Visualization and Exploration

January 25, 2016

Visualization

Reasons to use visualization:

- to find problems with the data
- to explore dependencies and features
- to present results

General guidelines:

- Display as much information as possible with least amount of effort required from the viewer to get it.
- Clarity is paramount - make the data stand out
- avoid overusing colours, shapes, patterns
- avoid distracting elements that don't add value, e.g. grid lines, background colours
- use the right aspect ratio
- Visualization is an iterative process

Visualization in R

Standard graphing capabilities in R are the graphics package.

Package lattice improves by adding easy display of multivariate and conditional relationships. Implementation of the trellis project:
http://ect.bell-labs.com/sl/project/trellis/
See chapters 3 and 4 in "Using R for Data Analysis and Graphics" for introduction and examples:
http://cran.r-project.org/doc/contrib/usingR.pdf
Also try:

```
demo(graphics)
demo(lattice)
```


Visualization in R

Package ggplot 2 is the new kid on the block. Implements the The Grammar of Graphics by Leland Wilkinson:
https://www.springer.com/statistics/computational+
statistics/book/978-0-387-24544-7
Documentation at http://docs.ggplot2.org/current/

- In ggplot2 graphs are defined on data frames.
- Graphs are produced by adding layers and transformations.
- Data are displayed using aesthetics, such as position, colour, size, shape

Package ggplot2

Some graph elements in ggplot2:

- geom: geometric objects define the type of plot
- stat: statistical transformations
- facet: displays subsets of the data in different panels allowing for visualization of conditional relationships.

Use ggplot function to create graph object and add layers with the + operator.

Use qplot function for a simplified interface to ggplot2.

Example

```
qplot(mpg, disp, data=mtcars, colour=factor(cyl),
main="Engine displacement vs MPG", xlab="MPG",
ylab="Engine displacement (cb.in)")
```

Engine displacement vs MPG

Example

```
qplot(mpg, disp, data=mtcars, colour=factor(cyl),
    main="Engine displacement vs MPG", xlab="MPG",
    ylab="Engine displacement (cb.in)") +
theme_bw() + labs(colour="Cylinders")
```


Dataset for examples

A copy of the file is available on the course webpage.
custdata <- read.table("custdata.tsv", header=T, sep="\t")

The business objective is to predict whether your customer has health insurance. This synthetic dataset contains customers information for ones whose health insurance status is known.

Spot problems

Missing values

```
> dim(custdata)
[1] 1000 11
> mv <- colSums(is.na(custdata))
> cbind(mv) % cbind to display as column
    mv
custid 0
sex 0
is.employed 328
income 0
marital.stat 0
health.ins 0
housing.type 56
recent.move 56
num.vehicles 56
age 0
state.of.res 0
```


Spot problems

Values out of range

```
> summary(custdata$income)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
    -8700 14600 35000 53500 67000 615000
> summary(custdata$age)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
        0.0 38.0 50.0 51.7 64.0 146.7
```


Values out of range

> qplot(age, data=custdata)
stat_bin: binwidth defaulted to range/30. Use 'binwidth $=x^{\prime}$ to adjust this.

Values out of range

qplot(age, data=custdata, binwidth=5)

Values out of range

qplot(income, data=custdata, binwidth=10000)

Values out of range

library (scales)
qplot(income, data=custdata, binwidth=10000) + scale_x_continuous(labels=dollar)

Values out of range

qplot(income, data=custdata, binwidth=5000) + scale_x_continuous(labels=dollar)

- qplot selects automatically the type of graph from the number and type of arguments
- for a single numerical variable the default is histogram
- the same plot can be done using the following commands

```
ggplot(custdata) +
    geom_histogram(aes(x=income), binwidth=5000) +
    scale_x_continuous(labels=dollar)
```


Logarithmic scale

- Use logarithmic scale for variables where percent change is more important than change in value.
- Use logarithmic scale when data spans a wide range, e.g. multiple orders of magnitude

Logarithmic histogram

```
custdata2 <- subset(custdata, income > 0)
qplot(income, data=custdata2, binwidth=5000) +
    scale_x_log10(breaks=10^(1:6), labels=dollar)
```


Logarithmic histogram

binwidth should be in percent change, not dollar amount qplot (income, data=custdata2, binwidth=0.05) + scale_x_log10(breaks=10^(1:6), labels=dollar)

Density plots

qplot(income, data=custdata2, geom="density") + scale_x_log10(breaks=10^(1:6), labels=dollar)

Histogram vs density

- Both apply to continuous variables.
- Both give an idea of the underlying probability distribution.
- Two histograms of the same data may look very different with different bin widths and choosing the best bin width is important.
- A density plot is a "continuous histogram". It plots an estimated probability distribution function.

Bar charts

A bar chart is a histogram for categorical variable. It is the default geometry in qplot for factor and logical variables qplot(marital.stat, data=custdata)

Bar charts

qplot(state.of.res, data=custdata)

What a mess!

Bar charts

```
qplot(state.of.res, data=custdata) + coord_flip()
```


Better! When you have more than a few categories, use horizontal bars!

Bar charts

```
qplot(state.of.res, data=custdata) + coord_flip() +
    theme(axis.text.y=element_text(size=rel(0.6)))
```


Better yet! The labels are small, but at least they don't overlap.

Sorted bar chart

```
custdata <- transform(custdata, state.of.res.ord=
    reorder(state.of.res, state.of.res, length))
qplot(state.of.res.ord, data=custdata) + coord_flip() +
    theme(axis.text.y=element_text(size=rel(0.6)))
```


Aside: reorder a factor

Let's reorder states by average number of vehicles per customer.

state.by.num. vehicles $<-$ reorder(custdata\$state.of.res, custdata\$num.vehicles, mean, na.rm=TRUE)

What is the average number of vehicles per customer in each state?

In Alabama:
with(custdata, mean(
num. vehicles[state.of.res=="Alabama"], na.rm=TRUE
Repeat for each of the 50 states. There has to be a better way!

Aside: reorder a factor

Let's reorder states by average number of vehicles per customer.

```
state.by.num.vehicles <- reorder(custdata$state.of.res,
    custdata$num.vehicles, mean, na.rm=TRUE)
```

What is the average number of vehicles per customer in each state?

In Alabama:

```
with(custdata, mean(
    num.vehicles[state.of.res=="Alabama"], na.rm=TRUE
    ))
```

Repeat for each of the 50 states. There has to be a better way!

Aside

Using base R

\# split
pieces <- split(custdata, custdata\$state.of.res)
\# apply
result <- lapply(pieces, function(p) data.frame(state.of.res=p\$state.of.res [[1]], state.avg.vehicles=mean (p\$num.vehicles, na.rm=TRUE))
)
\# combine
result <- do.call("rbind", result)

Aside

Package plyr implements split-apply-combine framework very neatly in a single function call.

```
library(plyr)
result <- ddply(
    custdata, # dataframe
    "state.of.res", # split-by variables
    summarize, # function to apply to each piece
    # function arguments
    state.avg.vehicles=mean(num.vehicles, na.rm=TRUE)
)
```


Single variable

To summarize visualization of single variable

- For a numerical variable use a histogram or density plot to look for outliers, or incorrect values.
- Also get a feel for the distribution - is it symmetric, normal, lognormal.
- For categorical variables use a bar chart to compare frequencies of categories.

Scatter plot

```
custdata2 <- with(custdata,
    subset(custdata, age>0 & age < 100 & income > 0))
qplot(age, income, data=custdata2) +
    scale_y_continuous(labels=dollar)
```


Scatter plot

qplot(age, income, data=custdata2, colour=health.ins) + scale_y_continuous(labels=dollar)

2D histogram

qplot(age, income, data=custdata2, geom="bin2d") + scale_y_continuous(labels=dollar)

2D histogram

library (hexbin)
qplot(age, income, data=custdata2, geom="hex") + scale_y_continuous(labels=dollar)

2D histogram

```
library(hexbin)
ggplot(custdata2, aes(x=age, y=income)) +
    geom_hex(binwidth=c(5, 10000)) +
    geom_smooth(color="white", se=F) +
    ylim(0,200000)
```


Scatter plot

Also works for continuous vs. categorical.
qplot(age, health.ins, data=custdata2)

Scatter plot

This is better - it gives a better feel for the density at each level.

```
qplot(age, health.ins, data=custdata2,
    position=position_jitter(height=0.2))
```


Scatter plot

qplot(age, health.ins, data=custdata2, color=log10(income), position=position_jitter(height=0.2))

Bar chart for two variables

Use the fill aesthetic as the second variable

```
qplot(marital.stat, data=custdata2, fill=health.ins)
```


Bar chart for two variables

Some prefer side-by-side

```
ggplot(custdata2) +
    geom_bar(aes(marital.stat, fill=health.ins),
        position="dodge")
```


Bar chart for two variables

Filled bar chart shows the proportion of insured within each level of marital status.

```
ggplot(custdata2) +
    geom_bar(aes(marital.stat, fill=health.ins),
position="fill")
```


Bar chart for two variables

Add a cloud of points to convey the size of each level.

```
last_plot() + geom_point(aes(x=marital.stat, y=-0.05),
    position=position_jitter(h=0.02), size=0.75, alpha=0.75)
```


Bar chart for two variables

More than two levels

```
ggplot(custdata2) +
    geom_bar(aes(housing.type, fill=marital.stat),
    position="dodge")
```


Bar chart for two variables

Remove NA from housing.type and fix labels

ggplot(subset (custdata2, !is.na(housing.type))) +

```
geom_bar(aes(housing.type, fill=marital.stat),
    position="dodge") +
theme(axis.text.x=element_text(angle=15))
```


housing.type

Bar chart for two variables

Use facetting instead of fill to get a better picture.

```
ggplot(subset(custdata2, !is.na(housing.type))) +
    geom_bar(aes(marital.stat)) +
    facet_wrap(~housing.type, scales="free_y") +
    theme(axis.text.x=element_text(size=rel(0.8)))
```


Visualization with R

Further readings

- A short course on ggplot 2 by Hadley Wickham
http://courses.had.co.nz/11-rice/

