
VIRTUAL DATA INTEGRATION

Dr. Leopoldo Bertossi

Carleton University
School of Computer Science

bertossi@scs.carleton.ca

www.scs.carleton.ca/∼bertossi

2

PART I: Introduction,
Basic Notions, Problems ...

3

Mediators for Data Integration Systems

There is a dramatically increasing number of available information sources,
many of them on-line :

Organizational databases

Libraries, catalogues, etc.

Non structured and semi structured documents, e.g. in the WWW

Data repositories, e.g. scientific (genome databases, etc.), also distributed,
...

4

How can a user interact simultaneously with so many data sources?

DB2

DB3DB1

DB4

?

5

An alternative: bring all the data that might be needed into a single, huge, new
database

Actually a data warehouse, that physically integrates all the information

Sometimes this can be done, however

Difficult to design

• What views should be materialized?
• Semantic and syntactic (format) reconciliation of data?

Data cleaning

Difficult to populate

Difficult to refresh or update

Sometimes not possible to bring all the data from a given source

...

6

Alternative: keep data in their sources

Interacting with each of the sources via queries

Considering all available sources

Selecting only those to be queried

Querying the relevant sources on an individual basis

Combining results from different sources

A long, tedious, complex and error prone process ...

To implement this, an automated, robust and uniform approach is needed

7

A solution consists in virtual integration of data sources via mediators

Mediator: Software system that offers a common, data base like interface
to a set of autonomous, independent and possibly heterogeneous data sources

Virtual integration because data stays in the sources

User interacting with mediator feels like interacting with a single database

The sources may not cooperate with each other

No control on individual sources

No central control or maintenance mechanism

Set of participating sources is flexible and open

8

Interaction with a mediated integrated information system

DB3DB1 DB2

MEDIATOR

DBn

9

Main features of a mediator based system:

Interaction with the system via queries posed to the mediator

Updates via the mediator are not allowed

Data sources are mutually independent and may participate in different
mediated systems at the same time

Integration system allows sources to get in and out

Data is kept in the local, individual sources, and extracted at mediator’s
request

10

DB3DB1 DB2 DBn

Wrapper Wrapper Wrapper Wrapper

Global Schema Source Descriptions

Plan Generator

Execution Engine

User Interface
Answers

General Architecture of an Integration System

11

Global or Mediated Schema:

Set of names for relations (virtual tables) and their attributes

Determines a query language for the global system

Application dependent

Like in a normal, usual relational DB, from the user point of view

The “DB” corresponding to the global schema is virtual

User poses queries in terms of the relations in the global schema

12

Mediator knows the correspondence between the global schema and the
local schemas (source descriptions)

Mediator receives a query and develops a query plan that determines

• the relevant portions of data in the relevant data sources
• how to extract that data from the sources via queries, and
• how to combine the answers received into a final answer for the user

Mediator is responsible for solving problems of redundancy, complemen-
tarity, incompleteness, and consistency of data in the integration system

What to do if we ask about a person’s ID card number and we get two
different numbers, each coming from a different source?

The two sources, independently, may be consistent, but taken together,
possibly not Consistency is a problem!

13

Example: Consider global schema for a DB “containing” information about
scientific publications:

Conference(Paper ,Conference)
Year(Paper ,Year)
Place(Conference,Year ,Place)

User wants to know where conference ACM PODS’89 was held

Query to global system Q : Ans(L)← Place(pods, 1989 , L)

Predicate Ans contains the answers, that are computed by computing the RHS
of the rule

In this case it is the selection SELECTX=pods,Y =1989 Place(X, Y, L)

However, the data is not in table Place

Query plan needed to extract and combine the relevant data from sources

14

DB2 DB3DB1 DB5DB4

Mediator

SELECT Location
FROM Place
WHERE Conference = 'pods'
 AND Year= '1989'

User

?????

Global relations:
Place, etc.

Local relations

15

Wrapper:

Module that is responsible of wrapping a data source, so that it can in-
teract with the rest of integration system

There is a wrapper for each data source

It presents the data source as a convenient database, with the right schema
and data

This presentation schema may be different from the real, internal one

Data provided by the wrapper my be different from the real one in the
local source

16

Preliminary transformations, cleaning, etc. may be necessary before ex-
porting the data to the integration system

Provides data as requested by the execution engine

We will assume that each data sources have already a wrapper that presents it
as a, say relational database

17

Source Description:

The mediator needs to know the available sources and their contents (as
presented by the wrapper)

This is done by describing the relationships (mappings) between the glob-
al schema and the local schemata

The description is given by means of a set of logical formulas

Think of the way views are defined in terms of base tables in a relational
DB, using queries ...

Logical formulas are used, e.g. expressed in SQL

How are the mappings defined?

18

There are two main approaches (and combinations of them)

Global-as-View (GAV):

The relations in the global schema are described as views of the collection
of local relations

Local-as-View (LAV):

Each relation in a local source is described as a view of the global schema

GLAV: a combination of GAV and LAV

(Friedman, Levy, Millstein. AAAI 99)

(More on all this soon ...)

19

Plan Generator:

Gets a user query in terms of global relations

Uses the source descriptions to design a query plan

Rewrites the query as a set of subqueries queries expressed in terms of
the local relations

Rewriting depends on whether the LAV or the GAV approach is followed

Query plan includes the way in which the different results from local
sources are combined

Still much theoretical and technical research to do on query plan generation

20

Execution Engine:

The query plan is just that, a plan; another issue is to execute it

The EE could solve, e.g. inconsistencies, etc.

Unless we are able to anticipate potential inconsistencies and “solve them
in advance”, when the plan is generated

That is, the plan generator could take care of potential inconsistencies ...
we’ll see ...

21

Description of Data Sources

Achieved through logical formulas that relate the global relations with local
relations

Global-as-View (GAV):

Relations in the global schema are described as views of the union of the local
schemata

Conceptually very natural: usually views are virtual relations defined in terms
of material relations (tables)

Since global relations are virtual and local sources, material, it makes sense ...

22

Example: Integrating information about movies, from local sources:

DB1(Title,Dir ,Year)

DB2(Title,Dir ,Year)

DB3(Title,Review)

A global relation containing movies and their years:

MovieYear(Title,Year)← DB1(Title,Dir ,Year)
MovieYear(Title,Year)← DB2(Title,Dir ,Year)

That is, MovieYear is defined as the union of two projections, of DB1 and DB2

on attributes Title,Year , i.e.

MovieYear = ΠMovie,Year (DB1) ∪ ΠMovie,Year (DB2)

23

The movies, their directors and reviews:

MovieRev(Title,Dir ,Review)← DB1(Title,Dir ,Year),DB3(Title,Review)

This is a view defined as, first, the join of DB1 and DB3 via attribute Title,
and then a projection on Title,Dir ,Review

The view is defined by means of a rule

The rule says that in order to compute the tuples in the relation in the LHS
(the head of the rule), we have to go to the RHS (the body of the rule) and
compute whatever is specified there

The attributes appearing in the head indicate that we are interested in them
only, so the others (in the body) can be projected out at the end

If there are more that one rule to compute a relation, we use all of them and
we take the union of the results, like in MovieYear

24

Instead of using a rule as above, we can use relational algebra (or relational
calculus, or SQL2):

MovieRev = ΠTitle,Dir ,Review (DB1 ��Title DB2)

Why rules then?

The language of rules is more expressive than relational algebra, e.g. recursive
views can be defined with rules, but not with relational algebra

25

Queries:

Posed via the mediator and in terms of global relations

How to answer them? The global relations have no material data ...

Under GAV it is simple: just rule unfolding

Example: Query: Movies filmed in year 2001, with their reviews?

Ans(Title,Review)← MovieYear(Title, 2001),MovieRev(Title,Dir ,Review)

Expressed in terms of the global schema

The data has to be obtained from the sources

The query has to be rewritten in terms of the source relations

26

“Unfold”each global relation by replacing it by its definition in terms of the
local relations

Ans ′(Title,Review)← DB1(Title,Dir , 2001),DB1(Title,Dir , 2001),
DB3(Title,Review)

Ans ′(Title,Review)← DB2(Title,Dir , 2001),DB1(Title,Dir , 2001),
DB3(Title,Review)

These new queries do get answers directly from the sources

Final answer is the union of two answer sets, one for each rule

But notice: there is a redundant condition (subgoal) on the RHS of the first
rule; and the second rule is completely redundant

The mediator should realize this before performing redundant computations

27

Local-as-View (LAV):

Each table in each local data source is described as a view (as a query expres-
sion) in terms of the global relations

Somehow unnatural from the conceptual point of view, and from perspective
of usual databases practice

... here views contain data, but “base tables”don’t ...

But this approach has some advantages

28

Scenario:

Collection of material data sources S1, . . . , Sn

Global, virtual database G

G integrates data from S1, . . . , Sn

Tables in S1, . . . , Sn are seen as views of G

29

Example: Sources:

S1: V1(Title,Year ,Director)← Movie(Title,Year ,Director ,Genre),
American(Director),Year ≥ 1960,

Genre = comedy .

S1 contains comedies, not older than 1960, with American directors and their
years

S2: V2(Title,Review)← Movie(Title,Year ,Director ,Genre),
Review(Title,Review),Year ≥ 1990.

S2 contains movies not older than 1990 with their reviews, but not their direc-
tors

Then, global schema G: Movie(Title,Year ,Director ,Genre),
Review(Title,Review),
American(Director)

S1

S2

R1(title,year,director)

R2(title,review)
“DB”m

a
te
ri
a
l

global
virtual

M ovie(title,year,director,genre)
Am erican(director)
Review(title,review)

global
schem a

Am erican com edies
after 1960

m ovies w/reviews
after 1990

31

Notice: definition of each source does not depend on other sources!

From the perspective of S2, there could be other sources containing information
about comedies after 1990 with their reviews

In this sense, the information in S2 could be “incomplete” wrt what G contains
(or might contain)

... containing only a part of the data of the same kind in the global system

More on this later ...

32

Queries:

Query posed to G: “Comedies with their reviews filmed since 1950?”

Ans(Title,Review)← Movie(Title,Year ,Director , comedy),
Review(Title,Review),Year ≥ 1950.

Query expressed as usual, in terms of global relations only

Not possible to obtain answers by a simple and direct computation of the RHS
of the query

No direct rule unfolding for the relations in the body: no explicit definitions
for them now

Data is in the sources, now views ...

Plan generation to extract information from the sources is more complex than
with GAV

33

A plan is a rewriting of the query as a set of queries to the sources and a
prescription on how to combine their answers (needed in this example)

A query plan for our query is (believe this for the moment ...)

Ans ′(Title,Review)← V1(Title,Year ,Director), V2(Title,Review).

Query has been rewritten in terms of the views ...

Can be computed:

1. Extract values for Title from V1

2. Extract the tuples from V2

3. At the mediator level, compute the join via Title

Due to the limited contents of the sources, we obtain comedies by American directors
with their reviews filmed after 1990

34

Remark: In LAV, we have to answer a query posed in terms of certain re-
lations (the global ones), but we have to answer using the contents of certain
views only (the local relations)

Then, query plan generation becomes an instance of a more general and tradi-
tional problem in DBs: query rewriting using views

Given is a collection views V1, . . . , Vn, whose contents are already com-
puted

A new query Q arrives

Instead of computing its answers directly,

Try to use the answers (contents) to (of) V1, . . . , Vn

35

Query can be seen as views, but usually are not defined as such, and answers
may not be kept

Instead, views will be used during a session or across sessions

Views usually kept virtual (during a session), and are recomputed when needed
(if there are relevant updates and full re-computation is easy)

May be useful to materialize contents for certain views and answers to queries

When computing those answers has been expensive and the information ob-
tained is potentially useful and related to other queries

When a new query arrives, try to take advantage of those pre-computed, cached
results ... How?

Problem: How much from the real answer do we get by using the pre-computed
views only? What is the maximum we can get?

36

Query 1

DB

DB

DB

Query 2

Query 3

New Query

DB
???

37

Comparison of Paradigms:

GAV:

• Rule unfolding makes plan generation simple and direct
• Not flexible to accept new sources or eliminate sources into/from the
system

• Adding new sources implies modifying definitions of global relations
LAV:

• More flexibility to add new sources to the integration system
• A new source is just a new view definition
• Other sources do not need to be considered at this level, no interac-
tion with other sources

• Only the plan generator has to be aware of the new source
• Plan generation is more difficult, actually provably more complex

38

Data Integration and Consistency

In virtual data integration, one usually assumes that certain integrity con-
straints (ICs) hold at the global level

Actually, they are used in the generation of the query plan

There are situations where without ICs no query plan can be generated

39

Example: Global schema Conferences(Paper ,Conference)
Years(Paper ,Year)
Locations(Conference,Year ,Location)

Global functional dependencies (FDs):

Conferences: Paper → Conference
Years: Paper → Year
Locations: Conference,Year → Location

Data sources as views of the global DB (i.e. LAV):

S1(P,C, Y)← Conferences(P,C),Years(P, Y)
S2(P,L)← Conferences(P,C),Years(P, Y),Locations(C, Y, L)

S1 contains papers with their conferences and years

S2 contains the papers and their presentation locations

40

Want location of PODS99

Ans(L)← Locations(pods, 1999, L)

Query plan:

Ans ′(L)← S1(P, pods, 1999), S2(P,L).

That is:

First find some paper presented at PODS99 using source S1

Next, find the location of the conference at which this paper was presented
using source S2

Plan is correct: every paper is presented at one conference and in one year only

But only if the global FDs are satisfied

41

BUT, how can we be sure that such global ICs hold?

They are not maintained or checked at the global level and could be violated

... think of two consistent data sources (DBs) S1, S2 with the same kind of
information that merged produce violations of a FD

Actually, the flexibility to add/remove sources, e.g. in LAV, is likely to introduce
extra sources of inconsistency

42

Example:

S1 Paper Conference Year
querying inconsistent databases pods 1999

workflow specifications sigmod 1998
...

S2 Paper Location
querying inconsistent databases philadelphia
querying inconsistent databases schloss dagstuhl

... ...

Each local source seems to be consistent, but not the global system

Conference, Year associated to two Locations via Paper

... intuitively speaking at least, because we have not defined what a legal
and consistent global instance would be ...

43

Desired:

When queries are posed to the integrated system, retrieve only those an-
swers that are “consistent with” the ICs (which are they?)

That is, solve inconsistencies at query time

By the way, this an interesting new and more general view of ICs:

They represent semantic constraints on query answers, rather than on
database states

A much more flexible approach to database integrity than the classical
approach

... deserves investigation on its own ...

44

PART II: Query Plans and
Semantics of Virtual Data

Integration Systems

45

Query Plans

We will concentrate on the LAV approach

Given a global query Q posed in terms of the global schema, we need to go to
the sources for the data

How?? We need a plan for evaluating Q???

Q has to be “rewritten” in terms of the views, i.e. the relations in the sources

Some rewriting algorithms:

Bucket [Halevy et al.]

Inverse Rules [Duschka, Genesereth]

MiniCon [Halevy et al.]

Deductive [Grant, Minker]

46

Inverse Rules Algorithm

Given: Set of rules describing the source relations as conjunctive (SPJ) views
of the global schema

Descriptions contain rules of the form:

S(X̄)← P1(X̄1), . . . , Pn(X̄n)

S is a source relation; Pis are global relations

Incomplete (open) sources (more on this coming ...)

Input: global query expressed in Datalog (may be recursive, but no negation)

Output: A new Datalog program expressed in terms of the source relations

47

Example: V1, V2 are local; R1, R2, R3 are global

Source descriptions V:

S1: V1(X,Z)← R1(X,Y), R2(Y, Z)
S2: V2(X,Y)← R3(X,Y)

IR Algorithm: obtain from these descriptions, “inverses rules”describing the
global relations

Idea: V2 is incomplete, i.e. its contents is contained in the contents of the global
relation R3 (which one? more on this coming ...)

That is, the only way to get tuples for V2 is by going to pick up tuples on the
RHS

That is, V2 “�” R3, i.e. V2 “⇒” R3

More precisely, we invert the rule in the description of V2

48

We get: R3(X,Y)← V2(X,Y) a rule describing R3!!

There may be other rules describing R3, from other source description rules
containing R3 on the RHS (take the union ...)

What about inverting the rule for V1?

R1(X,Y), R2(Y, Z)← V1(X,Z) ???

What kind of rule (head) is this? Maybe the conjunction ...

R1(X,Y)← V1(X,Z) and R2(Y, Z)← V1(X,Z)

The two occurrences of Y are independent now, and it was a shared variable

What does Y mean in the heads? No condition on Y in the bodies

Any value for Y ? Not the idea ...

49

Better: V1(X,Z)← R1(X,Y), R2(Y, Z) is equivalent to

V1(X,Z)← ∃Y (R1(X,Y) ∧R2(Y, Z)) (join and projection)

Inverting, we obtain

∃Y (R1(X,Y) ∧R2(Y, Z))← V1(X,Z)

There is an implicit universal quantification on X,Z

Each value for Y possibly depends on the values for X,Z, i.e. Y is a function
of X,Z

To capture this dependence, replace Y by a “function symbol” f1(X,Y)

(we may need new functions, for dependencies between variables in other rules)

50

R1(X, f1(X,Z)) ∧R2(f1(X,Z), Z) ← V1(X,Z)

Then
R1(X, f1(X,Z)← V1(X,Z)

R2(f1(X,Z), Z)← V1(X,Z)

Finally, we have the following inverse rules V−1:

R1(X, f1(X,Z)) ← V1(X,Z)
R2(f1(X,Z), Z) ← V1(X,Z)

R3(X,Y) ← V2(X,Y)

We can use them to compute global queries

(introduce one function symbol for each variable in the body of a view definition
that is not in the head; the function evaluated in the variables in the head)

51

Query Q

Ans(X,Z) ← R1(X,Y), R2(Y, Z), R4(X)
R4(X) ← R3(X,Y)
R4(X) ← R7(X,Y)
R7(X) ← R1(X,Y), R6(X,Y)

Goal R6 cannot be computed, there is no description in V1 for it
(it did not appear in any source description)

Then, R7 cannot be evaluated either; delete that rule

Ans(X,Z) ← R1(X,Y), R2(Y, Z), R4(X)
R4(X) ← R3(X,Y)
R4(X) ← R7(X,Y)

For the same reason, second rule cannot be evaluated; delete it

52

Ans(X,Z) ← R1(X,Y), R2(Y, Z), R4(X)
R4(X) ← R3(X,Y)

We obtain a pruned query Q−

The plan returned by the IRA is Q− ∪V−1; a Datalog program with functions

Plan(Q): Ans(X,Z) ← R1(X,Y), R2(Y, Z), R4(X)
R4(X) ← R3(X,Y)

R1(X, f1(X,Z)) ← V1(X,Z)
R2(f1(X,Z), Z) ← V1(X,Z)

R3(X,Y) ← V2(X,Y)

“The best we have” to answer the original query (this may be given a precise
meaning)

53

We will compute some answers to Q, but “the most” we can

The Datalog query can be evaluated, e.g. bottom-up, from concrete source con-
tents, e.g.

V1 = {(a, b), (a, a), (c, a), (b, a)}
V2 = {(a, c), (a, a), (c, d), (b, b)}

Delete from the final answer set those tuples with the auxiliary function symbol
f1, if any

Let’s see this with a different query

Ans(X)← R1(X,Y), R2(Y, Z), R4(X)
Ans(X)← R2(X,Y)
R4(X)← R3(X,Y)
R4(Y)← R1(X,Y), Y = a

54

(This query can be expressed as the SQL query

SELECT R1.1 FROM R1, R2, R4 WHERE R1.2 = R2.1 AND R1.1 = R4.1
UNION SELECT R2.1 FROM R2

that involves the previously defined view

CREATE VIEW R4 AS SELECT R3.1 FROM R3 UNION SELECT R1.2 FROM R1
WHERE R1.2 = ’a’

)

We use the inverse rules (the same for all the queries)

R1(X, f(X,Z))← V1(X,Z)
R2(f(X,Z), Z)← V1(X,Z)
R3(X,Y)← V2(X,Y)

Prune query rules that cannot be evaluated due to the inverse rules

55

Ans(X)← R1(X,Y), R2(Y, Z), R4(X)
Ans(X)← R2(X,Y)
R4(X)← R3(X,Y)

(last rule in the query does not contribute to R4; a cannot be a f -value)

Rest is just bottom-up evaluation of

Ans(X)← R1(X,Y), R2(Y, Z), R4(X)
Ans(X)← R2(X,Y)
R4(X)← R3(X,Y)
R1(X, f(X,Z))← V1(X,Z)
R2(f(X,Z), Z)← V1(X,Z)
R3(X,Y)← V2(X,Y)

and a final deletion of the tuples from Ans that are f -values:

56

R1 = {(a, f(a, b)), (a, f(a, a)), (c, f(c, a)), (b, f(b, a))}
R2 = {(f(a, b), b), (f(a, a), a), (f(c, a), a), (f(b, a), a)}
R3 = {(a, c), (a, a), (c, d), (b, b)}
R4 = {a, c, b}
ΠX(R1 �� R2) = {a, c, b}

From the 1st rule for Ans: Ans = {a, c, b} ∩ {a, c, b} = {a, c, b}

From the second rule for Ans: Ans = {f(a, b), f(a, a), f(c, a), f(b, a)}

These tuple do not contribute to the final answer

Then, finally Ans = {a, c, b}.

57

Properties of the Inverse Rules Algorithm

The query plan obtained is not exactly a Datalog program, because it
may contain function symbols

The query plan obtained can be evaluated in a bottom up manner and
always has a unique fix point

The query plan can be constructed in polynomial time in the size of the
original query and the source desciptions

The plan obtained is the best we can get under the circumstances, i.e.
given the query, the sources and their descriptions

More precisely, query plan is maximally contained in the original query Q

58

There is no (other) query plan that retrieves a proper superset of answers
to Q from the integration system

This can be made precise ...

Theorem: For every Datalog program Q and every set of conjunctive
source descriptions V, the query plan obtained with the IRA is maximal-
ly contained in Q

What answers are we talking about?

A subtle point, since there is no global instance and then no answer to a global
query in the classical sense

To answer this question, we need to give a semantics to an open global system
under the LAV approach

59

Semantics:

An open mediated system G under the LAV approach determines a set of legal
global instances as follows

G: V1(X̄1)← ϕ1(X̄1) v1

· · · · · · · · ·
Vn(X̄n)← ϕn(X̄n) vn

Each vi is an extension (material data source) for view Vi

Let D be a global instance, i.e. its domain contains at least the con-
stants appearing in the source extensions and the view definitions; and
has relations (and contents) for the global schema

60

ϕi(D) is the definition of view Vi applied to D; what gives an extension
for Vi in (wrt) global instance D

We define Legal(G) := { global D | vi � ϕi(D); i = 1, . . . , n}

Legal instances respect the fact that sources are open, aka incomplete or sound
sources

The global schema may have many instances, but only the legal ones will de-
termine which are the intended answers to a global query

61

Example: A global system that integrates data sources about teams partici-
pating in the soccer world cup 2002

Global relation Team(Country ,Group)

One source of information contains the countries whose matches in the first
round were shown on TV

Can be represented as the view

ShownOnTV(X)← Team(X,Y)

It contains only a subset of the expected entries for relation Team:

ShownOnTV � ΠCountry(Team)

The source is open or incomplete

62

A second source, Qual , contains all the countries participating in the qualifying
matches, e.g. Germany, Canada, ...

Qual(X)← Team(X,Y)

Canada did not participate in the World Cup, but did participate in the quali-
fying matches, then Qual �� ΠCountry(Team)

This source is not open, rather

Qual � ΠCountry(Team)

We say the source is closed, aka complete

We could admit this source into the system, but the legal instances would have
to respect its closedness ...

63

A third source, First , contains the countries participating in the first round

First(X)← Team(X,Y)

Now First = ΠCountry(Team)

The source is open and closed (clopen) or sound and complete

In what follows, open sources only ...

64

Example: Global system G1 with relation R(X,Y) and open sources

V1(X,Y)← R(X,Y) with v1 = {(a, b), (c, d)}

V2(X,Y)← R(X,Y) with v2 = {(a, c), (d, e)}

Legal instance: D = {(a, b), (c, d), (a, c), (d, e)}

v1 ⊆ ϕ1(D) = {(a, b), (c, d), (a, c), (d, e)}
v2 ⊆ ϕ2(D) = {(a, b), (c, d), (a, c), (d, e)}

All supersets of D are also legal global instances; e.g.

{(a, b), (c, d), (a, c), (d, e), (c, e)} ∈ Legal(G)

But no subset of D is legal, e.g.

{(a, b), (c, d), (a, c)} /∈ Legal(G)

65

The legal instances give the semantics to the virtual data integration system
We are not interested in the legal instances per se

But now we can define the intended answers to a global query

The certain answers to a global query are those that can be obtained from every
legal global instance

CertainG(Q) := {t̄ | t̄ is an answer to Q in D for all D ∈ Legal(G)}

Example: (continued) System G1

Global query Q : Ans(X,Y)← R(X,Y)

CertainG1(Q) = {(a, b), (c, d), (a, c), (d, e)}

66

The algorithms for constructing query plans should be able to produce plans
that will get all the certain answers from a data integration system

Of course, without explicitly computing all the legal instances

It is possible to prove that, for open sources, the IRA returns all the certain
answers to conjunctive queries

There are other complete algorithms, but IRA illustrates the idea and we will
use it later on ...

67

The Need for Recursion

Assume the original global query is conjunctive, i.e. of the form

Q : Ans(X̄)← A1(X̄1), . . . , An(X̄n)

where the Ai are database atoms, and the body may contain some variables
that are not in the head (i.e. existential quantifiers or projections); in particu-
lar, no negations

Conjunctive queries are part of RA, and also of Datalog, but less than Datalog
(that also has union and recursion)

Given Q, IRA will produce a query plan that is a Datalog program with func-
tions (but without negations)

So, do we need recursion?

68

If the original global query is recursive, yes ... not surprising ...

What if the query is not recursive, e.g. when it is conjunctive?

If we want the query plan to be maximally contained in the original query, yes ...

At least when there are restrictions on the patterns of queries, i.e. when data
sources may be accessed only with particular patterns

E.g. one restriction specifies in an atom the variables that must have concrete
values (bindings) in order to access the data, i.e. there are binding patterns

For example, Gradesbf (Student ,Grade) (b for bound, and f for free)

Meaning that

we cannot ask “give me all the students with their grades”, i.e.Grades(X,Y)?

but we can ask for the grades of specific students, e.g. “give me John’s
grades”, i.e. Grades(john, Y)?

69

Example: Three global relations

AAAIpapers(X) “contains” papers presented at the AAAI conference

Cites(X,Y) contains papers citing other papers; papers presented any-
where

AwardPaper(X) contains award winning papers (presented anywhere)

Three open data sources

one containing papers presented at the AAAI conference, no access re-
strictions

AAAIdbf (X)← AAAIpapers(X)

another containing papers and their citations, but can be accessed pro-
viding the title of the citing paper

CitationDBbf (X,Y)← Cites(X,Y)

70

finally, one containing award winning papers, that can be accessed to
check specific papers

AwardDBb(X)← AwardPaper(X)

Global query: “Give me all award winning papers”, i.e.

Q : Ans(X)← AwardPaper(X)

AwardPaper cannot be used directly

Need to go through AAAIpapers, but also through Cites if we want to find as
many papers as possible

Q′:
Ans ′(X)← AAAIdb(X),AwardDB(X)

Ans ′(X)← AAAIdb(V),CitationDB(V,X1), . . . ,CitationDB(Xm, X),
AwardDB(X)

71

No plan that fixes the length m of the chain of citations will be maximally
contained in the original query

Instead, the following query Q′′ will do ...

Ans(X)← papers(X),AwardDB(X)

papers(X)← AAAIdb(X)

papers(X)← papers(Y),CitationDB(Y,X)

72

PART III: Consistent Query
Answers from Virtual Data

Integration Systems

73

Data Integration

Given a collection of (materialized) data sources S1, . . . , Sn, and a global, vir-
tual database G, that integrates the data sources

There might be a set IC of global ICs that are not maintained

We would like to obtain those answers to global queries that are consistent wrt
to IC

The query plan generated by the mediator should incorporate new elements
which enforce the satisfaction of the ICs by the query answers

74

DBMS

Global Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query
Plan

MEDIATOR

VS.

global ICs??

75

DBM S

Global Query (SQL):

 SELECT ...
 FRO M ...
 W H ERE ...
 CONSISTENT W ITH

DBM S DBM S

Plan Generator

data sources

global, virtual

database

Q uery
Plan

ENHANCED
M EDIATOR

global

ICs

76

Apart from and before developing new algorithms for generating query plans,
we need to characterize what is an answer to a query that is consistent wrt a
set of ICs

ICs that may be violated by the database or the integration system

Otherwise, we will not be in position to evaluate the quality of our algorithmic
solution

I we will not know for we are searching for ...

To solve the problem in virtual data integration systems, we can reuse some
notions and techniques developed for retrieving consistent answers from single,
stand alone, relational databases

77

INTERLUDE: Consistent
Query Answering from Single

Relational Databases

78

The Problem

We need to live with databases that are inconsistent

With information that contradicts given integrity constraints

There are many reasons, among them

Inconsistency wrt integrity constraints that current commercial DBMS
cannot check or maintain

User constraints than cannot be checked

A user wants or needs to impose his/her view of the world (semantics) on
data that is out of his/her control

Legacy data on which we want to impose (new) semantic constraints

Integration of independent data sources (we saw ...)

79

It may be impossible/undesirable to repair the database (to restore consistency)

No permission

Inconsistent information can be useful

Restoring consistency can be a complex process

The inconsistent database can still give us “correct” answers to certain queries!

Not all data participates in the violation of the ICs

What is “correct” (“consistent”) information in an inconsistent database?

In particular, when we query the DB: what are the “correct answers”?

80

The research problem requires

A precise characterization of consistent answers to a query in an incon-
sistent database

Mechanisms for retrieving such consistent information from the the database

Without changing the database ...

81

DBMS

New Query (enh'd SQL):

 SELECT ...
 FROM ...
 WHERE ...

CONSIS WITH ICs

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...
 ICs

?????Query
Preprocessor

82

Consistent Answers

Given a database instance r, a query Q, and a set of ICs IC

Tuple t̄ is a consistent answer to query Q in r wrt IC whenever t̄ is an answer
to Q in every repair of r

Where: a repair of a database instance r is a database instance r′

over the same schema and domain

satisfies IC

differs from r by a minimal set of changes (insertions/deletions of whole
tuples)

Intuitively, consistent answers are invariant under minimal ways of restoring
consistency

83

We use repairs as an auxiliary concept, but we are not interested in repairs
per se

We want to compute consistent answers, ideally without computing all repairs,
but by querying the original instance r

(Arenas, Bertossi, Chomicki. ACM PODS’99)

84

Example: r inconsistent wrt Name → Salary

Employee Name Salary

V .Smith 3,000
P .Jones 5,000
P .Jones 8,000
M .Stowe 7,000

Repair1 Name Salary Repair2 Name Salary

V .Smith 3,000 V .Smith 3,000
P .Jones 5,000 P .Jones 8,000
M .Stowe 7,000 M .Stowe 7,000

In r it is consistently true that

Employee(M.Stowe, 7,000)

Employee(P .Jones, 5,000) ∨ Employee(P .Jones, 8,000)

∃XEmployee(P .Jones, X)

85

Addressing the Problem

Represent in a compact form the collection of all database repairs

Use disjunctive logic (answer set) programs

Repairs correspond to certain distinguished models of the program, the stable
models basically

To obtain consistent answers to a FO SQL query:

Transform (internally) the query into a logic program (standard)

Run that program together with the program that specifies the repairs

86

Can be implemented on top of DLV, a logic programming system that computes
according to the stable models semantics

(Arenas, Bertossi, Chomicki. TPLP 2003)
(Barcelo, Bertossi. NMR’02, PADL’03)

87

DBMS

Query (Logic) Program:

Ans (x) :-
.... :-
.... :-

Query (SQL):

 SELECT ...
 FROM ...
 WHERE ...

DLV

ICs

Specification of Repairs:

.... :-

.... :-

.... :-

Consistent Answers

88

Example: Full inclusion dependency

IC : ∀x̄(P (x̄)→ Q(x̄))

Inconsistent instance r = {P (c̄), P (d̄), Q(d̄), Q(ē)}

The programs use annotation constants

Annotation Atom The tuple P (ā) is...
td P (ā, td) a fact of the database
fd P (ā, fd) a fact not in the database
ta P (ā, ta) advised to be made true
fa P (ā, fa) advised to be made false
t P (ā, t) true or becomes true
f P (ā, f) false or becomes false
t P (ā, t) it is true in the repair
f P (ā, f) it is false in the repair

89

Repair program Π(r, IC):

1. P (c̄, td)←
P (d̄, td)←
Q(d̄, td)←
Q(ē, td)←

Whatever was true (false) or becomes true (false), gets annotated with t (f):

2. P (x̄, t)← P (x̄, td)

P (x̄, t)← P (x̄, ta)

P (x̄, f)← not P (x̄, td)

P (x̄, f)← P (x̄, fa)

... the same for Q ...

90

3. P (x̄, fa) ∨ Q(x̄, ta) ← P (x̄, t), Q(x̄, f)

One rule per IC; that says how to repair the IC

Passing to annotations t and f allows to keep repairing the DB wrt to
all the ICs until the process stabilizes

Repairs must be coherent: use denial constraints at the program level, to prune
some models

4. ← P (x̄, ta), P (x̄, fa)

← Q(x̄, ta), Q(x̄, fa)

Finally, annotations constants t and f are used to read off the literals that
are inside (outside) a repair

91

5. P (x̄, t)← P (x̄, ta)

P (x̄, t)← P (x̄, td), not P (x̄, fa)

P (x̄, f)← P (x̄, fa)

P (x̄, f)← not P (x̄, td), not P (x̄, ta). ... etc.

Used to interpret the models as database repairs

The program has two stable models (and two repairs):

{P (c̄, td), ..., P (c̄, t), Q(c̄, f), Q(c̄, ta), P (c̄, t), Q(c̄, t), Q(c̄, t), ...} ≡
{P (c̄), Q(c̄), P (d̄), Q(d̄), Q(ē)}

{P (c̄, td), ..., P (c̄, t), P (c̄, f), Q(c̄, f), P (c̄, f), Q(c̄, f), P (c̄, fa), ...} ≡
{P (d̄), Q(d̄), Q(ē)}

92

Consistent answers to query P (x̄) ∧ ¬Q(x̄)?

Run repair program Π(r, IC) together with query program

Ans(x̄)← P (x̄, t), Q(x̄, f)

Answer: Ans = ∅

Query: Ans(x̄)← P (x̄, t)

Answer: Ans = {d}

93

PART III (cont’d): Certain and
Consistent Answers from Virtual

Data Integration Systems

94

A Solution for Data Integration

(Bravo and Bertossi. IJCAI 2003)
(Bertossi,Cortes, Chomicki, Gutierrez. FQAS 2002)

Assumptions:

Local-as-View (LAV)

(more challenging than GAV and inconsistency issues more relevant)

Conjunctive view definitions

Open sources

Methodology works for first-order queries (and Datalog extensions), and uni-
versal ICs combined with non cyclic referential ICs

Can be extended to clopen sources, and views defined as disjuntions of conjun-
tive queries

95

Example: (revisited) Global system G1 sources

V1(X,Y)← R(X,Y) with v1 = {(a, b), (c, d)}
V2(X,Y)← R(Y,X) with v2 = {(c, a), (e, d)}

Legal instance: D = {(a, b), (c, d), (a, c), (d, e)} (and supersets)

We found for query Q: R(X,Y)?

CertainG(Q) = {(a, b), (c, d), (a, c), (d, e)}

Local FDs V1 : X → Y , V2 : X → Y are satisfied in the sources

But global FD R : X → Y not satisfied by D = {(a, b), (c, d), (a, c), (d, e)}
(or its supersets)

Only (c, d), (d, e) should be consistent answers

96

Mappings

Global Relations

Answer Set
Programming(ASP)

specification of a set of
Legal Global Instances

ASP specification of the
repairs

Global ICs

Query
Query Program

(Datalog)

Sources

DLV
Run under skeptical

answer set
semantics

Consistent Answers to
Query

97

A minimal global instance is a legal instance that does not properly contain any
other legal instance

Mininst(G) := set of minimal instances of G

The minimal answers to a query are those that can be contained from every
minimal instance:

CertainG(Q) � MinimalG(Q)

For monotone queries they coincide; with negation, possibly not

G is consistent wrt ICs if every minimal instance satisfies the ICs

98

Specification of Minimal Instances: Open Case

Example 2: D = {a, b, c, . . . } G2:

V1(X,Z) ← P (X,Y), R(Y, Z) {v1(a, b)} open
V2(X,Y) ← P (X,Y) {v2(a, c)} open

Inverse rules:

P (X, f(X,Z))← V1(X,Z) R(f(X,Z), Z)← V1(X,Z)
P (X,Y)← V2(X,Y)

Try to use something like this to specify minimal instances ...

99

Answer set program Π(G):

1. Fact dom(a) for every constant a ∈ D

2. Fact Vi(ā) whenever Vi(ā) ∈ vi for a source extension vi in G
3. For every view (source) predicate Vi with definition

Vi(X̄)← P1(X̄1), . . . , Pn(X̄n), the rule

Pj(X̄j)← V (X̄),
∧

Xl∈(X̄j\X̄)

F l
i (X̄,Xl)

4. For every predicate F l
i (X̄,Xl) introduced in 3., the rule

F l
i (X̄,Xl)← Vi(X̄), dom(Xl), choice((X̄), (Xl))

100

choice((X̄), (Xl)): non-deterministically chooses a unique
value for Xl for each value of X̄

(Giannotti,Pedreschi,Sacca,Zaniolo. DOOD 1991)

Models are the choice models, but the program can be transformed into one
with answer sets (stable models)

Mininst(G) ⊆ stable models of Π(G) ⊆ Linst(G)

Queries expressed as logic programs can be answered from the query program
together with Π(G) under cautious stable model semantics

For monotone queriesQ, answers obtained using Π(G) coincide with CertainG(Q)
and MinimalG(Q)

101

Example: D = {a, b, c, . . . } G2:

V1(X,Z)← P (X,Y), R(Y, Z) {v1(a, b)} open
V2(X,Y) ← P (X,Y) {v2(a, c)} open

Mininst(G) = {{P (a, c), P (a, z), R(z, b)} | z ∈ {a, b, c, ...}}

Π(G2) :

dom(a)., dom(b)., dom(c)., . . . , V1(a, b)., V2(a, c).
P (X,Z)← V1(X,Y), F1(X,Y, Z)
R(Z, Y)← V1(X,Y), F1(X,Y, Z)
P (X,Y)← V2(X,Y)
F1(X,Y, Z)← V1(X,Y), dom(Z), choice((X,Y), (Z))

102

The stable models of SV (Π(G2)) are:

Mb = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice1(a, b, a),
chosen1(a, b, b), diffChoice1(a, b, c), F1(a, b, b), R(b, b), P (a, b)}

Ma = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), chosen1(a, b, a),
diffChoice1(a, b, b), diffChoice1(a, b, c), F1(a, b, a), R(a, b), P (a, a)}

Mc = {dom(a), . . . , V1(a, b), V2(a, c), P (a, c), diffChoice1(a, b, a),
diffChoice1(a, b, b), chosen1(a, b, c), F1(a, b, c), R(c, b)}

· · ·
Here: 1-1 correspondence with Mininst(G)

103

Example 3: G3:

V1(X) ← P (X,Y) {v1(a)} open
V2(X,Y) ← P (X,Y) {v2(a, c)} open

Mininst(G3) = {{P (a, c)}}

However, the legal global instances corresponding to stable models of Π(G3) are
of the form {{P (a, c), P (a, z)} | z ∈ D}

More legal instances (or stable models) than minimal instances

As V2 is open, it forces P (a, c) to be in all legal instances

What makes the same condition on V1 automatically satisfied
(no other values for Y needed)

Choice operator, as used above, may still chose other values z ∈ D

104

We want Π(G) to capture only the minimal instances

A refined version of Π(G) detects in which cases it is necessary to use the
function predicates

Fi(X̄,Xi)← add Vi(X̄), dom(Xi), choice((X̄), (Xi))

where add Vi(X̄) is true only when the openness of Vi is not satisfied through
other views

stable models of Π(G) ≡ Mininst(G).

This program not only specifies the minimal instances, but can be also used to
compute certain answers to monotone queries

More general than any other algorithm for LAV ...

105

Consistent Answers

A repair of a global system G wrt to global ICs IC is:

a global instance that satisfies IC , that

minimally differs from a minimal instance
(wrt to inclusion of sets of tuples)

RepairsIC (G) := set of repairs of G wrt IC

A tuple t̄ is a consistent answer to query Q wrt IC if for every D ∈
RepairsIC (G): D |= Q[t̄] (i.e. t̄ is an answer to Q in D)

Intuitively, consistent answers are invariant under minimal restorations of con-
sistency

106

Example: Global system G1

V1(X,Y)← R(X,Y) with v1 = {(a, b), (c, d)} open

V2(X,Y)← R(Y,X) with v2 = {(c, a), (e, d)} open

V3(X) ← P (X) with v3 = {(a), (d)} clopen

Mininst(G1) = {{R(a, b), R(c, d), R(a, c), R(d, e), P (a), P (d)}}

G1 is inconsistent wrt FD : X → Y

RepairsFD(G1) = {D1, D2} with

D1 = {R(a, b), R(c, d), R(d, e), P (a), P (d)}
D2 = {R(c, d), R(a, c), R(d, e), P (a), P (d)}

(repairs may not be legal instances)

107

Queries:

Q(X,Y) : R(X,Y)?

(c, d), (d, e) are the consistent answers

Q1(X) : ∃Y R(X,Y)?

a is a consistent answer

108

Specification of Repairs

So far: specification of minimal instances of an integration system

Minimal instances can be inconsistent

In consequence, we want to specify their repairs

Apply the ideas and techniques developed for single databases ...

Combine the programs that specify the minimal instances and the repair pro-
grams for single instances

Π(G, IC) that specifies the repairs of an integration system G wrt IC

109

Example: G3:

V1(X) ← P (X,Y) {v1(a)} open
V2(X,Y) ← P (X,Y) {v2(a, c)} open

IC : ∀x∀y(P (x, y)→ P (y, x))

Mininst(G3) = {{P (a, c)}} ... inconsistent system

110

Repair Program using DLV syntax:
dom(a). dom(c). v1(a). v2(a,c). %begin refined subprogram

%for minimal instances

P(X,Y,td) :- P(X,Y,v1).

P(X,Y,td) :- P(X,Y,to).

P(X,Y,nv1) :- P(X,Y,to).

addv1(X) :- v1(X), not auxv1(X).

auxv1(X) :- P(X,Z,nv1).

fz(X,Z) :- addv1(X), dom(Z), chosenv1z(X,Z).

chosenv1z(X,Z) :- addv1(X), dom(Z), not diffchoicev1z(X,Z).

diffchoicev1z(X,Z) :- chosenv1z(X,ZZ), dom(Z), ZZ!=Z.

P(X,Z,v1) :- addv1(X), fz(X,Z).

P(X,Y,to) :- v2(X,Y).

P(X,Y,ts) :- P(X,Y,ta), dom(X), dom(Y). %begin repair subprogram

P(X,Y,ts) :- P(X,Y,td), dom(X), dom(Y).

P(X,Y,fs) :- dom(X), dom(Y), not P(X,Y,td).

P(X,Y,fs) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fa) v P(Y,X,ta) :- P(X,Y,ts), P(Y,X,fs), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,ta), dom(X), dom(Y).

P(X,Y,tss) :- P(X,Y,td), dom(X), dom(Y), not P(X,Y,fa).

P(X,Y,fss) :- P(X,Y,fa), dom(X), dom(Y).

P(X,Y,fss) :- dom(X), dom(Y), not P(X,Y,td), not P(X,Y,ta).

:- p(X,Y,ta), p(X,Y,fa).

111

Stable models obtained with DLV: (parts of them)

Mr
1 = {dom(a), dom(c), v1(a), v2(a,c), P(a,c,nv1),

P(a,c,v2), P(a,c,td), P(a,c,ts), auxv1(a),
P(a,a,fs), P(c,a,fs), P(c,c,fs), P(a,a,fss), P(c,a,ta),
P(c,c,fss), P(a,c,tss), P(c,a,ts), P(c,a,tss)}
≡ {P (a, c), P (c, a)}

Mr
2 = {dom(a),dom(c), v1(a), v2(a,c), P(a,c,nv1),

P(a,c,v2), P(a,c,td), P(a,c,ts), auxv1(a), P(a,a,fs),
P(c,a,fs), P(a,c,fs), P(c,c,fs), P(a,a,fss), P(c,a,fss),
P(a,c,fss), P(c,c,fss), P(a,c,fa)} ≡ ∅

Repair programs specify exactly the repairs of an integration system for uni-
versal and simple (non cyclic) referential ICs

112

Computing Consistent Answers

Consistent answers t̄ to a query posed to a global integration system Q(x̄)?

Methodology:

1. Q(· · ·P (ū) · · · ¬R(v̄) · · ·) �→
Q′ := Q(· · ·P (ū, tss) · · · R(v̄, fss) · · ·)

2. Q′(x̄) �→ (Π(Q′), Ans(X̄))

- Π(Q′) is a query program

- Ans(X̄) is a query atom defined in Π(Q′)

3. “Run” Π := Π(Q′) ∪ Π(G, IC)
4. Collect ground atoms Ans(t̄) ∈ ⋂{S | S is a stable model of Π}

113

Example: G3 Query Q : P (x, y)

1. Q′ : P (x, y, tss)

2. Π(Q′) : Ans(X,Y)← P (X,Y, tss)

3. Π(G3, IC) as before; form Π = Π(G3, IC) ∪Π(Q′)

4. Repairs corresponding to the stable models of the program Π become
extended with query atoms

Mr

1 = Mr
1 ∪ {Ans(a, c), Ans(c, a)};

Mr

2 = Mr
2

5. No Ans atoms in common, then query has no consistent answers (as
expected)

114

Example: Repair program for first example (G1 with the FD) in this section

domd(a). domd(b). domd(c). %begin subprogram for minimal instances

domd(d). domd(e). v1(a,b).

v1(c,d). v2(c,a). v2(e,d).

R(X,Y,td) :- v1(X,Y).

R(Y,X,td) :- v2(X,Y).

R(X,Y,ts) :- R(X,Y,ta), domd(X), domd(Y). %begin repair subprogram

R(X,Y,ts) :- R(X,Y,td), domd(X), domd(Y).

R(X,Y,fs) :- domd(X), domd(Y), not R(X,Y,td).

R(X,Y,fs) :- R(X,Y,fa), domd(X), domd(Y).

R(X,Y,fa) v R(X,Z,fa) :- R(X,Y,ts), R(X,Z,ts), Y!=Z, domd(X),domd(Y),domd(Z).

R(X,Y,tss) :- R(X,Y,ta), domd(X), domd(Y).

R(X,Y,tss) :- R(X,Y,td), domd(X), domd(Y), not R(X,Y,fa).

:- R(X,Y,fa), R(X,Y,ta).

Ans(X,Y) :- R(X,Y,tss). %query subprogram

The consistent answers obtained for the query Q: R(X,Y), correspond to the
expected, i.e., {(c, d), (d, e)}

115

Ongoing and Future Work

Several implementation issues, in particular in the case of most common
SQL queries and constraints

Specially those that are not maintained by commercial DBMSs

Research on many issues related to the evaluation of logic programs for
consistent query answering (CQA) in the context of databases

• Optimization of the logic programs for CQA

• Optimization of the access to the DB, to the relevant portions of it

• Generation of “partial” repairs, relative to the ICs that are “rele-
vant” to the query at hand

116

• Magic sets (or similar query-directed methodologies) for evaluating
logic programs for CQA

• Efficient integration of databases (DB2) and logic programs (DLV)

117

Literature

General Papers and Surveys:
- Wiederhold, G. and Genesereth, M. The Conceptual Basis for Mediation Services.
IEEE Expert, 1997, 12(5): 38-47.
- Lenzerini, M. Data Integration: A Theoretical Perspective. Proc. ACM Symposium
on Principles of Database Systems (PODS), 2002, pp. 233-246.
- Levy, A. Combining Artificial Intelligence and Databases for Data Integration. Ar-
tificial Intelligence Today, Springer LNAI 1600, 1999, pp. 249-268.
- Levy, A. Logic-Based Techniques in Data Integration. Chapter in ‘Logic Based Ar-
tificial Intelligence’, J. Minker (ed.), Kluwer Publishers, 2000.
- Ullman, J.D. Information Integration Using Logical Views. Proc. 6th Int. Conf on
Database Theory (ICDT), Springer LNCS 1186, 1997, pp. 19-40.
- Ullman, J.D. Information Integration Using Logical Views. Theoretical Computer
Science 239(2): 189-210 (2000).

Query Answering in VDISs:
- Duschka, O. Query Planning and Optimization in Information Integration. PhD
thesis, Stanford University, December 1997.
- Duschka, O., Genesereth, M. and Levy, A. Recursive Query Plans for Data Integra-
tion. Journal of Logic Programming, 2000, 43(1):49-73.

118

- Grahne, G. and Mendelzon, A. Tableau Techniques for Querying Information Sources
through Global Schemas. Proc. of the Int. Conf. on Database Theory (ICDT), Springer
LNCS 1540, 1999, pp. 332–347.
- Friedman, M., Levy, A., Millstein, T. Navigational Plans for Data Integration. Proc.
Sixteenth National Conference on Artificial Intelligence (AAAI), AAAI Press, 1999,
pp. 67-73.
- Grant, J. and Minker, M. A Logic-based Approach to Data Integration. Theory and
Practice of Logic Programming, 2002, 2(3):323-368.
- Gryz, J. Query Rewriting Using Views in the Presence of Functional and Inclusion
Dependencies. Information Systems, 1999, 24(7):597–612.
- Levy, A., Rajaraman, A. and Ordille, J. Querying Heterogeneous Information Sources
using Source Descriptions. Proc. 22nd International Conference on Very Large Databas-
es (VLDB), Morgan Kaufmann Publishing Co., 1996, pp. 251–262.
- Pottinger, R. and Levy, A. A Scalable Algorithm for Answering Queries Using Views.
Proc. 26th International Conference on Very Large Databases (VLDB), Morgan Kauf-
mann Publishing Co., 2000, pp. 484–495.
- Pottinger, R. and Halevy, A. MiniCon: A Scalable Algorithm for Answering Queries
using Views. VLDB Journal, 10(2-3): 182-198, 2001.

Complexity Issues in VDIS:
- Abiteboul, A. and Duschka, O. Complexity of Answering Queries Using Materialized

119

Views. Proc. ACM Symp. on Principles of Database Systems, 1998, pp. 254-263.
- Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M. On the Expressive Power of
Data Integration Systems. Proc. ER 2002, pp. 338-350.

CQA in Single Relational Databases:
- Arenas, M., Bertossi, L., and Chomicki, J. Consistent Query Answers in Inconsistent
Databases. Proc. 18th ACM Symposium on Principles of Database Systems (PODS),
1999, pp. 68–79.
- Arenas, M., Bertossi, L., and Chomicki, L. Answer Sets for Consistent Query An-
swering in Inconsistent Databases. Theory and Practice of Logic Programming, 3(4-5):
393-424, 2003.
- Barcelo, P., and Bertossi, L. Logic Programs for Querying Inconsistent Databases.
Proc. International Symposium on Practical Aspects of Declarative Languages, pp.
208–222. Springer-Verlag, LNCS 2562, 2003.
- Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically
Correct Answers from Databases with Annotated Logic and Answer Sets. Chapter in
book ’Semantics of Databases’, Springer LNCS 2582, 2003, pp. 1–27.
- Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. Chapter
in book ’Logics for Emerging Applications of Databases’, J. Chomicki, G. Saake and
R. van der Meyden (eds.), Springer, 2003.
- Cali, A., Lembo, D., Rosati, R. On the Decidability and Complexity of Query An-

120

swering over Inconsistent and Incomplete Databases. Proc. ACM PODS 2003, pp.
260-271.
- Greco, G., Greco, S., and Zumpano, E. A Logic Programming Approach to the Inte-
gration, Repairing and Querying of Inconsistent Databases. Proc. 17th International
Conference on Logic Programming, pp. 348–364. Springer-Verlag, LNCS 2237, 2001.
- Wijsen, J. Condensed Representation of Database Repairs for Consistent Query An-
swering. Proc. 9th International Conference on Database Theory (ICDT), pp. 378–393,
Springer-Verlag, LNCS 2572, 2003.

CQA in VDIS:
- Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C. Consistent Answers from
Integrated Data Sources. In Flexible Query Answering Systems, Springer LNAI 2522,
2002, pp. 71–85.
- Bravo, L., and Bertossi, L. Logic Programs for Consistently Querying Data Integra-
tion Systems. Proc. International Joint Conference on Artificial Intelligence (IJCAI),
2003, pp. 10–15.
- Cali, A., Lembo, D., and Rosati, R. Query Rewriting and Answering under Con-
straints in Data Integration Systems. Proc. IJCAI, 2003.
- Lembo, D., Lenzerini, M., and Rosati, R. Source Inconsistency and Incompleteness
in Data Integration. Proc. International Workshop Knowledge Representation meets
Databases (KRDB), 2002.

121

- Eiter, T., Fink, M., Greco, G., and Lembo, D. Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. Proc. 19th International Conference on Logic
Programming (ICLP), 2003, Springer LNCS, 2003.

Role of ICs in VDIS:
- Cali, A.; Calvanese, D.; De Giacomo, G. and Lenzerini, M. Data Integration Un-
der Integrity Constraints. Proc. Conf. on Advanced Information Systems Engineering
(CAISE), Springer LNCS 2348, 2002, pp. 262–279.
- Cali, A., Calvanese, D., De Giacomo, G., Lenzerini, M. On the Role of Integrity
Constraints in Data Integration. IEEE Data Engineering Bulletin 25(3): 39-45 (2002).

Schema Mapping, Data Exchange, Peer-to-Peer, Incomplete Information:
- Doan, A., Domingos, P. and Halevy, A. Learning to Match the Schemas of Data
Sources: A Multistrategy Approach. Machine Learning 50(3): 279-301, 2003.
- Fagin, R., Kolaitis, P., Miller, R. and Popa, L. Data Exchange: Semantics and Query
Answering. Proc. Int. Conf on Database Theory (ICDT), Springer LNCS 2572, pp.
207-224.
- Fagin, R., Kolaitis, P., and Popa, L. Data Exchange: Getting to the Core. Proc.
ACM PODS 2003, pp. 90-101.
- Grahne, G. Information Integration and Incomplete Information. IEEE Computer
Society Bulletin on Data Engineering, September 2002, pp. 46-52.

122

- Halevy, A., Ives, Z., Suciu, D., and Tatarinov, I. Schema Mediation in Peer Data
Management Systems. Proceedings of the International Conference on Data Engineer-
ing, ICDE, 2003.
- Halevy, A. Corpus-Based Knowledge Representation. Proc. IJCAI, 2003, pp. 1567-
1572.
- Kementsietsidis, A., Arenas, M., Miller, R.J. Mapping Data in Peer-to-Peer Systems:
Semantics and Algorithmic Issues. SIGMOD Conference 2003, pp. 325-336.
- Pottinger, R., and Bernstein, Ph. Creating a Mediated Schema Based on Initial
Correspondences. IEEE Data Engineering Bulletin 25(3): 26-31 (2002).

Answering Queries Using Views:
- Flesca, S., Greco, S. Rewriting Queries Using Views. Transactions on Knowledge
and Data Engineering 13(6): 980-995 (2001).
- Halevy, A. Theory of Answering Queries Using Views. SIGMOD Record 29(4): 40-47
(2000).
- Halevy, A.Y. Answering Queries Using Views: A Survey. VLDB Journal 10(4): 270-
294, 2001.
- Millstein, T., Halevy, A., Friedman, M. Query Containment for Data Integration
Systems. Journal of Computer and Systems Sciences, 66(1): 20-39 (2003).

