
ERBlox: Combining Matching
Dependencies with Machine Learning for

Entity Resolution

Leopoldo Bertossi
Carleton University

School of Computer Science
Institute for Data Science

Ottawa, Canada

bertossi@scs.carleton.ca

2

Prelude on Data Quality

3Recent Approaches to Data Quality

• Data quality has many dimensions: consistency,
completeness, accuracy, redundancy, freshness, ...

All of them create in the end a problem of uncertainty in data

• Consistency has to do with satisfying semantic constraints,
usually in the form of integrity constraints (ICs)

ICs have been around for a long time ...

They are used to capture the application semantics in the
data model and database

They have been studied in general and have wide application
in data management

Much fundamental/technical research has been developed

4

Methodologies for dealing with ICs are quite general and have
broad applicability

• However, in many situations databases may be inconsistent
wrt. a given set of ICs

Getting rid of violations is sometimes possible, but sometimes
impossible or too complex or undesirable

• Why not accepting inconsistency, live with it, and make the
best we can out of our DB?

• Database repairing and consistent query answering (CQA) are
newer contributions in this direction (more coming)

And more generally, a contribution to a newer approach to
data quality problems

5

• Data quality assessment (DQ) and data cleaning (DC) have
been mostly: Ad-hoc, rigid, vertical, and application-dependent
activities

• There is a lack of fundamental research in data quality
assessment and cleaning

• Things are starting to change ...

• Recently, different forms of data quality constraints have been
proposed and investigated

• They provide generic languages for expressing quality concerns

Suitable for specifying adaptive and generic data quality
assessment and data cleaning techniques

6

Characterizing Consistent Data wrt ICs

• What are the consistent data in an inconsistent database?

What are the consistent answers to a query posed to an
inconsistent database?

• (Arenas,Bertossi,Chomicki; PODS99) provided a precise definition

Intuitively, the consistent data in an inconsistent database D
are invariant under all minimal ways of restoring D’s
consistency

Consistent data persists across all the minimally repaired
versions of the original instance: the repairs of D

7

Example: For the instance D that violates
FD: Name → Salary Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of
whole tuples are allowed: D1, resp. D2

Employee Name Salary
page 5K
smith 3K
stowe 7K

Employee Name Salary
page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not (it participates in the violation of FD)

8

• A consistent answer to a query Q from a database D is one
that can be obtained as a usual answer to Q from every
possible repair of D wrt IC

• Q1 : Employee(x, y)?
Consistent answers: (smith, 3K), (stowe, 7K)

• Q2 : ∃yEmployee(x, y)?
Consistent answers: (page), (smith), (stowe)

CQA may be different from classical data cleaning!

However, CQA is relevant for data quality; an increasing need
in business intelligence

It also provides concepts and techniques for data cleaning

9
• Next DBMSs should provide more flexible, powerful, and user

friendlier mechanisms for dealing with semantic constraints

In particular, they should accept and answer queries
requesting for consistent data

query pre processor ?

Select ...
From ...
...

Cons/W ...

Select ...
From ICsFrom ...
...

Why not an enhanced SQL?

SELECT Name, Salary
FROM Employee
CONS/W FD: Name -> Salary;

(FD not maintained by the DBMS)

• Paradigm shift: ICs are constraints on query answers, not
on database states!

A form of data cleaning wrt IC violation at query-answering
time!

10
• Idea: For CQA avoid or minimize computation/materialization

of repairs

• For some tractable cases of CQA, query rewriting algorithms
have been developed

New query can be posed/answered as usual to/from the
original DB

Q(x, y) : Employee(x, y) �→
Q′(x, y) : Employee(x, y) ∧ ¬∃z(Employee(x, z) ∧ z �= y)

11

SELECT Name, Salary �→
FROM Employee;

SELECT Name, Salary
FROM Employee
WHERE NOT EXISTS (

SELECT *
FROM Employee E
WHERE E.Name = Name AND

E.Salary <> Salary);

(retrieves employees with their salaries for which there is no
other employee with the same name, but different salary)

12

• Natural application scenario:

Virtual data integration

No way to enforce global ICs
on the sources

Inconsistencies have to be
solved on-the-fly, at query-
answering time

DBM S

Global Query (SQL):

 SELECT ...
 FRO M ...
 W H ERE ...
 CONSISTENT W ITH

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

13

CM& Morgan Claypool Publishers&

SYNTHESIS LECTURES ON DATA MANAGEMENT

M. Tamer Özsu, Series Editor

Database Repairing
and Consistent Query
Answering

Leopoldo Bertossi

14

Conditional Dependencies (CDs)

Example: Database relation with FDs:

FD1 : [CC , AC , Phone] → [Street, City, Zip]

FD2 : [CC , AC] → [City]

CC AC Phone Name Street City Zip
44 131 1234567 mike mayfield NYC EH4 8LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

FDs are satisfied, but they are “global” ICs

They may not capture natural data quality requirements ...

... those related to specific data values

15

• What about a conditional functional dependency (CFD)?

CFD1 : [CC = 44, Zip] → [Street]

The FD of Street upon Zip applies when the country code is 44

Not satisfied anymore, and data cleaning may be necessary ...

• More generally, CDs are like classical ICs with a tableau for
forced data value associations

CFD2 :
[CC = 44, AC = 131, Phone] → [Street, City= ‘EDI ′, Zip]

When CC = 44, AC = 131 hold, the FD of Street and Zip
upon Phone applies, and the city is ‘EDI’

Not satisfied either ...

16

• CQA and database repairs have been investigated for CFDs

• We can go one step further ...

• Conditional Inclusion Dependencies:

Order(Title, Price, Type = ‘book ′) ⊆ Book(Title, Price)

It can be expressed in classical FO predicate logic:

∀x∀y∀z(Order(x, y, z) ∧ z = ‘book′ → Book(x, y))

Still a classic flavor ...

And semantics ...

17

Matching Dependencies (MDs)

• MDs are related to Entity Resolution (ER)

• ER is a classical, common and difficult problem in data
cleaning

ER is about discovering and merging records that represent
the same entity in the application domain

Detecting and getting rid of duplicates!

• Many ad hoc mechanisms have been proposed

• ER is fundamental for data analysis and decision making in BI

• Particularly crucial in data integration

18

• MDs express and generalize ER concerns

They specify attribute values that have to be made equal
under certain conditions of similarity for other attribute values

Example: Schema R1(X, Y), R2(X, Y)

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] −→ R1[Y1] .= R2[Y2])

When the values for attributes X1 in R1 and X2 in R2 in two
tuples are similar, then the values in those two tuples for
attribute Y1 in R1 and Y2 in R2 must be made equal (matched)

(R1 and R2 can be same predicate)

≈: Domain-dependent, attribute-level similarity relation

• MDs introduced by W. Fan et al. (PODS 2008, VLDB 2009)

19

• Although declarative, MDs have a procedural feel and a
dynamic semantics

• An MD is satisfied by a pair of databases (D, D′):

D satisfies the antecedent, and D′, the consequent, where
the matching (merging) is realized

But this is local, one-step satisfaction ...

• We may need several steps until reaching an instance where
all the intended mergings are realized

Dirty instance: D ⇒ D1 ⇒ D2 ⇒ ⇒ D′

stable, clean instance!
↑

(there could be several of these)How each “⇒” step?

20

Matching Dependencies with MFs

“similar name and phone number ⇒ identical address”
D0 name phone address

John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓
D1 name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

A dynamic semantics!
maddress(MainSt., Ottawa , 25MainSt.) := 25MainSt., Ottawa

Addresses treated as strings or objects, i.e. sets of pairs
attribute/value

(Join work with Solmaz Kolahi and Laks Lakshmanan; ICDT’11, TOCS 2013)

21

• Matching functions induce a partial order (lattice) on attribute
domains

a
A a′ :⇐⇒ mA(a, a′) = a′

a
A a′ can be thought of in terms of information contents

When MFs are applied we increase information contents, and
decrease uncertainty!

25 Main St., Ottawa

Main St., Ottawa 25 Main St.

Main St.D0 � D1 � . . . � Dclean

22

• In general, there could be multiple clean instances

• For two special cases:

• Similarity-preserving matching functions

a ≈ a′ ⇒ a ≈ mA(a′, a′′)

• Interaction-free MDs

There is a unique clean instance Dclean

It can be computed in polynomial-time in data

23

ERBlox
Joint work with:

Zeinab Bahmani (Carleton University)

Nikolaos Vasiloglou (LogicBlox Inc.)

24

Entity Resolution

• A database may contain several representations of the same
external entity

The database has to be cleaned from duplicates

• The problem of entity resolution (ER) is about:

(A) Detecting duplicates, as pairs of records or clusters thereof

(B) Merging duplicates into single representations

• Much room for machine learning (ML) techniques

25

Blocking: Detecting Potential Duplicates

• We need to:

(a) Compare pairs of records, for elements of a same entity
(class):

r1 = 〈a1, . . . , an〉 vs. r2 = 〈a′
1, . . . , a′

n〉

(b) Discriminate between pairs of duplicate records and pairs
of non-duplicate records

• A classification problem

< r1, r2>

1

< r3, r4>
0

(r1 r2 are similar)

(r3 r4 not similar)

• In principle, every two records
have to be compared, and
classified

This can be costly ...

26

• Need to reduce the large amount of two-record comparisons

ER mechanisms use blocking techniques

• A single attribute in records, or a combination of attributes,
called a blocking key, is used to split records into blocks

r = 〈a1, a2, . . . , a5, . . . , a8, a9〉 BK = 〈A1, A5, A8〉

Only records within the same block values are compared

Any two records in different blocks will never be duplicates

• For example, block employee records according to the city

Compare only employee records with the same city

27

• After blocking many record-pairs that are clear non-duplicates
are not further considered

But true duplicate pairs may be missed

• For example, due to data input errors or typographical
variations in attribute values

Even assuming data is free of those problems, we need
“similarity” functions:

“Joseph Doe” and “Joe Doe” may not be errors, but possible
different representations of the same:

sname(“Joseph Doe”, “Joe Doe”) = 0.9

• So, now records in a same block have their BK attributes with
“similar” values

28

• But still, grouping entities into blocks using just BK similarities
may cause low recall

• It is useful to apply blocking with additional semantics and/or
domain knowledge

29
Example: “author” and “paper” entities (records)

Want to group author
entities based on
similarities of authors’
names and affiliations

Assume author entities
a1, a2 (complete author records)
have similar names, but not similar affiliations

a1, a2 are authors of papers (entities) p1, p2, resp.,

p1, p2 have been put in the same block of papers
Semantic knowledge: “If two papers are in the same block,
their authors with similar names should be in the same block”
So, assign a1, a2 to same block (they could be duplicates)

30
• This is blocking of author and paper entities, separately, but

collectively

According to their relational closeness

Not only on the basis of local similarities at the attribute level

• How can we capture this kind of additional semantic
knowledge?

With a MD like this:
Author(x1, y1, bl1) ∧ Paper(y1, z1, bl3) ∧ Author(x2, y2, bl2)∧

Paper(y2, z2, bl3) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 −→ bl1
.= bl2

This is (an extended form of) a matching dependency (MD),
used here for blocking

Originally for merging attribute values, not for blocking

31
• ML could be used to create the blocks, e.g. using clustering

methods (part of 1st ER phase)

Not what we do here ...

• We use MDs for blocking, before the ML-based classification
task

• Not quite clear how to develop ML-based classifiers involving
semantic knowledge

Some recent work on kernel-based methods with -assumed to
be true- logical formulas and semi-supervised training

(Diligenti et al., Machine Learning, 2012, 86(1):57-88)

• After blocking we may start classifying pairs

32

Classifying Record-Pairs (general)

• ML techniques are commonly used to discriminate between:

- pairs of duplicate records (of each other), i.e. duplicate
pairs, and

- pairs of non-duplicate records, i.e. non-duplicate pairs

• ML is used here to classify record-pairs
(still part of 1st phase of ER)

• We developed a classification model

The classification hyper-plane in slide 25 ...

All this is part of the ERBlox approach/system

33

The ERBlox Approach to ER

• ERBlox enables/supports ML-techniques for ER

Different ML techniques can be used for the classification
model

ER is based on supervised ML techniques, which require
training data

We used the “support-vector machine” (SVM) method (mainly)

• ERBlox also based on the use of MDs

• ERBlox interacts with Datalog-based relational DBs

Profiting from Datalog for different tasks

More specifically, the LogicBlox system (LogiQL, now)

34

• ERBlox has three main components:

1. MD-based collective blocking

2. ML-based record duplicate detection

3. MD-based merging

35

All the data extraction, movement and
transformation tasks carried out via
LogicQL’s extended Datalog

36

Merging

• After the classification task, (records in) duplicate-pairs have
to be merged

Records in them are considered to be “similar”

In a precise mathematical sense, through the use of domain-
dependent “features”

MDs are also used for merging (their common use)

• Different sets of MDs for blocking and merging

• The classifier decides if records r1, r2 are duplicates

In the positive case, by returning 〈r1, r2, 1〉

37
r1

r2

f1(a11,a21) ~ 1 f2(a12,a22) ~ 1 f3(a13,a23) ~ 1

r1 ~ r2 merge r1, r2

MDs

• Define: r1 ∼ r2 :⇐⇒ 〈r1, r2, 1〉 is output

• Merge-MDs of the form: r1 ∼ r2 → r1
.= r2

LHS means 〈r1, r2〉 is given value 1 by classifier

RHS means r1[A1] .= r2[A1] ∧ · · · ∧ r1[Am] .= r2[Am]

• Mergings on RHS, based on domain-dependent matching
functions (MFs)

38

On the Use of MDs

• In general, application of MDs on an instance may produce
alternative, admissible instances

• General MDs can be specified/enforced with answer-set
programs (ASPs) [Bahmani et al., KR’12]

General ASP not supported by LogiQL

• We obtain a single blocking solution, applying “blocking MDs”

• On that basis, also the final result of ER is a single duplicate-
free instance, applying “merge-MDs”

• The kind of MDs in our case, and the way there are use/applied,
requires only “stratified Datalog”, which is supported by LogiQL

Our MDs can be specified/executed with LogiQL’s Datalog

42
Example: Merge duplicate author-records enforcing the MD:

Author [aid1] ≈ Author [aid2] −→
Author [Name, Affiliation, PaperID] .= Author [Name, Affiliation, PaperID]

(LHS abbreviation for Author ∼ Author)

• A derived table Author -Duplicate is used on LHS, with
contents computed pre-merging and kept fixed during the
enforcement of merge-MDs

In this way, transitivity of record similarity is captured ...

This makes the sets of merging-MDs interaction-free

Resulting in a unique resolved instance
(similarly for enforcement of blocking-MDs)

43

Experimental Evaluation

• We experimented with our ERBlox system using datasets of
Microsoft Academic Search (MAS), DBLP and Cora

MAS (as of January 2013) includes 250K authors and 2.5M
papers, and a training set

• We used two other classification methods in addition to SVM

• The experimental results show that our system improves ER
accuracy over traditional blocking techniques where just
blocking-key similarities are used

• Actually, MD-based collective blocking leads to higher
precision and recall on the given datasets

44

Final Remarks

• ERBlox developed in collaboration with the the LogicBlox
company http://www.logicblox.com/

It is built on top of the LogicBlox Datalog platform

• High-level goal is extend LogiQL

Developed and used by LogicBlox

They extend, implement and leverage Datalog technology

• Datalog has been around since the early 80s

Used mostly in DB research

It has experienced a revival during the last few years, and
many new applications have been found!

45
• Datalog enables declarative and executable specifications

of data-related domains

An extension of relational algebra/calculus/databases

Base Tables

P ...
Q ...intentional

DB

extensional
DB

Deductive
DB

virtually
extended

DB

Datalog rules

(relational)

Datalog DB

LogicBlox DBMS

optimization machine learning

↑ ↑ ↑
mixed-integer (linear) programming, regression (classical, logistic), SVMs, ...

• LogicQL is being extended with interaction with optimization
and machine learning packages and systems!

47

Example: Optimize Shelf Space

totalShelf[]=u agg u=sum(z)

z=x y, Stock[p] = x, spacePerProduct[p]=y

Product(p) Stock[p] minStock[p]

Product(p) Stock[p] maxStock[p]

totalShelf[]=u, maxShelf[]=v u v

totalProfit[]=u agg u=sum(z)totalProfit[]=u agg u=sum(z)

z=x y, Stock[p] = x, profitPerProd[p]=y

lang:solve:variable(‘Stock)g ()

lang:solve:max(‘totalProfit)

