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CONTENTS:

▷ Explanations and Causality in Databases

▷ The Causal-Effect Score in DBs

▷ The Shapley-Value as Explanation Score in DBs

▷ Score-Based Explanations for Classification

▷ The SHAP-Score (based on Shapley-Value)

▷ The RESP-Score (based on Causal Responsibility)

This is not an exhaustive or broad survey

This tutorial is largely influenced by my own research in these areas
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Explanations in Databases

• In data management (DM), we need to understand why certain
results are obtained or not

And characterize and compute “reasons” therefor

E.g. for query answers, violation of semantic conditions, ...

• A DB system should provide explanations

In our case, causality-based explanations (Halpern and Pearl, 2001)

• There are other (related) approaches, e.g. lineage, provenance

• We have tried to understand causality in DM from different perspectives

Taking advantage of the connections
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Causality in DBs
Example: DB D as below

Boolean conjunctive query (BCQ):

Q : ∃x∃y(S(x) ∧ R(x, y) ∧ S(y))

R A B

a b
c d
b b

S A

a
c
b

D |= Q Causes?
(Meliou, Gatterbauer, Moore, Suciu; 2010)

• Tuple τ ∈ D is counterfactual cause for Q if D |= Q and D ∖ {τ} ̸|= Q

S(b) is counterfactual cause for Q: if S(b) is removed from D, Q is not
true anymore

• Tuple τ ∈ D is actual cause for Q if there is a contingency set Γ ⊆ D, such
that τ is a counterfactual cause for Q in D ∖ Γ

R(a, b) is an actual cause for Q with contingency set {R(b, b)}: if R(a, b)
is removed from D, Q is still true, but further removing R(b, b) makes
Q false

4



• How strong are these as causes? (Chockler and Halpern, 2004)

• The responsibility of an actual cause τ for Q:

ρ
D
(τ) := 1

|Γ| + 1 |Γ| = size of smallest contingency set for τ

(0 otherwise)
Responsibility of R(a, b) is 1

2 = 1
1+1 (its several smallest contingency

sets have all size 1)
R(b, b) and S(a) are also actual causes with responsibility 1

2

S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0

• High responsibility tuples provide more interesting explanations

• Responsibilities can be seen as “scores” assigned to tuples

• Causality can be extended to attribute-value level (Bertossi, Salimi; TOCS 2017)

• Causality under ICs (Bertossi, Salimi; IJAR, 2017)
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Causality Connections

• There are mutual reductions with repairs of DBs wrt. ICs

• The same with consistency-based diagnosis and abductive diagnosis

• This led to new complexity and algorithmic results for causality and responsibility
(Bertossi, Salimi; TOCS, IJAR, 2017)

• Causality can be seen as a way to provide diagnosis

So, as with model-based diagnosis above

• Pearl’s causality: Perform counterfactual interventions on a structural,
logico/probabilistic model

What would happen if we change ...?

Identify causes through changes after intervention in the model
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• In the case of DBs the underlying logical model is query lineage

• Counterfactual approaches are much newer in “explainable AI”

Use to provide explanations, possibly in the absence of a model

Scores can be derived from counterfactuals

• Explanation scores have become popular in ML

Usually with a counterfactual component or flavor

• Responsibility can be seen as one of them ...

• Not the only one; not even in DBs ...
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The Causal-Effect Score

Example: Boolean Datalog query Π becomes true on E if there is a path between
a and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)
P (x, y) ← E(x, y)
P (x, y) ← P (x, z), E(z, y)

E ∪ Π |= yes

All tuples are actual causes: every tuple appears in a path from a to b

All the tuples have the same causal responsibility: 1
3

Maybe counterintuitive: t1 provides a direct path from a to b
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• Alternative notion to responsibility: causal-effect (Salimi et al., TaPP’16)

• Retake question: How answer to Q changes if τ deleted from D?

An intervention on a structural causal model

In this case provided by the the lineage of the query
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Example: Database D
R A B

a b
a c
c b

S B
b
c

BCQ Q : ∃x∃y(R(x, y) ∧ S(y)) True in D

Query lineage instantiated on D given by propositional formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b)) (∗)

Xτ : propositional variable that is true iff τ ∈ D

ΦQ(D) takes value 1 in D

• Want to quantify contribution of a tuple to a query answer, say, S(b)

Assign probabilities, uniformly and independently, to the tuples in D
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernoulli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?

• Interventions of the form do(X = x), x ∈ {0, 1}

In the lineage (∗) make X take value x: P (Q = y | do(Xτ = x))? y ∈ {0, 1}

E.g. with do(XS(b) = 0): ΦQ(D) XS(b)
0 := (XR(a,c) ∧ XS(c))

• The causal-effect of τ : CED,Q(τ) := E(Q | do(Xτ = 1)) − E(Q | do(Xτ = 0))
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Example: (cont.)

From ΦQ(D) XS(b)
0 := (XR(a,c) ∧ XS(c)):

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1) × P (XS(c) = 1) = 1
4

From ΦQ(D) XS(b)
1 := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b):

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1)
= · · · = 13

16

Then: E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) = 1
4

E(Q | do(XS(b) = 1)) = P (Q = 1 | do(XS(b) = 1)) = 13
16

Causal effect for S(b):

CED,Q(S(b)) = 13
16 − 1

4 = 9
16 > 0
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Example: (cont.) The Datalog query (here as a union of BCQs) has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6)

CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5)
= CED,Q(t6) = 0.09375

The causal-effects are different for different tuples!

More intuitive result than responsibility

• Rather ad hoc or arbitrary? (we’ll be back ...)
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Scores and Coalition Games

• Contribution of a DB tuple to a query answer?

• Several tuples together are necessary to violate an IC or produce a query result

Like players in a coalition game, some may contribute more than others

• The Shapley-value is firmly established and widely used in Game Theory

• Shapley value is the only function that satisfies certain natural conditions

• Apply Shapley-value to QA in DBs (Livshits et al.; ICDT’20)

The Shapley-value of a tuple will be a score for its contribution
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D, G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p}) − G(S))

(|S|!(|D| − |S| − 1)! is number of permutations of D with all players in S
coming first, then p, and then all the others)

Expected contribution of player p under
all possible additions of p to a partial
random sequence of players followed
by a random sequence of the rest of
the players

Shapley Value

Livshits et al. ICDT 2020 8

⊆∖{}

72
21 25

+4

The Shapley value is the expected delta 
due to the addition in a random permutation
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• Shapley difficult to compute; provably #P-hard in general

• Counterfactual flavor: What happens having p vs. not having p?
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Shapley as Score for QA

• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S ̸|= Q

• Concentrated on BCQs (and some aggregation on CQs)

Shapley(D, Q, τ) :=
∑

S⊆D\{τ}
|S|!(|D|−|S|−1)!

|D|! (Q(S ∪ {τ}) − Q(S))

Quantifies the contribution of tuple τ to query result (Livshits et al.; ICDT’20)
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D, Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete

• Q is hierarchical if for every two existential variables x and y:

• Atoms(x) ⊆ Atoms(y), or

• Atoms(y) ⊆ Atoms(x), or

• Atoms(x) ∩ Atoms(y) = ∅

Example: Q : ∃x∃y∃z(R(x, y) ∧ S(x, z))

Atoms(x) = {R(x, y), S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) = {S(x, z)}Hierarchical!
Example: Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y))

Atoms(x) = {R(x), S(x, y)}, Atoms(y) = {S(x, y), T (y)} Not hierarchical!
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• Same criteria as for QA over probabilistic DBs (Dalvi & Suciu; 2004)

• Positive case: A dynamic programming approach works

• Negative case: requires a fresh approach (not from probabilistic DBs)

Use query Qnh above

Reduction from counting independent sets in a bipartite graph

• What to do in hard cases?

For every fixed BCQ Q, there is a multiplicative fully-polynomial randomized
approximation scheme (FPRAS)
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• Also investigated related score: the Bahnzhaf Power Index (order ignored)

Banzhaf (D, Q, τ) := 1
2|D|−1 ·

∑
S⊆(D\{τ})(Q(S ∪ {τ}) − Q(S))

Bahnzhaf also difficult to compute; provably #P-hard in general

• We proved Causal-Effect coincides with the Banzhaf Index (op. cit.)
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Score-Based Explanations for Classification

eL(e)

B

e = ⟨x1, . . . , xn⟩ entity requesting a
loan

• Black-box binary classification model returns label L(e) = 1, i.e. rejected

Why???!!!

• Similarly if we had a model, e.g. a decision
tree or a logistic regression model

X1

X2

Xn

.

.

.

L

O

• Which feature values xi contribute the most?

Assign numerical scores to feature values in e

Capturing the relevance of the feature value for the outcome

• In general they are (but not always) based on counterfactual interventions
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• Some scores can be applied both with black-box and open models

E.g. Shapley ; SHAP has become popular (Lee& Lundberg; 2017, 2020)

• Players are features in F

• Game function determined by e: Ge(S) := E(L(e′) | e′
S = eS)

In this way features values for e are being assessed (eS : projection of e on S)

• For a feature F ∈ F , compute: Shapley(F , Ge, F )

• Assuming an underlying probability space of entities e′

• L acts as a Bernoulli random variable

• Shapley(F , Ge, F ) requires computing

∑
S⊆F\{F }

|S|!(|D|−|S|−1)!
|D|! (E(L(e′|e′

S∪{F } = eS∪{F })− E(L(e′)|e′
S = eS))
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• As already mentioned SHAP can be applied with black-box, and also with open,
explicit models

• With black-box models, using the classifier many times

• With the entire space, and a given underlying distribution
Not very appealing ...

• Using a sample of the population, and computing weighted averages
More natural and realistic in practice

• With explicit, open models

• As with black-box models

• Using the given classification model, and computing the expectation
For some models and population distributions, SHAP computation can be
done exactly and efficiently
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• Original paper on SHAP claims it can be computed in PTIME for decision-trees
(actually, random forests)

Actually, introduced, discussed and experimented in this context

• Recently proved:

SHAP can be computed in PTIME on a series of Binary Decision Circuits as
classifiers (Arenas, Barcelo, Bertossi, Monet)

The result applies in particular to decision-trees
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Yet Another Score: RESP

• Same classification setting, F ∈ F (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e) − E(L(e′) | e′
F∖{F } = eF∖{F }) (local interventions)

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores

• So as SHAP, need an underlying probability space

No need to access the internals of the classification model

• A problem: changing one value may not switch the label

No explanations are obtained

• Extend this score bringing in contingency sets for features!

The RESP-score (simplified version for binary features first)
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0, for x′ ∈ dom(F )

• x actual explanation for L(e) = 1 if there is a set of values Y in e,
x /∈ Y, and (all) new values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0

• If Y is minimum in size, RESP(x) := 1
1+|Y|
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

▷ Due to e7, F2(e1) is counterfactual explanation; with RESP(e1, F2) = 1

▷ Due to e4, F1(e1) is actual explanation; with {F2(e1)} as contingency set

And RESP(e1, F1) = 1
2

• For non-binary features, RESP can be expressed as an expected value
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• Consider: e entity under classification, with L(e) = 1, and F ∈ F

Assume we have:

1. Γ ⊆ F ∖ {F}, a set of features that may end up accompanying F

2. w̄ = (wF )F ∈Γ, wF ∈ dom(F ), wF ̸= eF , new values for features in Γ

3. e′ := e[Γ := w̄], i.e. reset e’s values for Γ as in w̄

4. L(e′) = L(e) = 1, no label change with w̄, but maybe with extra change

5. Pick v ∈ dom(F ), e′′ := e[Γ := w̄, F := v]
▷ When v ̸= F (e) and L(e) ̸= L(e′′) = 0, F (e) is an actual causal explanation

for L(e) = 1 with contingency ⟨Γ, eΓ⟩

To define the “local” RESP-score make v vary randomly under conditions 1.-5.:

RESP(e, F , Γ, w̄) := L(e′)−E[L(e′′) | e′′
F∖{F }=e′

F∖{F }]
1+|Γ| (∗)

Globally: RESP(e, F ) := maxw̄ RESP(e, F, Γ, w̄)
|Γ|min., (∗)>0

⟨Γ, w̄⟩ |= 1.−4.
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Final Remarks

• We compared COUNTER, RESP, SHAP, Banzhaf (c.f. paper)

Kaggle loan data set, and XGBoost for classification (opaque enough)

• There is the Rudin’s FICO-Score: open model, model dependent

Uses internal outputs and coefficients of two nested logistic-regression models

Model designed for FICO data; so we used FICO data, and made experimental
comparisons

• Explainable AI (XAI) is an effervescent area of research

Its relevance can only grow

Legislation around explainability, transparency and fairness of AI/ML systems
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• Different approaches and methodologies

Causality, counterfactuals and scores have relevant roles to play

• Much research needed on the use of contextual, semantic and domain knowledge

Some approaches are more appropriate, e.g. declarative (Bertossi; RuleML+RR’20)

• Still fundamental research is needed on what is a good explanation

As needed in AI/ML

And on desired properties of an explanation score

• Shapley-value originally emerged from a list of desiderata

Could an explanation score emerge as the right one for certain explainability
properties?
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EXTRA SLIDES
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More on Experiments

• We compared COUNTER, RESP, SHAP, Banzhaf

Kaggle loan data set, and XGBoost with Python library for classification model
(opaque enough)

• Also comparison with Rudin’s FICO-Score: model dependent, open model

Uses outputs and coefficients of two nested logistic-regression models

Model designed for FICO data; so, we used FICO data

• Here we are interested more in the experimental setting than in results
themselves
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• RESP score: appealed to “product probability space”: for n, say, binary features

• Ω = {0, 1}n, T ⊆ Ω a sample

• pi = P (Fi = 1) ≈ |{ω∈T | ωi=1}|
|T | =: p̂i (estimation of marginals)

• Product distribution over Ω:
P (ω) := Π

ωi=1 p̂i × Π
ωj =0(1 − p̂j), for ω ∈ Ω

• Not very good at capturing feature correlations

• RESP score computation for e ∈ Ω:

• Expectations relative to product probability space

• Choose values for interventions from feature domains, as determined by T

• Call the classifier

• Restrict contingency sets to, say, two features
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space may be #P -hard (c.f. paper)

• Use sample T ⊆ Ω, test data

Labels L(ω), ω ∈ T , computed with learned classifier

• Empirical distribution: P (ω) :=
{ 1

|T | if ω ∈ T

0 if ω /∈ T
,for ω ∈ Ω

• SHAP value with expectations over this space, directly over data/labels in T

• The empirical distribution is not suitable for the RESP score (c.f. the paper)
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