example 5, we an take:

w((R(t̄), A,newValue) := (R(t̄).A− newValue)2

g = sumProposition: Stati CQA for ground atomi queries and denialonstraints under the wA-repair semantis is PNP -hard

Obtained by redution from the PNP -omplete problem:Given a Boolean formula ψ(X1, · · · , Xn) in 3CNF, deide if thelast variable Xn is equal to 1 in the lexiographially maximumsatisfying assignment (answer is No if ψ is not satis�able)[Krentel. Op.it.℄



34For the inremental part:We use: 3-Colorability for 4-olorable regular graphs of degree4 is NP -ompleteNext we redue to CQA the problem of 3-olorability of a 4-olorable and 4-regular graph G with a �xed set of �rst-orderonstraints:
Shema E(X,Y ),Coloring(X,V ),Colors(X)Colors must be legal (belong to Colors)Usual olorability onditionet.

G is 4-olorable and uses all four values available in a table ofolors as spei�ed through a onstraint



35Update part: Delete one olor, say C, from ColorsTo restore onsisteny, we have to olor the graph with 3 olors;so olors have to be reassignedThere are wA-repairs i� the graph is olorable with 3 olorsThen, the query Colors(C) is (trivially) onsistently true i�there are no wA-repairs i� the graph is not olorable with 3olorsWe obtain:Theorem: For wA-repairs, ground atomi queries, �rst-orderICs, and update sequenes onsisting of tuple deletions, inre-mental CQA is oNP-hard



36What about denial ICs?In this ase, deletions are trivial; they do not introdue anyviolationsTheorem: Inremental CQA wrt denial onstraints and atomiqueries under the wA-repair semantis is PNP -hardBy redution from stati CQA for A-repairs as in[Bertossi, Bravo, Franoni, Lopatenko. DBPL 05℄Here one tuple insertion is good enough for the update partAttribute values hanges are used to restore onsisteny



37Ongoing and Future Work

Analyze the omplexity of CQA from the point of view of

• Dynami omplexity [Immerman; 99℄

• Inremental omplexity[Miltersen, Subramanian, Vitter, Tamassia. TCS 94℄Here the DB is not neessarily onsistent before the up-dateAuxiliary data strutures an be used for inremental ompu-tationParameterized omplexityIn many forms in CQA, both stati and inremental



38Several parameters naturally o�er themselves:

• number of inonsistenies in the database

• degree of inonsisteny, i.e. the maximum number ofviolations per database tuple

• omplexity of inonsisteny, i.e. the length of the lon-gest path in the on�it graph or hypergraph

• ...These parameters are pratially relevant in many appli-ations, where inonsistenies are �loal�[Bertossi, Bravo, Franoni, Lopatenko. DBPL 05℄


