Visualization and Exploration

January 25, 2016

Visualization

Reasons to use visualization:

- to find problems with the data
- to explore dependencies and features
- to present results

General guidelines:

- Display as much information as possible with least amount of effort required from the viewer to get it.
- Clarity is paramount make the data stand out
 - avoid overusing colours, shapes, patterns
 - avoid distracting elements that don't add value, e.g. grid lines, background colours
 - use the right aspect ratio
- Visualization is an iterative process

Visualization in R

Standard graphing capabilities in R are the graphics package.

Package lattice improves by adding easy display of multivariate and conditional relationships. Implementation of the *trellis* project:

http://ect.bell-labs.com/sl/project/trellis/

See chapters 3 and 4 in "Using R for Data Analysis and Graphics" for introduction and examples:

http://cran.r-project.org/doc/contrib/usingR.pdf

Also try:

demo(graphics)
demo(lattice)

Visualization in R

Package ggplot2 is the new kid on the block. Implements the *The Grammar of Graphics* by Leland Wilkinson:

https://www.springer.com/statistics/computational+ statistics/book/978-0-387-24544-7

Documentation at http://docs.ggplot2.org/current/

- ► In ggplot2 graphs are defined on data frames.
- Graphs are produced by *adding* layers and transformations.
- Data are displayed using *aesthetics*, such as position, colour, size, shape

Package ggplot2

Some graph elements in ggplot2:

- geom: geometric objects define the type of plot
- stat: statistical transformations
- facet: displays subsets of the data in different panels allowing for visualization of conditional relationships.

Use ${\tt ggplot}$ function to create graph object and add layers with the + operator.

Use <code>qplot</code> function for a simplified interface to <code>ggplot2</code>.

Example

qplot(mpg, disp, data=mtcars, colour=factor(cyl), main="Engine displacement vs MPG", xlab="MPG", ylab="Engine displacement (cb.in)")

Example

```
qplot(mpg, disp, data=mtcars, colour=factor(cyl),
    main="Engine displacement vs MPG", xlab="MPG",
    ylab="Engine displacement (cb.in)") +
    theme_bw() + labs(colour="Cylinders")
```


Dataset for examples

A copy of the file is available on the course webpage.

custdata <- read.table("custdata.tsv", header=T, sep="\t")</pre>

The business objective is to predict whether your customer has health insurance. This synthetic dataset contains customers information for ones whose health insurance status is known.

Spot problems

Missing values

> dim(custdata)								
[1] 1000 11								
> mv <- colSums(is.na(custdata))								
> cbind(mv)	% cbind to display as column							
	mv							
custid	0							
sex	0							
is.employed	328							
income	0							
marital.stat	0							
health.ins	0							
housing.type	56							
recent.move	56							
num.vehicles	56							
age	0							
state.of.res	0							

Spot problems

Values out of range

> summary(custdata\$income)							
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	
	-8700	14600	35000	53500	67000	615000	
>							
>	summary(custdata\$age)						
	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.	
	0.0	38.0	50.0	51.7	64.0	146.7	

> qplot(age, data=custdata)
stat_bin: binwidth defaulted to range/30. Use
'binwidth = x' to adjust this.

qplot(age, data=custdata, binwidth=5)

qplot(income, data=custdata, binwidth=10000)

æ

ヘロト 人間 とく ヨン 人 ヨン

library(scales)
qplot(income, data=custdata, binwidth=10000) +
 scale_x_continuous(labels=dollar)

æ

・ロット (雪) ・ (日) ・ (日)

qplot(income, data=custdata, binwidth=5000) +
 scale_x_continuous(labels=dollar)

æ

イロト 不得 トイヨト イヨト

- qplot selects automatically the type of graph from the number and type of arguments
- for a single numerical variable the default is histogram
- the same plot can be done using the following commands

```
ggplot(custdata) +
   geom_histogram(aes(x=income), binwidth=5000) +
   scale_x_continuous(labels=dollar)
```


Logarithmic scale

- Use logarithmic scale for variables where percent change is more important than change in value.
- Use logarithmic scale when data spans a wide range, e.g. multiple orders of magnitude

Logarithmic histogram

custdata2 <- subset(custdata, income > 0) qplot(income, data=custdata2, binwidth=5000) + scale_x_log10(breaks=10^(1:6), labels=dollar)

Logarithmic histogram

binwidth should be in percent change, not dollar amount

qplot(income, data=custdata2, binwidth=0.05) +
 scale_x_log10(breaks=10^(1:6), labels=dollar)

э

・ロット (雪) ・ (日) ・ (日)

Density plots

qplot(income, data=custdata2, geom="density") +
 scale_x_log10(breaks=10^(1:6), labels=dollar)

Histogram vs density

- Both apply to continuous variables.
- Both give an idea of the underlying probability distribution.
- Two histograms of the same data may look very different with different bin widths and choosing the best bin width is important.
- A density plot is a "continuous histogram". It plots an estimated probability distribution function.

A bar chart is a histogram for categorical variable. It is the default geometry in <code>qplot</code> for factor and logical variables

qplot(marital.stat, data=custdata)

ъ

qplot(state.of.res, data=custdata)

What a mess!

qplot(state.of.res, data=custdata) + coord_flip()

Better! When you have more than a few categories, use horizontal bars!

qplot(state.of.res, data=custdata) + coord_flip() +
 theme(axis.text.y=element_text(size=rel(0.6)))

Better yet! The labels are small, but at least they don't overlap.

э

・ロット (雪) (日) (日)

Sorted bar chart

qplot(state.of.res.ord, data=custdata) + coord_flip() +
 theme(axis.text.y=element_text(size=rel(0.6)))

э

ヘロト ヘポト ヘヨト ヘヨト

Aside: reorder a factor

Let's reorder states by average number of vehicles per customer.

What is the average number of vehicles per customer in each state?

In Alabama: with(custdata, mean(num.vehicles[state.of.res=="Alabama"], na.rm=TRUE))

Repeat for each of the 50 states. There has to be a better way!

Aside: reorder a factor

Let's reorder states by average number of vehicles per customer.

What is the average number of vehicles per customer in each state?

In Alabama:

```
with(custdata, mean(
    num.vehicles[state.of.res=="Alabama"], na.rm=TRUE
))
```

Repeat for each of the 50 states. There has to be a better way!

Aside

Using base R

```
# split
pieces <- split(custdata, custdata$state.of.res)
# apply
result <- lapply(pieces, function(p) data.frame(
    state.of.res=p$state.of.res[[1]],
    state.avg.vehicles=mean(p$num.vehicles, na.rm=TRUE)
    )
# combine
result <- do.call("rbind", result)</pre>
```


Aside

Package plyr implements split-apply-combine framework very neatly in a single function call.

Single variable

To summarize visualization of single variable

- For a numerical variable use a histogram or density plot to look for outliers, or incorrect values.
- Also get a feel for the distribution is it symmetric, normal, lognormal.
- For categorical variables use a bar chart to compare frequencies of categories.

qplot(age, income, data=custdata2, colour=health.ins) +
 scale_y_continuous(labels=dollar)

ъ

2D histogram

qplot(age, income, data=custdata2, geom="bin2d") +
 scale_y_continuous(labels=dollar)

æ

A D > A P > A D > A D >

2D histogram

library(hexbin)

qplot(age, income, data=custdata2, geom="hex") +
 scale_y_continuous(labels=dollar)

ъ

・ロット (雪) (日) (日)

2D histogram

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Also works for continuous vs. categorical.

qplot(age, health.ins, data=custdata2)

This is better – it gives a better feel for the density at each level.

```
qplot(age, health.ins, data=custdata2,
    position=position_jitter(height=0.2))
```


(日)

qplot(age, health.ins, data=custdata2, color=log10(income), position=position_jitter(height=0.2))

э

イロト イ理ト イヨト イヨト

Use the fill aesthetic as the second variable

qplot(marital.stat, data=custdata2, fill=health.ins)

Some prefer side-by-side

æ

Filled bar chart shows the proportion of insured within each level of marital status.

Add a cloud of points to convey the size of each level.

More than two levels

イロン 不得 とくほ とくほ とうほ

Remove NA from housing.type and fix labels

그 가지말 가지말 가지말 가 드릴

housing.type

Use facetting instead of fill to get a better picture.

ggplot(subset(custdata2, !is.na(housing.type))) +
geom_bar(aes(marital.stat)) +
facet_wrap(~housing.type, scales="free_y") +
theme(axis.text.x=element_text(size=rel(0.8)))

Visualization with R

Further readings

A short course on ggplot2 by Hadley Wickham http://courses.had.co.nz/11-rice/

