
From Consistent Query
Answering to Query

Rewriting:
A Detour around Answer Set Programs

Leopoldo Bertossi

Carleton University
School of Computer Science

Ottawa, Canada

2

Why Consistent Query Answering?

A (relational) database instance D may be inconsistent

It does not satisfy a given set of integrity constraints IC : D 6|= IC

D is a FO structure, identified with a finite set of ground atoms
of the FO language associated to the relational schema

However, we do not throw D away

Most of the data in it is still consistent, i.e. intuitively and in-
formally, it does not participate in the violation of IC

We can still obtain meaningful and correct answers from D

3

Initial motivation for research in “Consistent Query Answering”
(CQA):

Characterize in precise terms the data in D that is consis-
tent with IC

Develop mechanisms for computing/extracting the consis-
tent information from D

Obtain answers to queries from D that are consistent with
IC

(Arenas, Bertossi, Chomicki; Pods 1999)

4

Consistent Answers and Repairs

Example: Database instance D and FD : Name → Salary

Employee Name Salary

Page 5K
Page 8K
Smith 3K
Stowe 7K

D violates FD through the tuples with Page in Name

There are two possible ways to repair the database in a minimal
way if only deletions/insertions of whole tuples are allowed

Repairs D1, resp. D2

5

Employee Name Salary

Page 5K
Smith 3K
Stowe 7K

Employee Name Salary

Page 8K
Smith 3K
Stowe 7K

(Stowe, 7K) persists in all repairs, and it does not participate
in the violation of FD ; it is invariant under these minimal ways
of restoring consistency

(Page, 8K) does not persist in all repairs, and it does partici-
pate in the violation of FD

Fixed: DB schema with (infinite) domain; and a set of first order
integrity constraints IC

6

Definition: (Arenas et al.; Pods 1999)

A repair of instance D is an instance D′

over the same schema and domain

satisfies IC : D′ |= IC

Makes ∆(D,D′) minimal wrt set inclusion

Definition: (Arenas et al.; Pods 1999)

Tuple of constants t̄ is a consistent answer to query Q(x̄) in D

iff
t̄ is an answer to query Q(x̄) in every repair D′ of D:

D |=
IC
Q(t̄) :⇐⇒ D′ |= Q(t̄) for every repair D′ of D

A model-theoretic definition ...

7

Example: (continued)

D |=
FD

Employee(Stowe, 7K)

D |=
FD

(Employee(Page, 5K) ∨ Employee(Page, 8K))

D |=
FD
∃xEmployee(Page , x)

Example: D = {P (a, b), Q(c, b)}, IC :∀x∀y(P (x, y)→ Q(x, y))

The repairs are:

D1 = {Q(c, b)} with ∆(D,D1) = {P (a, b)}

D2 = {P (a, b), Q(a, b), Q(c, b)} with∆(D,D2) = {Q(a, b)}

But not D3 = {P (a, b), Q(a, b)}, because
∆(D,D3) = {Q(a, b), Q(c, b)} % ∆(D,D2)

8

Computing Consistent Answers

We want to compute consistent answers, but not by computing
all possible repairs and checking answers in common

Retrieving consistent answers via explicit and material compu-
tation of all database repairs may not be the right way to go

Example: An inconsistent instance wrt FD : X → Y

D X Y

1 0
1 1
2 0
2 1
· ·

n 0
n 1

It has 2n possible repairs!

Try to avoid or minimize computation of repairs ...

9

FO Query Rewriting (sometimes)

First-Order queries and constraints

ICs are universal (as in the rest of this presentation)

Approach: Transform the query and keep the database instance!

Consistent answers to Q(x̄) in D?

Rewrite query: Q(x̄) 7−→ Q′(x̄)

Q′(x̄) is a new FO query

Retrieve from D the (ordinary) answers to Q′(x̄)

10

Example: D = {P (a), P (b), Q(b), Q(c)}

IC : ∀x(P (x)→ Q(x))

Q(x): P (x)? (consistent answer should be (b))

If P (x) holds, then Q(x) must hold

An answer t to P (x) is consistent if t is also answer to Q(x)

Rewrite Q(x) into Q′(x) : P (x)∧Q(x) and pose it to D

Q(x) is a residue of P (x) wrt IC

Residue obtained by resolution between query literal and IC

Posing new query to D (as usual) we get only answer (b)

11

Example: (continued) Same FD :

∀xyz (¬Employee(x, y) ∨ ¬Employee(x, z) ∨ y = z)

Q(x, y): Employee(x, y)

Consistent answers: (Smith, 3K), (Stowe, 7K)
(but not (Page, 5K), (Page, 8K))

Can be obtained via rewritten query:

T (Q(x, y)) := Employee(x, y) ∧

∀z (¬Employee(x, z) ∨ y = z)

... those tuples (x, y) in the relation for which x does not have
and associated z different from y ...

12

In general, T has to be applied iteratively

To the literals appearing in the residues appended at the previous
step

In the two previous examples there were no (new) residues

We reached a fixed point

Does it always exist?

In general, an infinitary query:

T ω(Q(x)) :=
⋃

n<ω

{T n(Q(x))}

Is T ω sound, complete, finitely terminating?

13

Several sufficient and necessary syntactic conditions on ICs and
queries have been identified for these properties to hold

(Arenas et al.; Pods 1999)

Main limitations are:

Universal ICs

Queries are projection-free conjunctions of literals

Example:

IC = {∀xy(P (x, y)→ R(x, y)), ∀xy(R(x, y)→ P (x, y)),
∀xyz(P (x, y) ∧ P (x, z)→ y = z)}

Q(x, y) : R(x, y) ∧ ¬P (x, y)

Other approaches to FO query rewriting were in principle possi-
ble

14

What Kind of Logic for CQA?

From the logical point of view:

We have not logically specified the database repairs

We have a model-theoretic definition plus an incomplete
computational mechanism

From such a specification Spec we might:

• Reason from Spec

• Consistently answer queries: Spec
?

|= Q(x̄)

• Derive algorithms for consistent query answering

Notice ...

15

Example: Database D and FD : Name → Salary

Employee Name Salary

Page 5K
Smith 3K
Stowe 7K

It holds: D |=
FD

Employee(Page, 5K)

However
D ∪ {Employee(Page, 8K)}6|=

FD
Employee(Page, 5K)

Consistent query answering is non-monotonic

A non-monotonic semantics for Spec and its logic is ex-
pected

What other logical properties of CQA reasoning/entailment?

16

Specifying Database Repairs

The class of all database repairs can be represented in a compact
form

This class can be specified using logic programs

Use disjunctive logic programs with stable model semantics
(a.k.a. Answer Set Programs) (Gelfond, Lifschitz; NGC 1991)

Here we use the ASPs essentially introduced in
(Barcelo, Bertossi; PADL 2003)

Repairs correspond to distinguished models of the program,
namely to its stable models

The programs use annotation constants in an extra attribute in
the database relations

17

To keep track of the atomic repair actions, i.e. insertions
or deletions of tuples (t, f)

To give feedback to the program in case additional changes
become necessary due to interacting ICs (t⋆)

To collect the tuples in the final, repaired instances (t⋆⋆)

Annotation Atom The tuple P (ā) is ...

d P (ā,d) fact in original database

t P (ā, t) made true (inserted)
f P (ā, f) made false (deleted)

t
⋆ P (ā, t⋆) true or made true

t
⋆⋆ P (ā, t⋆⋆) true in the repair

18

Example: IC : ∀xy(P (x, y)→ Q(x, y))

D = {P (c, l), P (d,m), Q(d,m), Q(e, k)}

Repair program Π(D, IC):

1. Original data facts: P (c, l,d), etc.

2. Whatever was true or becomes true, is annotated with t⋆:

P (x̄, t⋆)← P (x̄,d)

P (x̄, t⋆)← P (x̄, t) (the same for Q)

3. There may be interacting ICs (not here), and the repair
process may take several steps, changes could trigger other
changes

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t⋆), Q(x̄, f)

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t⋆), not Q(x̄,d)

19
P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t⋆), Q(x̄, f)

P (x̄, f) ∨ Q(x̄, t) ← P (x̄, t⋆), not Q(x̄,d)

Two rules per IC; that says how to repair the IC (c.f. the
head) in case of a violation (c.f. the body)

Passing to annotation t⋆ allows to keep repairing the DB
wrt to all the ICs until the process stabilizes

4. Repairs must be coherent: Program denial constraints
prune undesirable models

← P (x̄, t), P (x̄, f)

← Q(x̄, t), Q(x̄, f)

5. Annotations constants t⋆⋆ are used to read off the atoms
in a repair

P (x̄, t⋆⋆)← P (x̄, t)

P (x̄, t⋆⋆)← P (x̄,d), not P (x̄, f) Etc.

20

The program has two stable models (and two repairs):

M1 = {P (c, l,d), ..., P (c, l, t⋆), Q(c, l, t), P (c, l, t⋆⋆),

Q(c, l, t⋆), P (d,m, t⋆⋆), Q(d,m, t⋆⋆), . . . ,Q(c, l, t⋆⋆)}

≡ {P (c, l), Q(c, l), P (d,m), Q(d,m), Q(e, k)}

... insert Q(c, l)!!

M2 = {P (c, l,d), ..., P (c, l, t⋆), P (d,m, t⋆⋆), Q(d,m, t⋆⋆),

. . . , P (c, l, f), ...}

≡ {P (d,m), Q(d,m), Q(e, k)}

... delete P (c, l)!!

One-to-one correspondence between repairs and stable models
of the program

21

Obtaining Consistent Answers

To obtain consistent answers to a (FO) query:

1. Transform or provide the query as a logic program (a standard
process)

1. Q(· · ·P (ū) · · ·) 7−→ Q′ := Q(· · ·P (ū, t⋆⋆) · · ·)

2. Q′(x̄) 7−→ (Π(Q′), Ans(X̄))

Π(Q′) is a query program, a third layer on top of the DB and
the repair program

Ans(X̄) is a query atom defined in Π(Q′)

22

2. Run the query program together with the specification pro-
gram under the skeptical or cautious stable model semantics

It sanctions as true of a program what is true of all its stable
models

“Run” Π := Π(Q′) ∪ Π(D, IC)

3. Collect ground atoms

Ans(t̄) ∈
⋂
{S | S is a stable model of Π}

23

Example: (continued)

Consistent answers to Q(x, y) : P (x, y)

Run repair program Π(D, IC) together with query program

Ans(x̄)← P (x̄, t⋆⋆)

The two previous stable models become extended with ground
Ans atoms

M′

1 = M1 ∪ {Ans(c, l), Ans(d,m)}

M′

2 = M2 ∪ {Ans(d,m)}

Then the only answer is (d,m)

• Use of DLP is a general methodology for CQA for universal
ICs and referential ICs, general FO queries (and beyond)

24

• ASPs can be used to provide declarative and executable spec-
ifications of database repairs

• ASP based specification of repairs and CQAs as consequences
from a program provide some sort of logic for CQA

A non-classical logic though ...

• ASPs extended with query programs provide a form of query
rewriting: D,Q 7→ Π(D, IC) ∪ Π(Q)

Leaving aside the instance (program facts), this is query rewrit-
ing; in a language that is more expressive than FOL ...

• The same repair program can be used with all queries, the
same applies to the computed stable models

The query at hand adds a final layer on top

25

Complexity: Immediate Results

• When a FO query rewriting approach works (e.g. correct and
finitely terminating in case of T ω), consistent answers to FO
queries can be computed in PTIME in data

• The problem of CQA is a decision problem:

CQA(Q(x̄), IC) := {(D, t̄) | D |=IC Q(t̄)}

Data complexity?

• Query answering from DLPs (under skeptical stable models
semantics) is ΠP

2 -complete in data
(Dantsin, Eiter, Gottlob, Voronkov; ACM CSs 2001)

This provides an upper bound for CQA

26

• There are classes of disjunctive programs for which query an-
swering has lower complexity

For head-cycle free programs (HCF), query answering becomes
coNP-complete

HCF programs are defined in terms of a directed graph G(Π): Π
is HCF iff G(Π) has no cycles through positive atoms in bodies
containing two atoms in the head of the same rule

• For some classes of ICs, repair programs become HCF

For sets IC of denial constraints, Π(D, IC) is HCF

∀xyz¬(R(x, y) ∧ S(y, z) ∧ T (x, z) ∧ z 6= y)

And we have a better upper bound for CQA

27

Closing and Understanding the Gap

In a series of papers, PTIME algorithms for CQA were provided

Applying graph-theoretic methods to

Repairs: they correspond to maximal independent sets in
conflict (hyper)graphs or hypergraphs)

(Arenas, Bertossi, Chomicki; ICDT 2001),

(Chomicki, Marcinkowski; Inf&Comp 2005) or

Syntactic structure of queries

In all those cases, the query was also FO rewritable for CQA

28

1. FDs and projection-free conjunctive queries

Also some conjunctive queries with limited projection
(Ch, M; I&C 2005)

2. Key Constraints (KCs) and some syntactic classes of con-
junctive queries with restricted projection
(Fuxman, Miller; ICDT 2005)

Classes defined by the graph-theoretic syntactic structure
of the query and its interaction with the KCs

For every query Q in the class, Cforest , there is a FO rewrit-
ing Q′ for CQA

Q : ∃x∃y∃z(R(x, z) ∧ S(z, y)) 7→

Q′ : ∃x∃z′(R(x, z′) ∧ ∀z(R(x, z)→ ∃yS(z, y)))

29

3. As in 2., but extending the class of queries (rooted queries)

Same property of FO rewritability (Wijsen; DBPL 2007)

Classes of queries above are rather sharp, i.e. not satisfying some
of their syntactic conditions increases complexity

30

Lower bounds?

• For arbitrary FDs and inclusion dependencies (deletions only)
CQA becomes ΠP

2 -complete (Ch,M; I&C 2005)

• For KCs and conjunctive queries (with some forms of projec-
tion) CQA becomes coNP-complete

Q : ∃z∃y∃z(R(x, z) ∧ S(y, z))

(Ch,M; I&C 2005), (F,M; ICDT 2005), (W; DBPL 2007)

31

• FO Rewriting vs. PTIME

There are sets of KCs K and conjunctive queries Q for which
CQA is in PTIME, but there is no FO rewriting of Q for CQA

Q : ∃x∃y∃z(R(x, z) ∧ R(y, z) ∧ x 6= y)

Reduction techniques (Fuxman, Miller; IIWeb 2003)

Q : ∃x∃y(R(x, y) ∧R(y, c))

Using Ehrenfeucht-Fraisse games (Wijsen; DBPL 2007)

32

Getting More from ASPs

• Complexity of query evaluation from disjunctive logic programs
(DLPs) coincides with the complexity of CQA

• However, for some classes of queries and ICs, CQA has a lower
complexity, e.g. in PTIME

• The landscape between FO rewritable cases andΠP
2 -completeness

for CQA still not quite clear

• Results obtained in the middle ground are scattered, isolated,
and rather ad hoc

• The “logics” of CQA is not fully understood yet

Some natural questions arise ...

33

• Can we identify classes of ICs and queries for which repair
programs can be automatically “simplified” into queries of lower
complexity?

Can we reobtain previous classes?

Can we identify new ones?

Can we obtain new complexity results?

• Can we better understand the logic of CQA through the anal-
ysis of repair programs?

• Can we take advantage of results about updates of LPs to deal
with the problem of CQA under updates? (almost untouched
problem)

Some progress in this research program ... (ongoing work)

34

SO Rewriting of Repair Programs (and more)

Example: P (X,Y) : X → Y

D = {P (a, b), P (a, c), P (d, e)}

Repair program:

P (x, y, f) ∨ P (x, z, f)← P (x, y,d), P (x, z,d), y 6= z

P (x, y, t∗∗)← P (x, y,d), not P (x, y, f)

P (a, b,d). P (a, c,d). P (d, e,d).

This program can be seen as a FO specification (forget about
the stable model semantics), i.e. a FO conjunction Ψρ of

P (x, y) ∧ P (x, z) ∧ y 6= z → Pf (x, y) ∨ Pf (x, z)

P (x, y) ∧ ¬Pf (x, y)→ P⋆⋆(x, y)

P (a, b) ∧ P (a, c) ∧ P (d, e)

35

Quite recently a stable model semantics has been introduced for
any FO sentence (Ferraris, Lee, Lifschitz; IJCAI 2007)

Ψ 7→ Ψ′ and Ψ′ is a SO sentence (same signature)

The stable models of Ψ are the Herbrand models of Ψ′ (the
stable sentence)

For DLPs, this “stable semantics” coincides with their original
stable model semantics

36

In our case:

• The stable sentence for a repair program (as a FO sentence
Ψρ) is always a circumscription

Parallel circumscription of all the predicates in the program

• Given the structure of the repair program (also including the
query program), the circumscription becomes a prioritized cir-
cumscription

In the example, minimize predicates in this order: database
predicates, predicates annotated with f , predicates annotated
with t⋆⋆, the Ans predicate

• Most complex is minimization of predicates defined by dis-
junctive rules (those associated to the ICs)

For all the others we can apply predicate completion

37

In the example, Ψ′

ρ becomes

∀xy(P (x, y) ≡ (x = a ∧ y = b) ∨ (x = a ∧ y = c) ∨ (x = d ∧ y = e))

∧ ∀xy((P (x, y) ∧ ¬Pf (x, y)) ≡ P⋆⋆(x, y)) ∧

∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z → (Pf (x, y) ∨ Pf (x, z)) ∧

¬∃U((U < Pf) ∧ ∀xyz(P (x, y) ∧ P (x, z) ∧ y 6= z →

(U(x, y) ∨ U(x, z))) (∗)

Predicate Pf minimized via the last conjunct (*) of Ψ′

ρ

U < Pf stands for
∀xy(U(x, y)→ Pf (x, y)) ∧ ∃xy(Pf (x, y) ∧ ¬U(x, y))

Consistent query answering? Q(x, y) : P (x, y)

Ψ′

ρ ∧ ∀x∀y(Ans(x, y) ≡ P⋆⋆(x, y))
?

|= Ans(x, y)

Classical logical entailment! Anything else?

38

Eliminate SO quantifiers from Ψ′

ρ ...
(Doherty, Lukaszewicz, Szalas; JAR 1997)

Let κ(x, y, z) stand for P (x, y) ∧ P (x, z) ∧ y 6= z

The negation of (*) is logically equivalent to

∃st∃f∃U∀x∀r(∀x1y1z1(¬κ(x1, y1, z1)∨f(x1, y1, z1) = ∨(y1, z1))
∧ ∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z)∨U(x, r)))
∧ ∀uv(¬U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ ¬U(s, t)))

(t = ∨(t1, t2) stands for t = t1 ∨ t = t2)

Now we are ready to apply Ackermann’s lemma

The formula is of the form

∃st∃f∃U∀x∀r((A(x, r) ∨ U(x, r)) ∧B U
¬U

) (**)

B U
¬U

is formula B with predicate U replaced by ¬U

39

A(x, r) : ∀yz(∀yz(¬κ(x, y, z) ∨ r 6= f(x, y, z))

B(U) : ∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1)) ∧

∀uv(U(u, v) ∨ Pf (u, v)) ∧ (Pf (s, t) ∧ U(s, t)))

B is positive in U

The subformula in (**) starting with ∃U can be equivalently
replaced by B U

A(x,r)
, eliminating U :

∃st∃f(∀x1y1z1(¬κ(x1, y1, z1) ∨ f(x1, y1, z1) = ∨(y1, z1)) ∧

∀uv(∀yz(¬κ(u, y, z) ∨ v 6= f(u, y, z) ∨ Pf (u, v)) ∧

(Pf (s, t) ∧ ∀y1z1(¬κ(s, y1, z1) ∨ t 6= f(s, y1, z1)))

Unskolemizing:

∃st∀xyz∃w((¬κ(x, y, z) ∨ w = ∨(y, z)) ∧
(¬κ(x, y, z) ∨ Pf (u,w)) ∧
(Pf (s, t) ∧ (x 6= s ∨ ¬κ(x, y, z) ∨ t 6= w)))

40

Its negation is equivalent (via other conjuncts in page 37) to

∀st(Pf (s, t)→ ∃xyz∀w(κ(x, y, z)∧
(Pf (x,w)→ (x = s ∧ t = w)))),

which can be replaced for (*) in page 37, obtaining an equivalent
FO specification of predicate Pf

A FO theory Ψ′′

ρ we can do CQA with

Q(x, y) : P (x, y)

Ψ′′

ρ ∧ ∀xy(Ans(x, y) ≡ P⋆⋆(x, y))
?

|= Ans(x, y)

Classical FO entailment!

In this case, by simple logical transformation, equivalent to

D |= P (x, y) ∧ ¬∃z(P (x, z) ∧ z 6= y)

Reobtaining the original FO rewriting!

41

Final Remarks

• For FDs (and KCs), this methodology provably works

Has to be exploited now ...

• Apparently FO rewritings in (Arenas et al.; 1999) can be reobtained
(for other universal ICs too)

• The query is posed on top of a FO specification of repairs

The database (its completion) lies at the bottom

Like doing query answering in DBs with complex, expressive FO
views that are implicitly defined

• Interesting to investigate the kind of FO theories obtained

42

• The FO specification of repairs can be used to reobtain FO
and other new rewritings for CQA

• Use FO theory to analyze complexity of CQA

• Ackermann’s Lemma can be extended and SO quantifier elim-
ination produces a Fixpoint formula (Nonnengart, Szalas; 1998)

Relevant cases in CQA?

Relevant for PTIME vs. FO rewriting?

