
Some Declarative Approaches to
Data Quality

Leopoldo Bertossi
Carleton University
Ottawa, Canada

bertossi@scs.carleton.ca

BICOD, Birkbeck College, London, 2017

New Challenges from Data Quality Research

• Data quality has many dimensions: consistency,
completeness, accuracy, redundancy, freshness, ...

All of them create in the end uncertainty in data

• Data quality assessment (DQ) and data cleaning (DC) have
been mostly: Ad-hoc, rigid, vertical, and application-dependent
activities

• There is a lack of fundamental research in data quality
assessment and cleaning

• Things are starting to change ...

2

• Recently, different forms of data quality constraints have been
proposed and investigated

• They provide generic languages for expressing quality concerns

Suitable for specifying adaptive and generic data quality
assessment and data cleaning techniques

3

Contents:

A. Inconsistent Data

B. Matching Dependencies and Entity Resolution

C.1. Contexts in Data Quality

C.2. Ontological Multidimensional Contexts
and Data Quality

This is not a survey, but an introduction to some research
topics I have been involved in

4

A. Inconsistent Data

5

Inconsistent Databases

• Consistency has to do with satisfying semantic constraints,
usually in the form of integrity constraints (ICs)

ICs have been around for a long time ...

They are used to capture the application semantics in the
data model and database

They have been studied in general and have wide application
in data management

Much fundamental/technical research has been developed

6

• A database instance D is a model of an outside reality

Outside World

correspondence

ICs

Relational Database

(model)

• An integrity constraint on D is a condition that D is expected to
satisfy in order to capture the semantics of the application
domain

• A set IC of integrity constraints (ICs) helps specify and
maintain the correspondence between D and that reality

7

• Methodologies for dealing with ICs are quite general and have
broad applicability

• However, in many situations databases may be inconsistent
wrt. a given set of ICs

Getting rid of violations is sometimes impossible or too complex or
undesirable

• Why not accepting inconsistency, live with it, and make the
best we can out of our DB?

• Database repairing and consistent query answering (CQA) are
newer contributions in this direction (more coming)

And more generally, a contribution to a newer approach to
data quality problems

8

A database may be inconsistent!

• Poor update control, poorly designed application programs and
transactions

• Delayed updates

• Legacy data on which we want to impose new constraints

• User constraints that cannot be enforced by the user

• “Informational constraints” provided by the user to the DB(MS)
as extra knowledge

The DBMS does not check or enforce them (too costly, for better
performance), but just uses them

For “semantic query optimization” (as opposed to syntactic QO),
i.e. ICs are used to speed up query answering

9

Example: IC says there are not student numbers above 5000;

A query asks about the student with student number 5025

No need to inspect the table ... (empty answer)

• Virtual data integration systems

Each source may be locally consistent wrt. its own ICs

If we want ICs at the global, mediated level, there is no way to
check or enforce them (no direct access to the data sources)

• ...

10

Characterizing Consistent Data wrt. ICs

• What are the consistent data in an inconsistent database?

What are the consistent answers to a query posed to an
inconsistent database?

• A precise definition was provided: [PODS’99]

Intuitively, the consistent data in an inconsistent database D
are invariant under all minimal ways of restoring D’s
consistency

Consistent data persists across all the minimally repaired
versions of the original instance: the repairs of D

11

Example: For the instance D that violates
FD : Name → Salary

Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of whole
tuples are allowed: D1, resp. D2

Employee Name Salary

page 5K
smith 3K
stowe 7K

Employee Name Salary

page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not (it participates in the violation of FD)

12

• A consistent answer to a query Q from a database D is obtained as
a usual answer to Q from every possible repair of D wrt. IC

• Q1 : Employee(x, y)?

Consistent answers: (smith, 3K), (stowe, 7K)

• Q2 : ∃yEmployee(x, y)?

Consistent answers: (page), (smith), (stowe)

• CQA may be different from traditional data cleaning!

• Repairs and CQA have become relevant in data quality

It also provides concepts and techniques for data cleaning

And beyond relational databases, e.g. ontology-based data access
(OBDA)

13

• Next DBMSs should provide more flexible, powerful, and user
friendlier mechanisms for dealing with semantic constraints

In particular, they should accept and answer queries
requesting for consistent data

query pre!processor ?

Select ...

From ...

...

Cons/W ...

Select ...

From
ICs

From ...

...

Why not an enhanced SQL?

SELECT Name, Salary
FROM Employee
CONS/W FD: Name -> Salary;

(FD not maintained by the DBMS)

• Paradigm shift: ICs are constraints on query answers, not
on database states!

A form of data cleaning wrt. IC violation at query-answering
time!

14

• Idea: For CQA avoid or minimize computation/materialization
of repairs

• For some tractable cases of CQA, query rewriting algorithms
have been developed

New query can be posed/answered as usual to/from the
original DB

Q(x, y) : Employee(x, y) 7→
Q′(x, y) : Employee(x, y) ∧ ¬∃z(Employee(x, z) ∧ z 6= y)

15

SELECT Name, Salary 7→
FROM Employee;

SELECT Name, Salary
FROM Employee
WHERE NOT EXISTS (

SELECT *
FROM Employee E
WHERE E.Name = Name AND

E.Salary <> Salary);

(retrieves employees with their salaries for which there is no
other employee with the same name, but different salary)

• This relational calculus (RC) to RC rewriting not always possible,
for complexity reasons

• Evaluation of RC queries is doable in polynomial time in data
complexity (i.e. in the size of the original instance)

CQA can be coNP-complete (or higher) in data complexity

• Any more general and declarative approach to CQA?

16

• Repairs can be specified by logic programs with stable model
semantics (answer-set programs)

Example: Schema R(A,B,C,D), with intended FD AB → C

Equivalently in RC: ¬∃xyz1z2vw(R(x, y, z1, v) ∧R(x, y, z2, w) ∧ z1 6= z2)

The repair program implicitly specifies repairs, with rules with anno-
tation constants in extra attribute, and original DB as facts

Possible deletions:

R′(t1, x, y, z1, v, d) ∨R′(t2, x, y, z2, w, d)← R(t1, x, y, z1, v), R(t2, x, y, z2, w), z1 6= z2

What stays in DB after deletions:

R′(t, x, y, z, v, s)← R(t, x, y, z, v), not R′(t, x, y, z, v, d)

• Stable models of the program are in 1-1 correspondence with repairs

17

• CQA can be done querying the program under certain answer
semantics:

Example: (cont.) CQA to projection query: ∃Y ∃WR(X, Y, Z,W)?

Add query rule to the program:

Ans(x, z)← R′(x, y, z, w, s)

CQAs can be found in extension of auxiliary predicate Ans

• Repair programs capture higher complexity classes

Less efficient than RC rewriting when the latter possible

• Repair programs can be optimized with magic-sets methods

• Specific, tailored, lower-complexity programs automatically obtained
for lower-complexity classes of ICs

18

C
M
& Morgan Claypool Publishers&

SYNTHESIS LECTURES ON DATA MANAGEMENT

M. Tamer Özsu, Series Editor

Database Repairing
and Consistent Query
Answering

Leopoldo Bertossi

19

• Natural application scenario:

Virtual data integration

No way to enforce global ICs
on the sources

Inconsistencies have to be
solved on-the-fly, at query-
answering time [LNCS 3300]

• Also in peer-data exchange
systems (with Nulls à la SQL)
[TPLP’17]

DBMS

Global Query (SQL):

 SELECT ...

 FROM ...

 WHERE ...

 CONSISTENT WITH

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query

Plan

ENHANCED

MEDIATOR

global

ICs

20

Conclusions

• Several other repairs semantics have been investigated

A principled approach to repair semantics selection is needed

• A complete complexity landscape for CQA under FDs and key
constraints (with a caveat) [Wijsen; LNCS 8367; SIGMOD Rec.’16]

• Connections between repairs and causality and responsibility in
databases [ICDT’15; TOCS 2017]

Different repair semantics may lead to different notions of cause
and responsibility

• Connections between repairs and DB updates through views
[forth. IJAR]

21

• ICs can be conceived as declarative quality constraints on a possibly
dirty (inconsistent) database (or set of query answers)

• Very much in line with classes of dependencies recently introduced
and motivated by data quality/cleaning concerns

W. Fan and F. Geerts. Foundations of Data Quality Management. Synthesis Lectures

on Data Management, Morgan & Claypool Publishers, 2012

22

Example: Database relation with FDs:

FD1 : [CC ,AC ,Phone]→ [Street ,City ,Zip]

FD2 : [CC ,AC]→ [City]

CC AC Phone Name Street City Zip

44 131 1234567 mike mayfield NYC EH4 8LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

FDs are satisfied, but they are “global” ICs

They may not capture natural data quality requirements ...

... those related to specific data values

• What about a conditional functional dependency (CFD)?

23

CFD1 : [CC = 44,Zip]→ [Street]

The FD of Street upon Zip applies when the country code is 44

Not satisfied anymore, and data cleaning may be necessary ...

• More generally, CDs are like classical ICs with a tableau for
forced data value associations

CFD2 :
[CC = 44,AC = 131,Phone]→ [Street ,City= ‘EDI ′,Zip]

When CC = 44,AC = 131 hold, the FD of Street and Zip upon
Phone applies, and the city is ‘EDI’

Not satisfied either ... New data quality issues detected

• CQA and database repairs have been investigated for CFDs

24

B. Matching Dependencies

and

Entity Resolution

25

Matching Dependencies (MDs)

• MDs are related to Entity Resolution (ER)

• ER is a classical, common and difficult problem in data
cleaning

ER is about discovering and merging records that represent
the same entity in the application domain

Detecting and getting rid of duplicates!

• Many ad hoc mechanisms have been proposed

• ER is fundamental for data analysis and decision making in BI

• Particularly crucial in data integration

26

• MDs express and generalize ER concerns

They specify attribute values that have to be made equal
under certain conditions of similarity for other attribute values

Example: Schema R1(X,Y), R2(X,Y)

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] −→ R1[Y1]
.
= R2[Y2])

“When the values for attributes X1 in R1 and X2 in R2 in two
tuples are similar, then the values in those two tuples for
attribute Y1 in R1 and Y2 in R2 must be made equal”

(R1 and R2 can be same predicate)

≈: Domain-dependent, attribute-level similarity relation

• MDs introduced by W. Fan et al. [PODS’08; VLDB’09]

27

Example: People Name Phone Addr

peter 123456 NULL
john 135791 sparks

john d. 135791 sparks av.

D

MD: People[Phone1] ≈ People[Phone2] → People[Addr1]
.
= People[Addr2]

“every two tuples that have similar phone numbers must have their
addresses identified (matched)”

In this case, the two addresses in red have to be matched, e.g.:
mAddr (sparks, sparks av .) := sparks av . (matching function picking most

informative value)

After “applying” (enforcing) the MD, we get new instance

People Name Phone Addr

peter 123456 NULL
john 135791 sparks av.

john d. 135791 sparks av.

D′

28

• MDs could be seen as “procedural” extensions of “equality
generating dependencies” (egds)

• MDs have a non-classical, dynamic semantics

Pairs of instances (D,D′) satisfy the MD

D satisfies the antecedent, and D′, the consequent, where
the merging is realized one-step satisfaction

• We may need several steps until reaching an instance where
all the intended mergings are realized

Dirty instance: D ⇒ D1 ⇒ D2 ⇒ ⇒ D′

stable, clean instance!
↑

(there could be several of these)We defined the crucial “⇒” step

29

Matching Dependencies with MFs

“similar name and phone number ⇒ identical address”

People[Name1]≈nmPeople[Name2] ∧ People[Phone1]≈phPeople[Phone2]

→ People[Addr1]
.
= People[Addr2]

D0 name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓
D1 name phone address

John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

maddress(MainSt .,Ottawa , 25MainSt .) := 25MainSt .,Ottawa

Addresses treated as strings or objects, i.e. sets of pairs attribute/value
[ICDT’11, TOCS 2013]

30

• Matching functions induce a partial order (lattice) on attribute
domains

a �A a
′ :⇐⇒ mA(a, a′) = a′

a �A a
′ can be thought of in terms of information contents

When MFs are applied information contents grows, and uncertainty
decreases!

25 Main St., Ottawa

Main St., Ottawa 25 Main St.

Main St.

�
�
�

@
@

@

@
@
@

�
�

�

D0 v D1 v . . . v Dclean

31

• In general, there could be multiple clean instances

• The complexity on (certain) query answering can be NP-complete
in data

• Special (syntactic) cases:

• Similarity-preserving matching functions

a ≈ a′ ⇒ a ≈ mA(a′, a′′)

• Interaction-free MDs

A unique clean instance!

Computable in polynomial-time in data

32

Answer-Set Programs for MD-Based ER

• General MDs can be specified/enforced with answer-set programs
(ASPs) [KR’12]

A declarative, logic-based specification

Non-stratified negation needed, but no disjunction

Which matches intrinsic complexity of enforcing MDs

• Answer-sets (or stable models) in correspondence with the different
final clean instances

Program has to simulate admissible chase sequences, the most
complex part

33

Example: An unresolved instance; similarities: a1 ≈ a2, b2 ≈ b3;
the MF; and MDs

R(D0) A B

t1 a1 b1
t2 a2 b2
t3 a3 b3

MB(b1, b2, b12)
MB(b2, b3, b23)
MB(b1, b23, b123)
MB(b3, b4, b34)

ϕ1 : R [A] ≈ R [A]→ R [B]
.
= R [B]

ϕ2 : R [B] ≈ R [B]→ R [B]
.
= R [B]

Interacting MDs; enforcing them on D0 results in two alternative
chase sequences, and two resolved instances, D1 and D′2

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ1

D1 A B
t1 a1 b12
t2 a2 b12
t3 a3 b3

D0 A B
t1 a1 b1
t2 a2 b2
t3 a3 b3

⇒ϕ2

D′
1 A B

t1 a1 b1
t2 a2 b23
t3 a3 b23

⇒ϕ1

D′
2 A B

t1 a1 b123
t2 a2 b123
t3 a3 b23

The chase sequences and clean instances can be specified with a generic ASP:

34

1. R′(t1, a1, b1). R′(t2, a2, b2). R′(t3, a3, b3). (plus MB facts)

2. Matchϕ1(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ1(T1, X1, Y1, T2, X2, Y2) ←

R′(T1, X1, Y1), R′(T2, X2, Y2), X1 ≈ X2, Y1 6= Y2.

Matchϕ2(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ2(T1, X1, Y1, T2, X2, Y2) ←
R′(T1, X1, Y1), R′(T2, X2, Y2), Y1 ≈ Y2, Y1 6= Y2.

Matchϕi(T1, X1, Y1, T2, X2, Y2) ←
Matchϕi(T2, X2, Y2, T1, X1, Y1). (i ∈ {1, 2})

OldVersionR(T1, Z̄1) ← R′(T1, Z̄1), R′(T1, Z̄
′
1),

Z̄1 � Z̄′1, Z̄1 6= Z̄′1.

← NotMatchϕi(T1, X1, Y1, T2, X2, Y2),

not OldVersionR(T1, X1, Y1),

not OldVersionR(T2, X2, Y2). (i ∈ {1, 2})

3. R′(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

R′(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y
′
1 , T3, X3, Y3) ←

Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y
′
1 , T3, X3, Y3),

Y1 � Y ′1 , Y1 6= Y ′1 . (i, j ∈ {1, 2})

5. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y1, T3, X3, Y3), MB(Y1, Y3, Y4),

Y1 6= Y4. (i, j ∈ {1, 2})

6. Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ←
Matchϕi(T1, Z̄1, T2, Z̄2). (i ∈ {1, 2})

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) 6= (T1, Z̄
′
1, T3, Z̄3).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

7. Rc(T1, X1, Y1) ← R′(T1, X1, Y1),

not OldVersionR(T1, X1, Y1).

The program constraint under 2. (last in the list) ensures
that all new, applicable matchings have to be eventually car-
ried out. The last set of rules (one for each database predi-
cate) collect the final, clean extensions of them.

Program Π(D0,Σ) has two stable models, whose Rc-
atoms are shown below:
M1 = {..., Rc(t1, a1, b12), Rc(t2, a2, b12), Rc(t3, a3, b3)},
M2 = {..., Rc(t1, a1, b123), Rc(t2, a2, b123), Rc(t3, a3, b23)}.
From them we can read off the two clean instances D1, D′

2
for D0 that were obtained from the chase. �

The cleaning program Π(D0,Σ) allows us to reason in
the presence of uncertainty as represented by the possi-
bly multiple clean instances. Actually, it holds that there
is a one-to-one correspondence between C(D0,Σ) and the
set SM (Π(D0,Σ)) of stable models of Π(D0,Σ). Fur-
thermore, the program Π(D0,Σ) without its program con-
straints belongs to the class Datalog∨,not,s, the subclass of
programs in Datalog∨,not that have stratified negation [Eiter
and Gottlob 1995]. As a consequence, its stable models
can be computed bottom-up by propagating data upwards
from the underlying extensional database (that corresponds
to the set of facts of the program), and making sure to mini-
mize the selection of true atoms from the disjunctive heads.
Since the latter introduces a form of non-determinism, a pro-
gram may have several stable models. If the program is non-
disjunctive, i.e. belongs to the Datalognot,s, it has a single
stable model that can be computed in polynomial time in the
size of the extensional database D. The program constraints
in Π(D0,Σ) make it unstratified [Gelfond and Kahl 2014].
However, this is not a crucial problem because they act as a
filter, eliminating the models that make them true from the
class of models computed with the bottom-up approach.

3 Relational MDs
We now introduce a class of MDs that have found useful ap-
plications in blocking for learning a classifier for ER [Bah-
mani, Bertossi, and Vasiloglou 2015]. They allow bringing
additional relational knowledge into the conditions of the
MDs. Before doing so, notice that an explicit formulation of
the MD in (1) in classical predicate logic is:2

ϕ : ∀t1t2 ∀x̄1x̄2 (R1(t1, x̄1) ∧R2(t2, x̄2) ∧
∧

j

xj
1 ≈j xj

2 −→ y1
.
= y2), (2)

with xj
1, y1 ∈ x̄1, x

j
2, y2 ∈ x̄2. The ti are variables for tuple

IDs. LHS (ϕ) and RHS (ϕ) denote the sets of atoms on
the LHS and RHS of ϕ, respectively. Atoms R1(t1, x̄1) and
R2(t2, x̄2) contain all the variables in the MD; and similarity
and identity atoms involve one variable from each of R1, R2.

Now, relational MDs may have in their LHSs, in addi-
tion to the two leading atoms, as R1, R2 in (2), additional
database atoms, from more than one relation, that are used to
give context to similarity atoms in the MD, and capture ad-
ditional relational knowledge via additional conditions. Re-
lational MDs extend “classical” MDs.
Example 3. With predicates Author(AID ,Name, PTitle,
ABlock), Paper(PID ,PTitle,Venue,PBlock) (with ID and
block attributes), this MD, ϕ, is relational:
Author(t1, x1, y1, bl1) ∧ Paper(t3, y

′
1, z1, bl4) ∧ y1 ≈ y′1 ∧

Author(t2, x2, y2, bl2) ∧ Paper(t4, y
′
2, z2, bl4) ∧ y2 ≈ y′2 ∧

x1 ≈ x2 ∧ y1 ≈ y2 −→ bl1
.
= bl2,

with implicit quantifiers, and underlined leading atoms (they
contain the identified variables on the RHS). It contains sim-
ilarity comparisons involving attribute values for both rela-
tions Author and Paper. It specifies that when the Author-
tuple similarities on the LHS hold, and their papers are sim-
ilar to those in corresponding Paper-tuples that are in the

2Similarity symbols can be treated as regular, built-in, binary
predicates, but the identity symbol, .

=, would be non-classical.

4

1. R′(t1, a1, b1). R′(t2, a2, b2). R′(t3, a3, b3). (plus MB facts)

2. Matchϕ1(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ1(T1, X1, Y1, T2, X2, Y2) ←

R′(T1, X1, Y1), R′(T2, X2, Y2), X1 ≈ X2, Y1 6= Y2.

Matchϕ2(T1, X1, Y1, T2, X2, Y2) ∨
NotMatchϕ2(T1, X1, Y1, T2, X2, Y2) ←
R′(T1, X1, Y1), R′(T2, X2, Y2), Y1 ≈ Y2, Y1 6= Y2.

Matchϕi(T1, X1, Y1, T2, X2, Y2) ←
Matchϕi(T2, X2, Y2, T1, X1, Y1). (i ∈ {1, 2})

OldVersionR(T1, Z̄1) ← R′(T1, Z̄1), R′(T1, Z̄
′
1),

Z̄1 � Z̄′1, Z̄1 6= Z̄′1.

← NotMatchϕi(T1, X1, Y1, T2, X2, Y2),

not OldVersionR(T1, X1, Y1),

not OldVersionR(T2, X2, Y2). (i ∈ {1, 2})

3. R′(T1, X1, Y3) ← Matchϕ1(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

R′(T1, X1, Y3) ← Matchϕ2(T1, X1, Y1, T2, X2, Y2),

MB(Y1, Y2, Y3).

4. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y
′
1 , T3, X3, Y3) ←

Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y
′
1 , T3, X3, Y3),

Y1 � Y ′1 , Y1 6= Y ′1 . (i, j ∈ {1, 2})

5. Prec(T1, X1, Y1, T2, X2, Y2, T1, X1, Y1, T3, X3, Y3) ←
Matchϕi(T1, X1, Y1, T2, X2, Y2),

Matchϕj(T1, X1, Y1, T3, X3, Y3), MB(Y1, Y3, Y4),

Y1 6= Y4. (i, j ∈ {1, 2})

6. Prec(T1, Z̄1, T2, Z̄2, T1, Z̄1, T2, Z̄2) ←
Matchϕi(T1, Z̄1, T2, Z̄2). (i ∈ {1, 2})

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄1, T2, Z̄2),

(T1, Z̄1, T2, Z̄2) 6= (T1, Z̄
′
1, T3, Z̄3).

← Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′
1, T3, Z̄3),

Prec(T1, Z̄
′
1, T3, Z̄3, T1, Z̄

′′
1 , T4, Z̄4),

not Prec(T1, Z̄1, T2, Z̄2, T1, Z̄
′′
1 , T4, Z̄4).

7. Rc(T1, X1, Y1) ← R′(T1, X1, Y1),

not OldVersionR(T1, X1, Y1).

The program constraint under 2. (last in the list) ensures
that all new, applicable matchings have to be eventually car-
ried out. The last set of rules (one for each database predi-
cate) collect the final, clean extensions of them.

Program Π(D0,Σ) has two stable models, whose Rc-
atoms are shown below:
M1 = {..., Rc(t1, a1, b12), Rc(t2, a2, b12), Rc(t3, a3, b3)},
M2 = {..., Rc(t1, a1, b123), Rc(t2, a2, b123), Rc(t3, a3, b23)}.
From them we can read off the two clean instances D1, D′

2
for D0 that were obtained from the chase. �

The cleaning program Π(D0,Σ) allows us to reason in
the presence of uncertainty as represented by the possi-
bly multiple clean instances. Actually, it holds that there
is a one-to-one correspondence between C(D0,Σ) and the
set SM (Π(D0,Σ)) of stable models of Π(D0,Σ). Fur-
thermore, the program Π(D0,Σ) without its program con-
straints belongs to the class Datalog∨,not,s, the subclass of
programs in Datalog∨,not that have stratified negation [Eiter
and Gottlob 1995]. As a consequence, its stable models
can be computed bottom-up by propagating data upwards
from the underlying extensional database (that corresponds
to the set of facts of the program), and making sure to mini-
mize the selection of true atoms from the disjunctive heads.
Since the latter introduces a form of non-determinism, a pro-
gram may have several stable models. If the program is non-
disjunctive, i.e. belongs to the Datalognot,s, it has a single
stable model that can be computed in polynomial time in the
size of the extensional database D. The program constraints
in Π(D0,Σ) make it unstratified [Gelfond and Kahl 2014].
However, this is not a crucial problem because they act as a
filter, eliminating the models that make them true from the
class of models computed with the bottom-up approach.

3 Relational MDs
We now introduce a class of MDs that have found useful ap-
plications in blocking for learning a classifier for ER [Bah-
mani, Bertossi, and Vasiloglou 2015]. They allow bringing
additional relational knowledge into the conditions of the
MDs. Before doing so, notice that an explicit formulation of
the MD in (1) in classical predicate logic is:2

ϕ : ∀t1t2 ∀x̄1x̄2 (R1(t1, x̄1) ∧R2(t2, x̄2) ∧
∧

j

xj
1 ≈j xj

2 −→ y1
.
= y2), (2)

with xj
1, y1 ∈ x̄1, x

j
2, y2 ∈ x̄2. The ti are variables for tuple

IDs. LHS (ϕ) and RHS (ϕ) denote the sets of atoms on
the LHS and RHS of ϕ, respectively. Atoms R1(t1, x̄1) and
R2(t2, x̄2) contain all the variables in the MD; and similarity
and identity atoms involve one variable from each of R1, R2.

Now, relational MDs may have in their LHSs, in addi-
tion to the two leading atoms, as R1, R2 in (2), additional
database atoms, from more than one relation, that are used to
give context to similarity atoms in the MD, and capture ad-
ditional relational knowledge via additional conditions. Re-
lational MDs extend “classical” MDs.
Example 3. With predicates Author(AID ,Name, PTitle,
ABlock), Paper(PID ,PTitle,Venue,PBlock) (with ID and
block attributes), this MD, ϕ, is relational:
Author(t1, x1, y1, bl1) ∧ Paper(t3, y

′
1, z1, bl4) ∧ y1 ≈ y′1 ∧

Author(t2, x2, y2, bl2) ∧ Paper(t4, y
′
2, z2, bl4) ∧ y2 ≈ y′2 ∧

x1 ≈ x2 ∧ y1 ≈ y2 −→ bl1
.
= bl2,

with implicit quantifiers, and underlined leading atoms (they
contain the identified variables on the RHS). It contains sim-
ilarity comparisons involving attribute values for both rela-
tions Author and Paper. It specifies that when the Author-
tuple similarities on the LHS hold, and their papers are sim-
ilar to those in corresponding Paper-tuples that are in the

2Similarity symbols can be treated as regular, built-in, binary
predicates, but the identity symbol, .

=, would be non-classical.

4

Non-stratified negation in 6., which capture admissible chase sequences

35

• ASP has two stable models, from them we can read off the two
clean instances D1, D′2

With the following sets of atoms for the corresponding resolved
instances:

M1 = {..., Rc(t1, a1, b12), R
c(t2, a2, b12), R

c(t3, a3, b3)}

M2 = {..., Rc(t1, a1, b123), R
c(t2, a2, b123), R

c(t3, a3, b23)}
• Resolved (clean) query answers can be obtained by querying the

ASP under the certain (skeptical) semantics (returns what is true
in all models)

Maybe not necessary to compute and materialize all clean instances

36

An Application: Blocking for Duplicate Detection

• A classification problem: r1 = 〈a1, . . . , an〉 vs. r2 = 〈a′
1, . . . , a

′
n〉

< r1, r2>

1

< r3, r4>

0

(r1 r2 are similar)

(r3 r4 not similar)

In principle, every two records
have to be compared, and
classified

This can be costly ...

• Reduce large number of two-record comparisons using blocking
techniques

Only records within the same block values are compared

Any two records in different blocks will never be duplicates

• Better: Apply blocking with additional semantics or domain
knowledge

37

Example: “author” and “paper” records

 !"#$%& '()*%&

 +,,-(. /,0,/,(12 ! +,,-). /,0,/,)32

 "
 #

 $
 %

 &

!%

!'

 &
 (!"

!$!%)!$!%)

Group author records based on
similarities of authors’ names
and affiliations

Author records a1, a2 may have
similar names, but not similar affiliations

a1, a2 are authors of papers p1,p2, resp., but p1,p2

have been put in the same block of papers

Semantic knowledge: “If two papers are in the same block, their
authors with similar names should be in the same block”

So, assign a1, a2 to the same block

Collective blocking! of author and paper entities, separately, but based
on relational closeness (not only local, attribute-level similarities)

38

Relational MDs

How can we capture this kind of additional semantic knowledge?

• An extended, relational kind of MD: [IJAR’17]

Author(x1, y1, bl1) ∧ Paper(y1, z1, bl3) ∧ Author(x2, y2, bl2) ∧
Paper(y2, z2, bl3) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 −→ bl1

.
= bl2

• MDs originally for merging, but now these are blocking MDs!

• Similarities (LHS) and mergings (RHS) use domain-dependent
relations and matching functions (MFs), resp.

Example: Author and Paper entities (“R. Smith” ≈ “MR. Smyth”)

Author Name Affiliation PaperID Bl#

12 R. Smith MBA, UCLA 1 12
13 MR. Smyth MBA 2 13
14 J. Doe MBA, UCLA 3 14

Paper Title Y ear AuthorID Bl#

1 Illness in Africa 1990 12 2
2 Illness in West Africa 90 13 2

39

- Records have unique, global ids (positive integers)

- Initial block number Bl# for a record is its id

- Two records are forced to go into same block by enforcing
equality of their block numbers

Use MDs with a MF: mBl#(bi, bj) := bi if bj ≤ bi

“Group two author entities into same block if they have similar names and

affiliations or they have similar names and their corresponding papers are in same block”

m1 : Author(a1, x1, y1, p1, b1) ∧Author(a2, x2, y2, p2, b2) ∧
x1 ≈ x2 ∧ y1 ≈ y2 → b1

.
= b2

m2 : Author(a1, x1, y1, p1, b1) ∧Author(a2, x2, y2, p2, b2) ∧ x1 ≈ x2 ∧
Paper(p1, x

′
1, y

′
1, a1, b3) ∧ Paper(p2, x

′
2, y

′
2, a2, b3) → b1

.
= b2

Enforcing results in DB with two author-blocks: {12, 13}, {14}

40

Enforcing Blocking MDs and Beyond

• In our application we wanted -among other tasks- to enforce
blocking MDs on relational DBs with (stratified) Datalog

Implemented as LogiQL by LogicBlox http://www.logicblox.com/

Stratified Datalog programs can be computed in PTIME in data

• General ASP, as provably needed for general MDs, not supported
by LogiQL

PTIME vs. NP-complete

• Could we do with less than ASP for blocking MDs?

In more general terms:

41

• We confronted the problem of identifying combinations of syntactic
classes of relational MDs with instances, and similarities for which:

- Recognition can be done efficiently

- A unique resolved instance exists

- Computable in PTIME in the size of the instance

- Computable with a Datalog program

- Specialized “uniformly and syntactically” from the general ASP

• We identified some classes

• Blocking sets of relational MDs have those properties

A single “blocking solution” can be obtained applying stratified
Datalog

42

Example: (continued) This time with similarities: a1 ≈ a2, b3 ≈ b4

• The combination falls under the “Single Resolved Instance”
combination class

• The ASP can be automatically and syntactically rewritten

Now Datalog:

Only stratified negation, in 7.

43

Conclusions

• Datalog, a rule-based extension of relational algebra/calculus/databases,
enables declarative and executable specifications in DBs

Around since the early 80s, for long time used mostly in DB research,
it has experienced a revival in the last few years!

• Our ERBlox system for ER was developed in collaboration with
LogicBlox

It combines MDs (for blocking and merging), LogiQL, and SVMs
(for the classifier)

All on top of LogiQL, the Datalog version of the LogicBlox platform

• High-level goal is extend LogiQL with ML and optimization methods

44

Base Tables

P ...

Q ...intentional

DB

extensional

DB

Deductive

DB

virtually

extended

DB

Datalog rules

(relational)

Datalog DB

LogicBlox DBMS

optimization machine learning

45

C.1. Contexts in Data Quality

46

Our Initial Motivation: Contexts

Example: Doctor requires temperatures taken with oral thermometer,
expecting data to correspond to this requirement

Here quality refers to the
origin and use of data rather that
about satisfaction of ICs

Table has no elements for this assessment

An external context can provide them

47

• Given a data source, we may want to:

• Analyze, understand, make sense of the data, etc.

• Assess the data quality

• All this is a formal setting in which the data is embedded

• Contexts were introduced for data quality assessment and
quality-data extraction [VLDB’10 BIRTE WS]

Specified as a separate relational database or a (virtual) data
integration system

• D can be mapped into the context

• Quality criteria imposed at contextual level

Depending on the mapping and context’s ingredients

48

Contexts: A Vision

C

T
mappings

(logical formulas putting T in context C)

• A logical theory T is the one
that has to be “put in context”

A relational database D can be
seen as a logical theory T , e.g.
Reiter’slogical reconstruction of
a relational DB

• The context is another logical theory, C
An ontology, a virtual data integration system (also expressible in
FOL), etc.

• Connection between T and C is established through “bridge”
predicates and mappings

49

A Simple Model of Context

C

CS

external sources

Ri

Rj

D

i

P

E

quality predicates

i
PRi

Ri
’

Rj
’

D’

S

under assessment

?

• Instance D is under assessment

• On RHS, also schema S (or copy
S ′)
• Context C as virtual

(semi)materialized integration
system

• The αi are the mappings, like in VDISs or data exchange

• The Ci are contextual predicates/relations

• Mappings to quality predicates/relations Pi and possibly external
sources Ei

• D′ contains “ideal” contents for relations in D, as views

50

C

CS

external sources

Ri

Rj

D

i

P

E

quality predicates

i
PRi

Ri
’

Rj
’

D’

S

under assessment

?

• Predicates in D′ can be materialized
through data in the Ri and additional
massage via C
(mapping composition at work)

• Quality assessment of D can be done by comparing its contents with
D′ (there are some measures)

C

S

D

DP1
S

?

schema
context

mapping

under assessment
DP2

DP3

class D of intended instances

instance

‘

‘

‘
• More generally, through the

context, alternative, admissible,
clean versions of D can be
specified, computed, compared
(with each other and D), queried, etc.

A class D of admissible contextual instances D′ for schema S

51

• Quality-aware (QA) query answering about (or from) S can be done
on top of D′

• Techniques for query answering in virtual integration can be applied,
specially if D′ or (D) are not materialized

Quality assessment becomes particular case of QA

Different cases emerge ... Among them:

http://arxiv.org/abs/1608.04142

52

(A)

C

T

D as a footprint of a (broader) contextual instance

D

Data in C (including D) is
analyzed or cleaned

According to additional data Dc available
in or accessible from C; and quality
criteria defined in C

C

T

D as a footprint of a (broader) contextual instance

D

D’

A new version D′ of D is obtained

Can be compared with D for quality assessment

53

Example: (the simple case) A contextual instance Measurements

Measurements (contextual)
Patient Value Time Date Instr

1 T. Waits 37.8 11:00 Sep/5 Oral Therm.
2 T. Waits 38.5 11:45 Sep/5 Tympanal Therm.
3 T. Waits 38.2 12:10 Sep/5 Oral Therm.

.
4 T. Waits 110/70 11:00 Sep/6 BPM
5 T. Waits 38.1 11:50 Sep/6 Oral Therm.
6 T. Waits 38.0 12:15 Sep/6 Oral Therm.

.
7 T. Waits 37.6 10:50 Sep/7 Tympanal Therm.
8 T. Waits 120/70 11:30 Sep/7 BPM
9 T. Waits 37.9 12:15 Sep/7 Oral Therm.

Initial table TempNoon
(the R in D on page 47)
is a view (footprint) of
Measurements with
mapping α

TempNoon(p, v, t, d)←− Measurements(p, v, t, d, i)

Here, D = {D′}, a single admissible contextual instance

Impose quality requirements: (the R′ and αP above)

TempNoon ′(p, v, t, d)←− Measurements(p, v, t, d, i),
11:30 ≤ t ≤ 12:30, i = oral therm

54

Here, R′(D′) ⊆ R(D), and set-difference R(D) rR′(D′) indicates
how initial R(D) departs from quality instance R′(D′)

TempNoon ′(D′) $ TempNoon(D)

(in other cases, maybe ∆(R(D), R′(D′)))

Quality query answering? (conjunctive queries)

Q ∈ L(S) 7→7→7→ Q′ ∈ L(S ′)
↙ (R 7→R′) ↘

R(D) R′(D′)︸ ︷︷ ︸
Or ↓

Instead of RHS in red, view unfolding: Q′ 7→ Q′′ ∈ L(C) → Dc

As expected: Q′′(Dc) ⊆ Q(D) (monotone query and additional
conditions)

55

(B)

C

T

D is mapped into a contextual ontology

D

In principle several versions of D can be obtained at the contextual
level

Depending on the mapping, assumptions about contextual data as
source (completeness?), availability of (partial) data at the context,
etc.

56

Example: Now we have initial instance D, but an incomplete or
missing contextual instance

We map D to the contextual schema, imposing there the quality
requirements (in a language associated to C)

Again: TempNoon(p, v, t, d)←− Measurements(p, v, t, d, i)

Data are in TempNoon(D), no (or some) data for Measurements

Instrument i might be obtained from additional contextual data

As in LAV: Possible several admissible instances for (global, mediated)
Measurements , then the same for D′ in D
With quality requirements:

TempNoon ′(p, v, t, d)←− Measurements(p, v, t, d, i),11:30 ≤ t ≤ 12:30, i = oral therm

57

• Possible several instances for schema S ′, the D′ ∈ D, with D′ ⊆ D

• Quality of D? Measured as distance to the class D of quality
versions

A possible quality measure: q(D) := |D| − max{|D′| : D′∈D}
|D|

Computation, approximation?

• Quality criteria imposed at the contextual level

• This framework opens the ground for “quality query answering”

Certain answers on D (e.g. query rewriting via rule inversion)

• Quality data extraction via quality query answering

In particular, clean version of table R? Pose query Q(x̄) : R′(x̄)?

58

• Given a query Q posed to original, dirty D

• Quality answers from D to Q
are certain wrt. class D

CD

D
P1

DP2

DP3

‘

‘

‘

Q

X

get certain answers

D

• Issues:

• Data quality assessment via quality query answering

• Data cleaning vs. quality query answering

• Computation of quality answers

• Extends repairs and CQA: ICs go into the context

Different kinds of quality constraints could go there

59

C.2. Ontological Multidimensional

Contexts and Data Quality

60

Multidimensional Contexts

Example: (revisited) Doctor requires temperatures taken with oral
thermometer, expecting data to correspond to this requirement

• Data dimensions were not introduced above

They are crucial in many data analysis and
management problems

We may be missing “dimensions” above, something intrinsically
“contextual”

• The context could be a (multi-)dimensional database, or a
dimensional ontology

The Ontological Multidimensional Data Model (OMD model)
provides formal contexts for the above tasks, with explicit
dimensions

61

A MD data model/instance

A hospital guideline

As a rule or a constraint

“Take patients’ temperatures in standard care units with
oral thermometers”

Can be taken advantage of through/after upward navigation in the
hierarchical, dimensional hospital structure

62

• A MD context would enable contextual, dimensional navigation,
roll-up & drill-down

To access and generate missing data at certain levels (as in example
above)

• Idea: Embed Hurtado-Mendelzon (HM) MD data model in contexts

• Go beyond: Enrich it with additional, dimension-related data, rules
and constraints

An ontological, multidimensional context!

63

Ontological Contexts with Dimensions

New ingredients in MD contexts: (RuleML’15, JDQ)

• A (relational reconstruction of) the HM model

• Categorical relations: Generalize fact tables

Not necessarily numerical values, linked to different levels of
dimensions, possibly incomplete

• Dimensional rules: generate data where missing, enable
navigation

• Dimensional constraints: on (combinations of) categorical
relations, involving values from dimension categories

64

Example:

• Categories Ward and Unit in
Hospital dimension

• UnitWard(unit,ward): parent/child
relation

• PatientWard: categorical relation

Ward and Day categorical attributes
take values from categories

• Categorical relations are subject to dimensional constraints

• Need rules for dimensional navigation

What language to express all this? Datalog± (Gottlob et al., ∞)

65

Datalog± MD Ontologies

Dimensional Constraints:

• A referential constraint restricting units in PatientUnit to
elements in the Unit category, as a negative constraint

⊥ ← PatientUnit(u, d ; p),¬Unit(u)

• “All thermometers used in a unit are of the same type” :

t = t′ ← Thermometer(w , t ;n),Thermometer(w ′, t ′;n ′),

UnitWard(u,w),UnitWard(u,w ′) An EGD

Thermometer(ward , thermometertype;nurse) is categorical relation,
t, t′ for categorical attributes

66

• “No patient in intensive care unit on August /2005”:

⊥ ← PatientWard(w , d ; p),UnitWard(Intensive, w),

MonthDay(August/2005, d) An NC
Dimensional Rules:

• Data in PatientWard generate data about patients for higher-
level categorical relation PatientUnit

PatientUnit(u, d ; p) ← PatientWard(w , d ; p), UnitWard(u,w)

To navigate from PatientWard.Ward up to PatientUnit.Unit via
UnitWard A TGD

Once at the level of Unit, take advantage of guideline (a rule):

“Temperatures of patients in a standard care unit are taken with oral
thermometers”

Data at Unit level that can be used there and at Ward level

67

• Data in categorical relation WorkingSchedules generate data in
categorical relation Shifts

WorkingSchedules

Unit Day Nurse Type

Intensive Sep/5 Cathy cert.

Standard Sep/5 Helen cert.

Standard Sep/6 Helen cert.

Standard Sep/9 Mark non-c.

↘

Shifts

Ward Day Nurse Shift

W4 Sep/5 Cathy night

W1 Sep/6 Helen morning

W4 Sep/5 Susan evening

∃z Shifts(w , d ;n, z) ← WorkingSchedules(u, d ;n, t),UnitWard(u,w)

Captures guideline: “If a nurse works in a unit on a specific day, she
has shifts in every ward of that unit on the same day”

Existential variable z for missing values for the non-categorical shift
attribute

Rule for downward- navigation and value invention, with join via
categorical attribute between categorical and parent-child predicate

68

Properties of MD Ontologies

• With reasonable and natural conditions, Datalog± MD ontologies
become weakly-sticky Datalog± programs [Cali et al., AIJ’12]

Important that join variables in TGDs are for categorical attributes
(with values among finitely many category members)

• The chase (that enforces TGDs) may not terminate

Weak-Stickiness guarantees tractability of conjunctive QA: only a
“small”, initial portion of the chase has to be queried

Boolean conjunctive QA is tractable for weakly-sticky (WS) Datalog±

ontologies

69

• Separability condition on the (good) interaction between TGDs and
EGDs becomes application dependent

If EGDs have categorical head variables (as in page 66), separability
holds

Separability guarantees decidability of conjunctive QA, etc.

Next goals were: [RR’16]

(a) Develop a practical QA algorithm for WS Datalog±

(b) Optimization of ontologies (as programs)

70

Query Answering on WS MD-Ontologies

• There was a non-deterministic PTIME algorithm for WS Datalog±

(Cali et al., AIJ’12)

• Our goal was to develop a practical chase-based QA algorithm

• Apply magic-sets techniques to optimize QA

There is such a technique (MS) available for (a class of) “existential
programs” (∃-Datalog) (Alviano et al., Datalog 2.0’12)

• WS Datalog± is not closed under MS

• We extended WS Datalog± to a still tractable class of
Joint-Weakly-Sticky programs, which is closed under magic sets

We proposed a QA algorithm

71

MD Contexts and Quality QA

The Datalog± MD ontology M becomes part of the context for data
quality assessment [RuleML’15, forth. ACM JDQ]

Original instance D to be
assessed/cleaned through the
context

By mapping D into the contextual
schema/instance C

• Contextual predicates Ci

• Predicates Pi specifying single quality requirements

• Sq copy of schema S: Sq
i clean version of original Si, specified

using C,P and M

72

We want quality answers to the query about Tom’s temperatures:

Q(t, p, v) ← Measurements(t , p, v), p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

This query does not capture quality requirements:

“Body temperatures of Tom Waits for September 5 around noon taken
by a certified nurse with a thermometer of brand B1”

Table Measurements does not contain information about nurses or
thermometers

Contextual data must be taken into account, such as categorical
relation PatientUnit and the guideline

“Temperature measurement for patients in a standard care unit are
taken with thermometers of brand B1”

73

According to the general contextual approach DQA, table (or better
predicate) Measurement has to be logically connected to the context

As a “footprint” of a “broader” contextual, possibly virtual relation,
given or defined in the context

One with information about thermometer brands (b) and nurses’ cer-
tification status (y):

Measurement ′(t, p, v, y, b) ← Measurementc(t, p, v),

TakenByNurse(t, p, n, y),

TakenWithTherm(t, p, b)

Measurement c is contextual version of Measurement (e.g. the latter
mapped into the context)

Quality measurements data obtained as quality answers as in usual
OBDA: (no need for computation of clean instances)

74

Measurementq(t, p, v) ← Measurement ′(t, p, v, y, b), y = Certified, b = B1

Auxiliary, quality predicates above defined in terms of ontology:

TakenByNurse(t, p, n, y) ← WorkingSchedules(u, d;n, y),

DayTime(d, t),PatientUnit(u, d; p)

TakenWithTherm(t, p, b) ← PatientUnit(u, d; p),

DayTime(d, t), b = B1, u = Standard

(DayTime is parent/child relation in Time dimension)

The second definition captures the guideline above

To obtain quality answers to the original query, pose a new query:

Qq(t, p, v) ← Measurements(t , p, v)q , p = Tom Waits,

Sep/5-11:45 ≤ t ≤ Sep/5-12:15.

Answering it triggers dimensional navigation, when requesting data for
categorical relations PatientUnit and WorkingSchedules

75

Final Discussion

• Datalog± is an expressive and computationally nice family of
existential programs (with constraints)

• We have used Datalog± to create multidimensional ontologies

They can be seen as logic-based, relational extensions of MD
DBs

• The OMD data model considerably extends the HM MD data
model

OMD includes general TGDs, EGDs and NCs

A (relational reconstruction of the) HM model, data and queries
are seamlessly integrated into a uniform logico-relational
framework

76

• The usual constraints considered in the HM model are specific
for the dimensional structure of data

Most prominently, to guarantee summarizability (i.e. correct
aggregation, no double-counting)

In the HM model we find constraints enforcing strictness and
homogeneity

Strictness: Every category elements rolls-up to a single element
in a parent category

In OMD can be expressed by EGDs

Homogeneity: Category elements have parent elements in parent
categories

In OMD can be expressed by TGDs

77

• OMD supports general, possibly incomplete categorical relations

Not only complete fact tables linked to bottom categories

• Our MD ontologies belong to well-behaved classes of Datalog±

• We proposed chase-based QA algorithms for (extensions of) WS
Datalog±

• We are working on the implementation of the QA algorithm

• We applied magic-sets techniques

• MD ontologies were motivated by data quality concerns

They are interesting by themselves

QA can be used to extract quality data from dirty data (RuleML’15)

78

• Open problems in our setting:

- Sometimes we have to deal with closed predicates, e.g.
categories

- Inconsistency tolerance

What if constraints are not satisfied?

79

