
Ontology-Based Data Access
Subjects, Issues and Trends

Leopoldo Bertossi

Carleton University
Institute for Data Science

School of Computer Science
Ottawa, Canada

2
A Start: Metadata in Data Management

• Metadata (MD) is data about data

An upper layer that gives information about a lower layer

For example, about the data in relational tables

• We already know about MD in relational DBs: schemas, data types
and domains, integrity constraints (ICs)

• If ICs are satisfied by the DB (as expected, but not always true), they
provide synthetic, higher-level knowledge

• ICs capture semantics (meaning) of data [3, 11]

• By filtering out inadmissible (inconsistent) instances, the spectrum
of possible instances is narrowed down

By doing so, better targeting the intended meaning

• Decreasing uncertainty

3relational schemarelational schema
Student(Name, Number)

possible worlds
(i)

+ ICs

(DB instances)

john NULL
john
john

100
200

+ ∀xy(Student(x, y) → y �= NULL) + ∀xyz(Student(x, y) ∧ Student(x, z) → y = z)

(capturing semantics via ICs, eliminating possible worlds)

• ICs tell us something about the stored data, still not much though

• ICs can be used, e.g. at query answering time

For semantic query optimization

• ICs are also useful for interoperability purposes

When data systems have to interact and possibly be integrated

They tell us something about what’s stored in the data source

4

• Why not going beyond in terms of MD?

What else do we know or have after having created a relational DB?

5

Recovering ER models as Metadata

• When creating a database, we usually start from en entity-relationship
(ER) model

• An ER model represents an external, data-related reality

For example, a model of a business environment

The model is given as an ER diagram (UML diagram)

• The ER model is closer to the reality than the relational DB to be
(which is also a model)

• The ER model is usually forgotten after the DB is created

• The ER model could be used as metadata!

6

• When creating a relational database, we usually start from an outside
reality (OR), e.g. a company, a university, etc.

We want to model that OR, i.e. produce an abstract,
simplified description or representation of OR (leaving aside non-
relevant, contingent aspects and details)

• A model can be an ER model, in terms of entities and relationships
between them

OR

Student Takes Course[2,8]

StNum CCode Level
Character

ER Model

(*)

7

• For the model to be a good model of OR, it must have a semantics or
meaning that corresponds to OR

... and keeps the correspondence (*) in place (semantically correct)

• That is why we impose in the model some semantic constraints, like
those in red in it

• A student must take between 2 and 8 courses

• The course code is a key for the entity: If two objects in Course
coincide in their values for CCode, then their other attribute values
must coincide too

• Without those constraints, there could be too many possible ORs that
conform to the ER model

The model becomes too ambiguous or uncertain

8

• Imposing semantic constraints eliminates unintended ORs

... by narrowing down meaning and filtering out undesirable ORs
(other than the intended one)

We want the ER model to be as close as possible to the initial OR

• The usual next step is producing a relational model from the ER
model

OR

Student Takes Course[2,8]

StNum CCode Level
Character

ER Model

(*)

(**)

Relational Schema: Student(StNum,Address), Course(CCode,Level,MaxReg),
Takes(StNum,CCode,Character) + ICs

Relational Model

• The relational model
is also a model of OR

9

• Now a logical model that uses the languages of predicate logic and
set theory

• The relational ICs become part of the model, and are also semantic
constraints

Some of them come from the original ER model with its semantics
constraints

• As mentioned above, the ER model may be discarded (or not used)
after the relational DB is created and populated

But the ER model contains much semantic information

It could be put to good use: It could become metadata

A semantic layer -that can be used with the DB- and is closer to OR
and what the user understands

10

• How to combine a diagrammatic model with a logical model?

How to realize the integration?

So that a computer system can take advantage of the combination ...

• The idea is to reconstruct the ER model as a knowledge-base, more
precisely, a formal ontology

Written in some language of symbolic logic (think of something like
relational calculus)

• We could borrow languages that have been designed for- or applied
to the Semantic Web (SW) initiative [2, 16, 12]

Some of those languages are being used to express ontologies as
metadata for data sources

11

Interlude on the Semantic Web

• This idea of a semantic layer is at the very basis of the semantic web
effort [2, 16]

• The idea is to wrap web sites with descriptions of their contents
(resources)

So that systems that access them will know:

(a) What to find in them

What resources, and how they are presented and related

(b) Conditions satisfied by those resources

• Useful for querying, integrating and making web sites interoperate

• All this has to be automatized ...

12

• Logical languages have been created to produce those semantic
layers

• Those descriptions become ontologies, which are knowledge-bases
expressed in standardized logical languages

• Since all has to be automatized, the ontology languages are expected
(not always successfully) to keep a balance between expressive power
and difficulty of reasoning

• Languages have been proposed: RDF, RDF-S, OWL (in several
versions, light- and heavy-weight), etc.

E.g. RDF-S has found many applications in data management, and
there are multiple RDF-S DBs (check out DBpedia!)

• Some of those languages are being used to express ontologies as
metadata for data sources

13

Example: An RDF-S DB

Rivera Painter paints Paint

Cubist Picasso Guernica Zapata

type dom ran

sc

type
type type

paints

FlowerSeller
paints

type

Here there is data and also conceptual, higher-level, knowledge

In essence, a light-weight ontology

RDF is extended by RDF-S, for “schemas” that can be defined

Together with the data, capturing more semantics

Links type and sc (for “subclass), dom (for “domain), ran (for “range),
have fixed semantics

Properties of a class are inherited by instances that belong to a subclass

When written in logical terms, this semantics has to be specified

14
ER Models as Ontologies and OBDA

• Logical languages to express metadata can interact with the logical
data model (database)

Being the ER model a diagrammatic model, it can be reconstructed
as a symbolic and logic-based ontology

• In general, an ontology is a (logical) description of a set of concepts
and their relationships [9]

• The ontology becomes metadata, now an explicit and formal ER
model

The ontology (ex ER model) -being closer to the user or business
reality- can be used to query the DB

• Querying data sources through ontologies is an active research area

OBDA: Ontology-based data access [14]

15

Example: ER model is replaced
by (reconstructed as) a symbolic,
logical ontology

For example, for the following
entities/relationship

Ontology

translation
ER model

data

mappings

user

query

query

?

Employee EmployeeManage
bossOf

(0,N)

reportsTo

(0,1)

Introduce basic predicates for the ontology:

• Unary predicates for concepts: Employee(·)
• Binary predicates for roles: BossOf (·, ·), ReportsTo(·, ·)

Symbolic statements go into the ontology

16

E.g. to capture the (0, 1) constraint on the ER’s reportsTo link:

“Every employee reports to at most one employee” :

∀x(Employee(x) → ∃≤1y(Employee(y) ∧ ReportsTo(x, y))1

A symbolic, machine-processable sentence ...

In OBDA the query language is the
language of the ontology

Data stay underneath

Ontology queries are internally
“translated” into DB queries

Ontology

translation
ER model

data

mappings

user

query

query

?

Use mappings between the ontology and the underlying data source(s)

1I.e., ∀x(Employee(x)→∀x∀y1y2((Employee(y1)∧ReportsTo(x, y1)∧Employee(y2)∧
ReportsTo(x, y2)) → y1 = y2).

17

Example: (for the gist)
Teaching Professor

Student

GradStudent

Course

AdvCourse

Enrolling

TeachOf

(1,1)

TaughtBy

(1,inf)

EnrOf

(3,6)

EnrIn

(10,50)

Degree (string)

An ER Model

Teaching � ∀TeachOf .Course � ∃=1TeachOf �
∀TaughtBy .Professor � ∃=1TaughtBy

Enrolling � ∀EnrIn.Course � ∃=1EnrIn �
∀EnrOf .Student � ∃=1EnrOf

Course � ∀TeachOf −.Teaching � ∃=1TeachOf − �
∀EnrIn−.Enrolling � ∃≥10EnrIn− � ∃≤50EnrIn−

AdvCourse � Course

Professor � ∀TaughtBy−.Teaching

Student � ∀EnrOf −.Enrolling � ∃≥3EnrOf − � ∃≤6EnrOf −

GradStudent � Student � ∀Degree.String � ∃=1Degree

18

The link between AdvCourse and Course is an IS-A link

As an ontology written in Description Logic (DL)

Entities become DL-concepts

ER links become DL-roles (binary predicates)

ER constraints captured in red in the DL ontology

(� is ⊆ or →; � is ∩ or ∧; − denotes the inverse role (predicate); original constraints in red)

19

For illustration, formula at the top of slide 16 could be written in DL as:

Employee � ∃≤1Reports .Employee

(Here, for a concept C and a role R, the semantics of ∃≤1R.C is

∃≤1R.C = {x : |{y : R(x, y) ∧ C(y)}| ≤ 1}; a form of functional constraint)

• The restricted syntax of DL makes automated reasoning feasible, and
sometimes, also efficient

Notice that full classical predicate logic of which most of the DL
variants are fragments is provably undecidable

• By logical reasoning we can infer that constraints that apply to Course
also apply to AdvCourse

And less direct logical consequences from the ontology

20

• In the case of OBDA, the mappings are between unary and binary
predicates in the ontology and database predicates (tables), which
can be of any arity

• DL is at the basis of SW languages, such as OWL

• The DL ontology above could be written in OWL

21

Example: A class C defined as the intersection of the classes Person
and that of the objects all whose children are doctors or have a child
who is a doctor

In DL notation:
Person � ∀HasChild .(Doctor � ∃HasChild .Doctor)

In first-order predicate logic (FOPL) notation (or relational calculus), it
defines the class

{x | Person(x) ∧ ∀HasChild .(Doctor � ∃HasChild .Doctor)(x)},

i.e. the intersection of two classes; where the second one is

{u | ∀y(HasChild(u, y) → (Doctor(y) ∨ ∃z(HasChild(y, z) ∧Doctor(z)))}
Thus, ∀x(C(x) ≡ (Person(x) ∧ ∀y(HasChild(x, y) →

(Doctor(y) ∨ ∃z(HasChild(y, z) ∧Doctor(z)))))

22

In OWL notation (it uses RDF-S syntax): (all the way back to XML, HTML, ...)

Person � ∀HasChild .(Doctor � ∃HasChild .Doctor)

<owl:Class>
<owl:intersectionOf rdf:parseType="collection">

<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:toClass>

<owl:unionOf rdf:parseType="collection">
<owl:Class rdf:about="#Doctor"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#hasChild"/>
<owl:hasClass rdf:resource="#Doctor"/>

</owl:Restriction>
</owl:unionOf>

</owl:toClass>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

Can be exchanged through and read from web sites, can be used to
semantically wrap data, and is machine processable, etc.

23

In OWL it is possible to express axioms, i.e. general statements about
the classes (top table) and properties (bottom table) being used:

OWL Example in DL

subClassOf Human � Animal �Biped
equivalentClass Man ≡ Human �Male

disjointWith Male � ¬Female
sameIndividualAs {President Bush} ≡ {G WBush}

differentFrom {john} � ¬{peter}
subPropertyOf HasDaughter � HasChild

equivalentProperty Cost ≡ Price
inverseOf HasChild ≡ HasParent−

transitiveProperty Ancestor� � Ancestor
functionalProperty � � ≤ 1 HasMother

inverseFunctionalProperty � � ≤ 1 HasSSN −

These axioms are all semantic constraints, about both concepts and
properties (roles)

Axioms are not definitions, but basic truths we accept about our domain

24

• We can see that ontologies can be much more expressive than
ER models

• We could start directly with/from an ontology (not necessary coming
from an ER model)

ontology

data mappings

queries/answers

user

captures business
view/model of data

low-level data

• Their logic-based languages
have precise syntax and semantics

• The ontology can be used to capture
more semantics

... in declarative, precise, and executable terms ...

• It is possible to do automated reasoning from those ontologies

25

• Via extra logical conditions
(constraints) unintended
possible worlds that make
the initial ontology true
can be filtered out
(cf. page 3)

+ t i t

outside reality (ER Model)
ontology
(knowledge base)

+ constraints

y (ER Model) (knowledge base)

X X
capturing semantics by narrowing
down set of possible worlds

alternative worlds
(that make the ontology true)

• This ontology-based approach enables conceptually simpler and more
flexible integration of data management with higher-level reasoning
systems

... intelligent information systems, knowledge bases, ontologies,
semantic web repositories, etc.

• Those ontologies can be useful for interoperability and integration
purposes [14, 15]

26

• Ontologies convey or capture semantics, then sources can be
compared in terms of “semantic compatibility” [3, 11]

Other data sources (at the bottom of the picture above) could be
added

Integrating data sources through/under the same ontology [15]

ontology

data mappings

data sources

27

The Data Integration Connection

• Integrating data sources is a crucial problem in business applications

Not only there, also for example, in bioinformatics

• Sources can be databases, but also data repositories of all possible
kinds

From structured data (e.g. in relational databases) to documents and
WWW pages

• Crucial issue is variety Data come in all forms, formats, ...

• Heterogeneity is the norm

• There are also semantic issues

• The semantics may be conflicting: think of two mutually
contradictory logical theories (ontologies) for two DBs

28

Example: Two databases with same schema S = {R[A,B], S[B,C]}
One DB has the referential IC: R[B] ⊆ S[B]
(each value for B in relation R must appear in relation S)

The other has the denial constraint: not (R(A,B), S(B,C))
(no joins allowed between the two tables)

The two ICs together are inconsistent (in a limited form though: only
DBs with empty tables for predicate R can make both true)

• The semantics may be mutually consistent, i.e. their union as logical
theories is consistent, but not the combined data

Example: Two student databases, with same schema and same key
constraint for the student number

Even if the two DBs separately are consistent, the combination of the
two DBs may violate the key constraint in common

29

Different forms of integration:

• Different basic approaches and paradigms for data integration (DI)

And hybrid approaches, combinations of the former, that can be
combined in complex solutions and systems

• Materialized: a new physical, material data repository is created

Best example: Data warehouses (DWHs)

• Mediated: data stay at the sources, a virtual integration system is
created

• In all cases, mappings are needed, to correlate and exchange data
between data sources and data targets

30

Materialized approaches:

A new physical database is
created, importing data from other
data sources

Data sources may be independent
and autonomous

Data warehouses (DWHs): prominent example of materialized DI

Data at the DWH structured differently than those at the sources

Multidimensional business-oriented representation at the DWH

Data cubes in the DWHs, suggesting different dimensions of data

They give context to (usually) numerical data

31

DWH can be conceived as a collection of materialized views, defined
on the combination of data sources

Sources and DWHs are meant to be used for different purposes, e.g.
transactional/operational vs. business-oriented analysis

Mappings from sources are kept, for refreshment (usually one-directional
mappings)

32

• Virtual data integration (VDI) is via a
mediator [17] data sources

mediator

SW system offering DB-like schema
interface

• User interacts with mediator

Data stay at the sources

• Mappings allow to send specific queries to sources and retrieve data

• Notice the similarity with ontology-based data integration (page 26)

33

Example: OCICS wants to virtually integrate their CU and OU DBs

Sources: Carleton U. Ottawa U.

CUstudents Number Name OUstudents Number Name

101 john 103 claire

102 mary 101 peter

SpecialCU Number Field SpecialOU Number Field

101 alg 101 db

102 ai

Single global relation schema, at mediator level

Students(Number ,Name,Univ ,Field)

Mapping between the source schemas and the mediated schema?

34CUstudents Number Name OUstudents Number Name

101 john 103 claire

102 mary 101 peter

SpecialCU Number Field SpecialOU Number Field

101 alg 101 db

102 ai

Mediated schema: Students(Number ,Name,Univ ,Field)

A logical schema mapping: (uses two Datalog rules for view definitions)

CUstudents(x, y), SpecialCU (x, z) → Students(x, y, ‘cu’, z)

OUstudents(x, y), SpecialOU (x, z) → Students(x, y, ‘ou’, z)

Students becomes a view defined as a disjunction of two conjunctive
queries

Global relation as a view of source relations (not the only possibility)

(Can be put as a view defined in relational calculus:

∀xyuz[(CUstudents(x, y) ∧ SpecialCU (x, z) ∧ u = ‘cu’) ∨
(OUstudents(x, y)∧ SpecialOU (x, z)∧ u = ‘ou’) → Students(x, y, u, z)]

35

• The mappings above are stored at- and managed by the mediator

• The logical part (the non-procedural components) of the mediator
could be conceived as an ontology

• More generally:
data sources

mappings

ontology

Different kinds of sources

Sometimes with wrappers,
providing the right presentation
for the DI system

36

What Languages for ODBA?

• DL provides ontological languages (several dialects with different
expressive powers)

• Something closer to database practice?

• Datalog has been around for some years in the DB community

As a query and view definition language for relational DBs

As opposed to relational algebra/calculus and older versions of SQL,
Datalog provides recursion

Ancestor(x, y) ← Parent(x, y)

Ancestor(x, z) ← Ancestor(x, y),Parent(y, z)

Parent A1 A2

juan pablo
adam cain

adam abel
eve cain

pablo luis

· ·

37

• Datalog has many nice properties and implementations, but also
limited expressive power

• Can we extend Datalog to make it more expressive while keeping
most of its nice properties?

38

Datalog± as an Ontological Framework

• Datalog± is a family of extensions of classic Datalog

With new kinds of rules and constraints [6, 8]

• Its languages allow to represent ontological axioms and integrity
constraints that cannot be expressed in Datalog

• The idea is to extend Datalog with new constructs to gain
expressive power

• While trying to keep the good properties of Datalog:

−→ declarativity, clear logical semantics, effectiveness & efficiency

(as extensions of whatever is available for Datalog)

39

Most prominent new ingredients: (the “+” in Datalog±)

• Rules in Datalog+ (the extension of Datalog with unrestricted
existential rules) admit existentially quantified variables:

∃xP (x, y) ← R(y, z)

Can be seen as tuple-generating dependencies (TGDs)

• Negative Constraints (NCs): (in particular, denial
constraints)

⊥ ← P (x, y), R(y, z)

• Equality generating dependencies (EGDs):

y = z ← P (x, y), P (x, z)

In this case, a key constraint (KC)

40

Example: An incomplete EDB D of employers and employees

• Impose on D the TGD (usually as an inclusion dependency):

“every manager is an employee”

Expressed by a Datalog rule: employee(x)← manager(x)

• Another TGD: “every manager supervises someone”

As a rule in Datalog+: ∃y supervises(x, y)← manager(x)

• Impose IC: “employees are not employers”

As negative constraint (NC): ⊥ ← employee(x), employer(x)

• An EGD: “every employee is supervised by at most one manager”

x = x′ ← supervises(x, y), supervises(x′, y)

41

• The “−” in Datalog± comes from imposing syntactic conditions
on Datalog+ programs

For “good” computational behavior

Several applications:

• Express/represent ontologies that interact with data sources

• Represent conceptual data models, and semantic layers on top of
databases

• Ontology-Based Data Access (OBDA)

• Query a database through the ontology

• In the language of the ontology (closer to the user)

• Automatically access the underlying data sources

• Get answers through Datalog evaluation

42

• Datalog± ontologies can represent: ER [7, 5], Semantic Web
languages/ontologies [1], UML with object classes [4], ...

But not classic Datalog!

• Representation of- and navigation in multidimensional data models
for data quality assessment and cleaning [13]

43

Properties & Issues:

• The “−” in Datalog± refers on syntactic restrictions on Datalog+
rules and their (syntactic) interactions

• This limits the gained expressive power

• We can still use Datalog± to express ER models and much more

• It can be used as an ontological language

• It can be used as a language to extend incomplete DBs

• The syntactic restrictions ensure that query evaluation (QE) becomes
feasible and sometimes efficient

(Without them, QE under Datalog± can be undecidable/non-computable)

• Datalog± is still declarative and has a precise and clean semantics

44

• QE can be implemented

• Probabilistic extensions of Datalog± via MLNs

45

Towards Good Members of the Datalog± Family

• A Datalog± program with a new kind of rules and classical ones is
combined with an extensional database (EDB)

• EDB is considered to be incomplete, but extended through the Datalog±
program

Generating new tuples for EDB predicates, and full extensions for
intensional predicates

• Depending on the kind of rules, possibly several extensions

Extensions are DBs that extend the EDB and satisfy the rules as
classical logical formulas

46

D extensions via rules

Whatever is true in all possible
extensions is considered to be
certain

• We may want to materialize the extension(s) or keep them virtual

And query them ... However, ...

• The chase (of the rules on the EDB) generates an instance that
extends the EDB and “represents” the whole class of extensions

It turns out that what is certain is what is true in the chase (i.e. in the
extension it produces)

47

Example: Incomplete EDB D = {person(John)}
TGDs applied forward (as usual in Datalog), with value invention for
existentials

This is the main part of the “chase procedure”

Set Σ of Datalog+ rules:
∃x father(x, y)← person(y)

person(x)← father(x, y)

The chase is a procedure that applies the TGDs in a forward manner,
generating new tuples

chase(D,Σ) = {father (z1, John), person(z1),
father (z2, z1), person(z2),

father (z3, z2), person(z3), ...}
(each zi is a labeled null value)

48

• Chase may create non-terminating loops

So, the chase may not terminate

Query answering may become undecidable

• Related to (but not necessarily implied by) the fact that ...

The chase procedure for Datalog+ may not terminate, i.e. it
produces an infinite extension

Finite or infinite, we may still query it ...

• Query answering under Datalog+ is indeed undecidable

• Even with infinite chase, things are not always hopeless ...

49

• Syntactic restrictions of Datalog± programs

• Guarantee decidability of query answering

• May guarantee efficient query answering ...

• We reserve the name Datalog± for the “good” extensions of Datalog

Each of them can be seen as a syntactic fragment of Datalog+

50

D chase(D,)

D chase(D,)

Q

• In first case, QA is obviously decidable

If the chase can be built in PTIME (in data), QA too

• In second case, QA may be (and sometimes is) undecidable

But also possibly decidable depending on the program (and the class
of queries, but we assume them conjunctive)

• Good cases of programs that ensure decidability of QA?

And efficient QA? [10]

51

• Well-behaved classes of Datalog± programs have been considered
for the second (infinite) case

• Decidability of QA guaranteed by different syntactic conditions on the
set of rules

• The idea is that, depending on the programs, QA can be correctly
done by querying only a bounded, initial portion of the chase

D chase(D,)

Q

bounded depth

query this portion Hopefully a “short
portion”

Some good classes of
Datalog± have been
identified [5, 6]

52

Conclusions

• Ontologies have been used for some time in AI (KR) and the Semantic
Web

• Now they are being increasingly used in data management

In particular, in interaction with relational DBs

• Ontologies can be used to access DBs through a model that is close
to the user or application environment, e.g. business data

• They can also be used for data integration

• The ontological “schema” can be different from the DB schema

Connection established via logical mappings

• DL and Datalog± have been used for OBDA

53

• Datalog± is a family of extensions of Datalog

The latter has been around for more than two decades in the DB
community

• DL and Datalog± have been used to symbolically/logically represent
ER, UML, ..., models

• Many applications are still to be unveiled

• There are many interesting open research problems

54

References

[1] M. Arenas, G. Gottlob, A. Pieris. Expressive Languages for Querying the Semantic Web. Proc. PODS 2014, pp.
14-26.

[2] Tim Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, May 2001, pp. 3443.

[3] Alexander Borgida and John Mylopoulos: Data Semantics Revisited. Proc. SWDB, Springer LNCS 3372, 2004, pp.
9-26.

[4] A. Cali, G. Gottlob, G. Orsi and A. Pieris. Querying UML Class Diagrams. Proc. Foundations of Software Science and
Computational Structures. Springer LNCS 7213, 2012, pp. 1-25

[5] Andrea Cali, Georg Gottlob and Thomas Lukasiewicz: A General Datalog-Based Framework for Tractable Query
Answering over Ontologies. Journal of Web Semantics, 2012, 14:57-83.

[6] Andrea Cali, Georg Gottlob and Andreas Pieris. Towards More Expressive Ontology Languages: The Query An-
swering Problem. Artificial Intelligence, 2012, 193:87-128.

[7] Andrea Cali, Georg Gottlob and Andreas Pieris. Ontological Query Answering under Expressive Entity-Relationship
Schemata. Information Systems, 2012, 37(4):320-335.

[8] Andrea Cali, Georg Gottlob, Thomas Lukasiewicz and Andreas Pieris. A Logical Toolbox for Ontological Reasoning.
SIGMOD Record, 2011, 40(3):5-14.

[9] B. Chadrasekaran, J. Josephson and V. Richard Benjamins. What are Ontologies, and Why Do We Need Them?
IEEE Intelligent Systems, Jan/Feb. 1999, pp. 20-26.

55

[10] G. Gottlob, G. Orsi and A. Pieris. Query Rewriting and Optimization for Ontological Databases. ACM Trans. Database
Syst., 2014, 39(3):25.

[11] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of “Semantics”?. IEEE Computer,
2004, 37(10): 64-72.

[12] P. Hitzler, M. Krötzsch and S. Rudolph. Foundations of Semantic Web Technologies. CRC Press, 2010.

[13] M. Milani, L. Bertossi and S. Ariyan. Extending Contexts with Ontologies for Multidimensional Data Quality Assess-
ment. Proc. 5th International Workshop on Data Engineering meets the Semantic Web (DESWeb). Data Engineering
Workshops (ICDEW), 2014, pp. 242 - 247.

[14] Maurizio Lenzerini. Ontology-Based Data Management. Proc. AMW 2012, CEUR Proceedings, Vol. 866, pp. 12-15.

[15] Alexander Maedche, Boris Motik, Ljiljana Stojanovic, Rudi Studer and Raphael Volz. Ontologies for Enterprise Knowl-
edge Management. IEEE Intelligent Systems, 2003, 18(2):26-33.

[16] Nigel Shadbolt, Tim Berners-Lee and Wendy Hall. The Semantic Web Revisited. IEEE Intelligent Systems, 2006,
21(3):96-101.

[17] Gio Wiederhold. Mediators in the Architecture of Future Information Systems. IEEE Computer, 1992, 25(3):38-49.

