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Prelude on Data Quality
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Recent Approaches to Data Quality

• More than a third of data science related tasks involve data assessment and
cleaning

• Foundations are less understood and developed than other areas of data
management

• Declarative, generic and parameterizable approaches to data cleaning are needed

Usually ad hoc, application dependent and vertical solutions

Not generalizable or adaptable

• Things are starting to change ...

• Use of contexts for data quality assessment and cleaning

Data quality is context dependent

Use of formal and computable ontologies in specification of contexts
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• Recently, different forms of data quality constraints have been proposed and
investigated

• They provide generic languages for expressing quality concerns

Suitable for specifying adaptive and generic data quality assessment and data
cleaning techniques

• Integration of data cleaning (techniques) with ML and logic-based data
processing systems

• Data quality has many dimensions: consistency, completeness, accuracy,
redundancy, freshness, ...

All of them create in the end a problem of uncertainty in data
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For a Gist: Characterizing Consistent Data wrt ICs

• Consistency has to do with satisfying semantic constraints, usually in the form
of integrity constraints (ICs)

• ICs have been around for a long time ...

They are used to capture the application semantics in the data model and
the database

They have been studied in general and have wide application in data
management

Much fundamental/technical research has been developed

Methodologies for dealing with ICs are quite general and have broad applicability
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• However, in many situations databases may be inconsistent wrt. a given set of
ICs

Getting rid of violations is sometimes possible, but sometimes impossible or too
complex or undesirable

Example: Instance D violates the functional dependency Name → Salary
Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

• Why not accepting inconsistency, live with it, and make the best we can out of
our DB?

• Database repairing and consistent query answering (CQA) are newer
contributions in this direction (more coming)

And more generally, a contribution to a newer approach to data quality problems
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• What are the consistent data in an inconsistent database?

What are the consistent answers to a query posed to an inconsistent database?

• (Arenas,Bertossi,Chomicki; PODS99) provided a precise definition

Intuitively, the consistent data in an inconsistent database D
are invariant under all minimal ways of restoring D’s consistency

Consistent data persists across all the minimally repaired versions of the original
instance: the repairs of D
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Example: FD: Name → Salary
Employee Name Salary

page 5K
page 8K
smith 3K
stowe 7K

Two possible (minimal) repairs if only deletions/insertions of whole tuples are
allowed: D1, resp. D2

Employee Name Salary
page 5K
smith 3K
stowe 7K

Employee Name Salary
page 8K
smith 3K
stowe 7K

(stowe, 7K) persists in all repairs: it is consistent information

(page, 8K) does not (it participates in the violation of FD)

• A consistent answer to a query Q from D can be obtained as a usual answer
to Q from every possible repair of D wrt IC
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• Q1 : Employee(x, y)?
Consistent answers: (smith, 3K), (stowe, 7K)

• Q2 : ∃yEmployee(x, y)?
Consistent answers: (page), (smith), (stowe)

• CQA may be different from classical data cleaning!

• However, CQA is relevant for data quality; an increasing need in business
intelligence and data science

It also provides concepts and techniques for data cleaning

• What about a declarative approach to repairs and CQA?

• We can use answer-set programs (ASPa) to specify database repairs
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• ASP is a well-established logic programming paradigm

ASPs used to specify and solve hard combinatorial and optimization problems

And reason about and query problems with multiple-world semantics (e.g. DB
repairs)

Example: Schema Emp(N, S) and FD N → S

¬∃xz1z2(Emp(x, z1) ∧ Emp(x, z2) ∧ z1 6= z2)

Repair program contains the rules: (with global tuple ids, ti)

Emp′(x, z1, d) ∨ Emp′(x, z2, d)←Emp(x, z1), Emp(x, z2), z1 6= z2

Emp′(x, z, s)←Emp(x, z), not Emp′(x, z, d)

d, s: annotation constants for “tuple deleted” and “tuple stays in repair”, resp.

• A (stable) model M of the program determines a repair D′ of D:

D′ := {R(c̄) | R′(t, c̄,s) ∈ M} (and every repair obtained in this way)
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• Natural application scenario:

Virtual data integration

No way to enforce global ICs on the
sources

Inconsistencies have to be solved
on-the-fly, at query- answering time

[Bravo & Bertossi; IJCAI 2003]

DBMS

Global Query (SQL):

         SELECT   ...

         FROM      ...

         WHERE    ...

         CONSISTENT WITH .....

DBMS DBMS

Plan Generator

data sources

global, virtual

database

Query

Plan

ENHANCED

MEDIATOR

global

ICs

• Newer classes of dependencies have been introduced with data quality/cleaning
in mind!
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Matching Dependencies (MDs)

• MDs are related to Entity Resolution (ER)

• ER is a classical, common and difficult problem in data cleaning, and ML

ER is about discovering and merging records that represent the same entity in
the application domain

Detecting and getting rid of duplicates!

• Many ad hoc mechanisms have been proposed

• ER is fundamental for data analysis and decision making in BI

• Particularly crucial in data integration

• MDs express and generalize ER concerns

They are declarative rules with a clear logic-based semantics that help
characterized and identify duplicates; and specify and enforce their merging
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• MDs specify attribute values that have to be made equal under certain
conditions of similarity for other attribute values

Example: Schema R1(X, Y ), R2(X, Y )

∀X1X2Y1Y2(R1[X1] ≈ R2[X2] =⇒ R1[Y1] .= R2[Y2])

“When the values for attributes X1 in R1 and X2 in R2 in two tuples are similar,
then the values in those two tuples for attribute Y1 in R1 and Y2 in R2 must
be made equal” (R1 and R2 can be same predicate)

≈: Domain-dependent, attribute-level similarity relation
[W. Fan et al.; PODS 2008, VLDB 2009]

• Although declarative, MDs have a procedural feel and a dynamic semantics

An enforcement-based and model-theoretic semantics introduced; and
algorithmic/complexity issues investigated

[Bertossi, Kolahi and Lakshmanan; ICDT’11, TOCS 2013]
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• An MD is satisfied by a pair of databases (D, D′):

D satisfies the antecedent, and D′, the consequent, where the matching
(merging) is realized

A local, one-step satisfaction ...

• We may need several steps until reaching an instance where all the intended
mergings are realized

Dirty instance: D ⇒ D1 ⇒ D2 ⇒ . . . . . . ⇒ D′

stable, clean instance!
↑

(there could be several of these)
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Example: “similar name and phone number ⇒ identical address”

People name phone address
John Doe (613)123 4567 Main St., Ottawa
J. Doe 123 4567 25 Main St.

⇓

People′ name phone address
John Doe (613)123 4567 25 Main St., Ottawa
J. Doe 123 4567 25 Main St., Ottawa

People(N1, Ph1, Ad1)∧People(N2, Ph2, Ad2)∧N1 ≈ N2 ∧Ph1 ≈ Ph2 ⇒ Ad1
.= Ad2

A dynamic semantics with a domain-dependent matching function maddress

maddress(MainSt., Ottawa , 25MainSt.) := 25MainSt., Ottawa

Addresses treated as strings or objects, i.e. sets of pairs attribute/value
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• Matching functions induce a partial order (lattice) on attribute domains

a �A a′ :⇐⇒ mA(a, a′) = a′

a �A a′ can be thought of in terms of information contents

When MFs are applied, information contents increases, and uncertainty
decreases!

25 Main St., Ottawa

Main St., Ottawa 25 Main St.

Main St.

D0 v D1 v . . . v Dclean
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• In general, there could be multiple clean instances

Clean query answering (i.e. obtained from all clean instances) can be
NP-complete

• For some special cases, among them:

• Similarity-preserving matching functions

a ≈ a′ ⇒ a ≈mA(a′, a′′)

• Interaction-free MDs

There is a unique clean instance Dclean

It can be computed in polynomial-time in data
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ERBlox
Joint work with: [IJAR 2017]

Zeinab Bahmani (Carleton University)
Nikolaos Vasiloglou (LogicBlox Inc.)
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Entity Resolution

• A database may contain several representations of the same external entity

The database has to be cleaned from duplicates

• The problem of entity resolution (ER) is about:

(A) Detecting duplicates, as pairs of records or clusters thereof

(B) Merging duplicates into single representations

• Much room for machine learning (ML) techniques

• We concentrate mostly on (A)

20



Blocking: Detecting Potential Duplicates

• We need to:

(a) Compare pairs of records, for elements of a same entity (class):
r1 = 〈a1, . . . , an〉 vs. r2 = 〈a′

1, . . . , a′
n〉

(b) Discriminate between pairs of duplicate records and pairs of non-duplicate
records

• A classification problem
< r1, r2>

1

< r3, r4>

0

(r1 r2 are similar)

(r3 r4 not similar)

• In principle, every two records have to be compared, and classified

This can be costly ...
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• Need to reduce the large amount of two-record comparisons

ER mechanisms use blocking techniques

• A single attribute in records, or a combination of attributes, called a blocking
key, is used to split records into blocks

r = 〈a1, a2, . . . , a5, . . . , a8, a9〉 BK = 〈A1, A5, A8〉

Only records within the same block values are compared

Any two records in different blocks will never be duplicates

• For example, block employee records according to the city

Compare only employee records with the same city
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• After blocking many record-pairs that are clear non-duplicates are not further
considered

But true duplicate pairs may be missed

• For example, due to data input errors or typographical variations in attribute
values

Even assuming data is free of those problems, we need “similarity” functions:

“Joseph Doe” and “Joe Doe” may not be errors, but possible different
representations of the same:

sname(“Joseph Doe”, “Joe Doe”) = 0.9

• So, now records in a same block have their BK attributes with “similar” values

• But still, grouping entities into blocks using just BK similarities may cause low
recall

• It is useful to apply blocking with additional semantics and/or domain knowledge
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Example: “author” and “paper” entities (records)

 !"#$%& '()*%&
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Want to group author entities based on
similarities of authors’ names and
affiliations

Assume author entities a1, a2
(complete author records) have
similar names, but not similar affiliations

a1, a2 are authors of papers (entities) p1, p2, resp.,

p1, p2 have been put in the same block of papers

Semantic knowledge: “If two papers are in the same block, their authors with
similar names should be in the same block”

So, assign a1, a2 to same block (they could be duplicates)

• This is blocking of author and paper entities, separately, but collectively

According to relational closeness, not only to similarities at attribute level
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• How can we capture this kind of additional semantic knowledge?

With a MD like this:

Author(x1, y1, bl1) ∧ Paper(y1, z1, bl3) ∧ Author(x2, y2, bl2)∧

Paper(y2, z2, bl3) ∧ x1 ≈1 x2 ∧ z1 ≈2 z2 =⇒ bl1
.= bl2

This is (an extended form of) a matching dependency (MD), used here for
blocking

Originally for merging attribute values, not for blocking

• ML could be used to create the blocks, e.g. using clustering methods (part of
1st ER phase)

Not what we do here ...

• We use MDs for blocking, before the ML-based classification task

25



MD-Based Collective Blocking

• Records have unique, global ids (positive integer values)

Initial block number Bl# for a record is its rid

• Two records are forced to go into same block by enforcing the equality of their
block numbers

Use MDs with a MF: mBl#(bi, bj) := bi if bj ≤ bi

Example: Author and Paper entities (“R. Smith” ≈ “MR. Smyth”)

Author Name Affiliation P aperID Bl#
12 R. Smith MBA, UCLA 1 12
13 MR. Smyth MBA 2 13
14 J. Doe MBA, UCLA 3 14

Paper T itle Y ear AuthorID Bl#
1 Illness in Africa 1990 12 2
2 Illness in West Africa 90 13 2

26



“Group two author entities into same block if they have similar names and
affiliations or they have similar names and their corresponding papers are in same block”

m1 : Author(a1, x1, y1, p1, b1) ∧Author(a2, x2, y2, p2, b2) ∧
x1 ≈ x2 ∧ y1 ≈ y2 ⇒ b1

.= b2

m2 : Author(a1, x1, y1, p1, b1) ∧Author(a2, x2, y2, p2, b2) ∧ x1 ≈ x2 ∧
Paper(p1, x′

1, y′
1, a1, b3) ∧ Paper(p2, x′

2, y′
2, a2, b3) ⇒ b1

.= b2

First is a single-entity blocking MD

The second is an inter-entity blocking MD

Applying them results in a DB instance with two author-blocks: {12, 13}, {14}
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• Here we are supporting ML with the use of semantic knowledge

One can go beyond that ...

• A newer research area is about developing ML methods that involve
semantic knowledge

As expressed by logical formulas

Room for Statistical Relational Learning ...

• After blocking we may start classifying pairs

28



Classifying Record-Pairs (general)

• ML techniques are commonly used to discriminate between:

- pairs of duplicate records (of each other), i.e. duplicate pairs, and

- pairs of non-duplicate records, i.e. non-duplicate pairs

• ML is used here to classify record-pairs
(still part of 1st phase of ER)

• We developed a classification model

The classification hyper-plane on slide 21 ...

All this is part of the ERBlox approach/system
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The ERBlox Approach to ER

• ERBlox enables/supports ML-techniques for ER

Different ML techniques can be used for the classification model

ER is based on supervised ML techniques, which require training data

We used “support-vector machine” (SVM)

• ERBlox also based on the use of MDs

• ERBlox interacts with Datalog-based relational DBs

Profiting from Datalog for different tasks

More specifically, the LogicBlox system (LogiQL, now)
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• ERBlox has three main components:

1. MD-based collective blocking

2. ML-based record duplicate detection

3. MD-based merging

• All the data extraction, movement and transformation tasks
carried out via LogicQL’s extended Datalog
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Merging

• After the classification task, (records in) duplicate-pairs have to be merged

Records in them are considered to be “similar”

In a precise mathematical sense, through the use of domain- dependent
“features”

MDs are also used for merging (their common use)

• Different sets of MDs for blocking and merging

• The classifier decides if records r1, r2 are duplicates or not

Resp. returning 〈r1, r2, 1〉 or 〈r1, r2, 0〉
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In the first case this means values
for some features on pairs of
attribute values are close to 1

r1

r2

f1(a11,a21) ~ 1

Merging:

f2(a12,a22) ~ 1 f3(a13,a23) ~ 1

r1 ~ r2 merge r1, r2

MDs

• Define: r1 ∼ r2 :⇐⇒ 〈r1, r2, 1〉 is output

• Merge-MDs of the form: r1 ∼ r2 =⇒ r1
.= r2

LHS means 〈r1, r2〉 is given value 1 by classifier

RHS means r1[A1] .= r2[A1] ∧ · · · ∧ r1[Am] .= r2[Am]

• Mergings on RHS, based on domain-dependent matching functions (MFs)
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MD-Based Merging

• We enforce MDs to merge duplicate records into single representations

• We consider record-level MDs:

ϕ : R[t1] ≈ R[t2] =⇒ R[Z̄1] .= R[Z̄2]

Z̄1, Z̄2 contain all attributes of R

• The MDs implicitly contain all attributes on the LHS

The LHSs imposes the condition that two tuples are duplicates (a higher-level
notion of similarity)

Its truth is evaluated according to the output of the classifier
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Example: Merge duplicate author-records enforcing the MD:

Author [aid1] ≈ Author [aid2] =⇒
Author [Name, Affiliation, PaperID] .= Author [Name, Affiliation, PaperID]

(LHS abbreviation for Author ∼ Author)

• A derived table Author-Duplicate is used on LHS, with contents computed
before merging and kept fixed during the enforcement of merge-MDs

In this way, transitivity of record similarity is captured ...

This makes the sets of merging-MDs interaction-free

Resulting in a unique resolved instance
(similarly for enforcement of blocking-MDs)
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On the Use of MDs

• In general, application of MDs on an instance may produce alternative,
admissible instances

• General MDs can be specified/enforced with answer-set programs (ASPs)
[Bahmani et al., KR’12]

General ASP not supported by LogiQL

• We obtain a single blocking solution, applying “blocking MDs”

• On that basis, also the final result of ER is a single duplicate- free instance,
applying “merge-MDs”

• The kind of MDs in our case, and the way there are use/applied, requires only
“stratified Datalog”, which is supported by LogiQL

Our MDs can be specified/executed with LogiQL’s Datalog
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Discussion:
Some New Trends in Data Science
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• ERBlox developed in collaboration with LogicBlox Inc. (→ RelationalAI)
http://www.logicblox.com/

It is built on top of the LogicBlox Datalog platform (LogiQL)

• Goal: Extend LogiQL extending, implementing and leveraging Datalog
technology

• Datalog enables declarative and executable specifications of data-related tasks

An extension of relational algebra/calculus/databases

A query language and view definition language for relational DBs

• Datalog has been around since the early 80s

Strong theoretical basis, prototype implementations, used mostly in DB
research (then)

Datalog techniques became part of the SQL standards and commercial DBMSs
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• Datalog has experienced a revival during the last few years

Many new applications have been found!

• LogicQL is being extended with
interaction with optimization
and ML packages and systems!

Base Tables

P ...

Q ...intentional

DB

extensional

DB

Deductive

DB

virtually

extended

DB

Datalog rules

(relational)

Datalog DB

LogicBlox DBMS

optimization machine learning

mixed-integer (linear) programming, regression (classical, logistic), SVMs, ...

• Data for these problems stored as “extensions” for DB & Datalog predicates

ML system reads necessary data from tables or Datalog computations

ML results become contents for newly defined predicates

Smooth interaction between Datalog/relational engine and optimization/ML
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• For this to work efficiently in practice: Implement the fastest underlying DBMS!

In particular the fastest data combination (join) algorithms

• LogiQL has implementations of the provably optimal join algorithms!

• What just mentioned above already largely outdated:

New trend: In-database computations!

Use the DBMS engine to do the ML/Optimization-related computations

Push computations inside the DB!

• Along the same line, a new research area: Do linear algebra inside the DB

Matrices and tensors represent data

Develop LA-oriented query languages

E.g. a query asking for the (first) eigen values of a matrix
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• All these recent developments heavily affect research and practice of data
science

Much to do in the intersection/interaction area of data management and AI

• We are living exciting times!
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EXTRA SLIDES
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Conditional Dependencies (CDs)

Example: Database relation with FDs:

FD1 : [CC , AC , Phone]→ [Street, City, Zip]

FD2 : [CC , AC ]→ [City]

CC AC Phone Name Street City Zip
44 131 1234567 mike mayfield NYC EH4 8LE
44 131 3456789 rick crichton NYC EH4 8LE
01 908 3456789 joe mtn ave NYC 07974

FDs are satisfied, but they are “global” ICs

They may not capture natural data quality requirements ...

... those related to specific data values
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• What about a conditional functional dependency (CFD)?

CFD1 : [CC = 44, Zip]→ [Street]

The FD of Street upon Zip applies when the country code is 44

Not satisfied anymore, and data cleaning may be necessary ...

• More generally, CDs are like classical ICs with a tableau for
forced data value associations

CFD2 :
[CC = 44, AC = 131, Phone]→ [Street, City= ‘EDI ′, Zip]

When CC = 44, AC = 131 hold, the FD of Street and Zip upon Phone applies,
and the city is ‘EDI’

Not satisfied either ...
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• CQA and database repairs have been investigated for CFDs

• We can go one step further ...

• Conditional Inclusion Dependencies:

Order(Title, Price, Type = ‘book ′) ⊆ Book(Title, Price)

It can be expressed in classical FO predicate logic:

∀x∀y∀z(Order(x, y, z) ∧ z = ‘book′ → Book(x, y))

Still a classic flavor ...

And semantics ...
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Experimental Evaluation

• We experimented with our ERBlox system using datasets of Microsoft Academic
Search (MAS), DBLP and Cora

MAS (as of January 2013) includes 250K authors and 2.5M papers, and a
training set

• We used two other classification methods in addition to SVM

• The experimental results show that our system improves ER accuracy over
traditional blocking techniques where just blocking-key similarities are used

• Actually, MD-based collective blocking
leads to higher precision and recall on
the given datasets

Acc = TP + TN
Total

true positives+       +

+

- -

- -

+ 
+

+ 
+

- -
- -

- -

-

true positives

false negatives

false positives

true negatives

precision  =  true positives / (true positives + false positives)

recall  =  true positives / (true positives + false negatives)

46


