Data Mining and Machine Learning

February 08, 2016

Where are we?

- Ask a question
- Get relevant data
- Prepare data for analysis
- outliers, missing values, incorrect values
- Explore data
- understand the world as it is (was)
- Statistical model
- estimate/train and validate model Today
- predict what will (likely) happen
- Communicate results
- tell a story
- recommend

Machine Learning vs Data Mining

- Machine Learning is the design of algorithms that can produce new knowledge from experience and do this automatically, without online human guidance.
- Data mining is carried out by a person with a particular goal in mind. It uses machine learning algorithms and may feed back to design better machine learning algorithms for the particular goal.

General Idea of Modelling

$$
Y=f\left(X_{1}, \ldots, X_{p}\right)+\epsilon
$$

- Y is the dependent variable, also known as response or target.
- X_{i} are the independent variables, also known as predictors or features.

The solution of the model is \hat{f}, which yields

$$
\hat{Y}=\hat{f}\left(X_{1}, \ldots, X_{p}\right)
$$

- The error of \hat{f} is reducible, because we can build a better approximation.
- The error ϵ is irreducible.

Simple Linear Regression

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

The coefficients are calculated by minimizing the sum of squared residuals (RSS)

$$
R S S=\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|^{2} \longrightarrow \min
$$

Advertising dataset

```
> Advertising <- read.csv(
    'http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv')
>
> head(Advertising)
    X TV Radio Newspaper Sales
\begin{tabular}{lllll}
1 & 1 & 230.1 & 37.8 & 69.2
\end{tabular} 22.1
2 2 44.5 39.3 45.1 10.4
3 3
4 4 151.5 41.3 58.5 18.5
5 5 180.8 10.8 58.4 12.9
6 6 8.7 48.9 75.0 7.2
> dim(Advertising)
[1] 200 5
```


Linear Regression

Use lm to solve linear models

```
> mod <- lm(Sales ~ TV, data=Advertising)
> mod
Call:
lm(formula = Sales ~ TV, data = Advertising)
Coefficients:
(Intercept) 
```


Linear Regression

Visualize the result

```
ggplot(mod) + geom_point(aes(x=TV, y=Sales)) +
    geom_line(aes(x=TV, y=.fitted), color="blue" )
```


Linear Regression

Residuals marked in red

```
last_plot() +
    geom_linerange(aes(x=TV, ymin=.fitted, ymax=Sales),
    color="red")
```


Linear Regression

```
> mod <- lm(Sales~TV+Radio+Newspaper, data=Advertising)
> summary(mod)
Call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = Advertising)
```

Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-8.8277	-0.8908	0.2418	1.1893	2.8292

Coefficients:

| | Estimate | Std. Error t value | $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 2.938889 | 0.311908 | 9.422 | $<2 e-16 \quad * * *$ |
| TV | 0.045765 | 0.001395 | 32.809 | $<2 e-16 \quad * * *$ |
| Radio | 0.188530 | 0.008611 | 21.893 | $<2 e-16 \quad * * *$ |
| Newspaper | -0.001037 | 0.005871 | -0.177 | 0.86 |

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972 , Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < $2.2 \mathrm{e}-16$

Model Accuracy

- Residual Standard Error (RSE)

$$
R S E=\sqrt{\frac{R S S}{n-p-1}}
$$

is an estimate of the standard deviation of ϵ

- R^{2} statistic measures the ammount of variation in Y explained by the model.

$$
R^{2}=\frac{T S S-R S S}{T S S}=1-\frac{R S S}{T S S}
$$

where $T S S$ is the total sum of squares.

$$
T S S=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

Variable Selection

```
> summary(lm(Sales~TV, data=Advertising))
Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
>
> summary(lm(Sales~TV+Radio, data=Advertising))
Residual standard error: 1.681 on }197\mathrm{ degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
>
> summary(lm(Sales~TV+Radio+Newspaper, data=Advertising))
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```


Variable Selection

With p predictors there are 2^{1+p} linear regression models!

- Forward selection - start with empty model and add the variable that improves the most. Iterate until improvement is not significant.
- Backward selection - start with a model including all variables and iteratively remove the one with the largest p-value.
- Mixed selection - like forward selection, but do a backward step if a p-value gets too high.

Stepwise Regression

```
> library(MASS)
> fit <- lm(Sales~TV+Radio+Newspaper, data=Advertising)
> step <- stepAIC(fit, direction="both")
> step$anova # display results
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
Sales ~ TV + Radio + Newspaper
Final Model:
Sales ~ TV + Radio
Step Df Deviance Resid. Df Resid. Dev AIC
1 196 556.8253 212.7868
2 - Newspaper 1 0.08871717 197 556.9140 210.8187
```


Categorical predictors

- For binary predictor use a dummy variable

$$
d_{i}=\left\{\begin{aligned}
0, & x=\text { FALSE } ; \\
1, & x=\text { TRUE } .
\end{aligned}\right.
$$

- The coefficient β_{i} is the average difference in response between the two categories.
- For predictors with m levels use $m-1$ dummy variables.

$$
d_{i j}=\left\{\begin{array}{ll}
0, & x \neq \text { category } j ; \\
1, & x=\text { category } j .
\end{array} \quad \text { for } j=1, \ldots, m-1\right.
$$

- Then $\beta_{i j}$ is the average difference between categories j and m.
- Do not use integers $1,2, \ldots, m$ to represent the m categories!

Logistic regression

- If the response, Y, is a binary categorical variable we may use regression to estimate the probability $p(Y)$.

$$
p(Y)=\beta_{0}+\beta_{1} X
$$

Logistic regression

- The logistic function,

$$
f(x)=\frac{e^{x}}{1+e^{x}},
$$

is always between 0 and 1 .

- In logistic regression we model $p(Y)$ as

$$
p(Y)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
$$

or, equivalently,

$$
\log \left(\frac{p(Y)}{1-p(Y)}\right)=\beta_{0}+\beta_{1} X
$$

- The ratio $p(Y) /(1-p(Y))$ is called odds of success.

Logistic regression

- Coefficients can be interpreted as the amount of change in log-odds resulting from change in X by 1 unit.
- For example, if $\beta_{1}=-0.2$, then when X increases from 0 to 1 , the log-odds changes by -0.2 .

Then the odds change by a factor of $e^{-0.2}=0.82$, i.e. the odds decline by 18\%

Logistic Regression Example

- Dataset Default from package ISLR contains simulated data of credit card defaults.
- Use glm with family=binomial to run a logistic regression.

```
> library(ISLR)
> data(Default)
> lr.fit <- glm(default ~ ., data=Default, family=binomial)
```

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16 ***
studentYes $-6.468 e-01 \quad 2.363 e-01-2.738 \quad 0.00619$ **
balance $5.737 \mathrm{e}-032.319 \mathrm{e}-0424.738<2 \mathrm{e}-16$ ***
income $3.033 e-06 \quad 8.203 e-06 \quad 0.370 \quad 0.71152$

Logistic Regression Example

```
> # Our model's response is probabilities
> lr.prob <- predict(lr.fit, type="response")
> lr.prob[1:5]
    1 2 3 4
0.0014287239 0.0011222039 0.0098122716 0.0004415893 0.0019355062
>
> # Convert the probabilities to predicted values
> lr.pred <- cut(lr.prob, breaks=c(0,0.5,1),
    labels=c("No", "Yes"), include.lowest=TRUE)
> lr.pred[1:5]
[1] No No No No No
Levels: No Yes
>
> # construct the confusion matrix
> lr.ct <- table(Actual=Default$default, Predicted=lr.pred)
    Predicted
Actual No Yes
    No 9627 40
    Yes 228 105
```


Logistic Regression Example

- Accuracy of the model is the proportion of cases that were predicted correctly
> (lr.ct["Yes", "Yes"] + lr.ct["No", "No"]) / sum(lr.ct)
[1] 0.9732
> \# Leave 20\% of dataset for testing
> test <- sample(c (FALSE, TRUE), nrow(Default), replace=TRUE, prob=c(0.8,0.2))
> train <- !test
> train.fit <- glm(default ~ ., data=Default, family=binomial, subset=train)
> test.prob <- predict(train.fit, type="response", newdata=subset (Default, test))
$>$ test.pred <- cut (test.prob, breaks=c $(0,0.5,1)$,
labels=c("No", "Yes"), include.lowest=TRUE)
> (test.ct <- table(Adtual=Default\$default[test], Predicted=test.pred)) Predicted
Adtual No Yes
No 18781
Yes 4425
> sum(diag(test.ct)) / sum(test.ct) \# Accuracy:
[1] 0.9768994

Rare groups

- Notice that the probability of default is low, i.e. the people who default are a rare group

```
> (tbl <- table(Default$default))
    No Yes
9667 333
> tbl["Yes"] / sum(tbl)
    Yes
0.0333
```

- If we want to analyze only the people who default, we find that our method misses more cases default than identifies! That's bad!

```
> test.ct
    Predicted
Adtual No Yes
    No 1878 1
    Yes 44 25
```


Sensitivity and Specificity

- Sensitivity is the fraction of actual positives that were correctly classified.
- Specificity is the fraction of actual negatives that were correctly classified.

```
> # Sensitivity is
> test.ct["Yes", "Yes"] / sum(test.ct["Yes", ])
[1] 0.3623188
> # Specificity is
> test.ct["No", "No"] / sum(test.ct["No", ])
[1] 0.9994678
```


Precision and Recall

- Precision is the fraction of cases classified as positives that actually are.
- Recall is the fraction of actual positives that were correctly classified. Same as sensitivity.

```
> # Precision is
> test.ct["Yes", "Yes"] / sum(test.ct[, "Yes"])
[1] 0.9615385
> # Recall is the same as sensitivity
> test.ct["Yes", "Yes"] / sum(test.ct["Yes", ])
[1] 0.3623188
```


ROC curve

- ROC curve is a plot of sensitivity vs. specificity for varying cut-off values.

```
roc.plot <- function(Actual, Prob) {
    ss <- lapply( seq(0.01, 1-0.01, by=0.01), function(p) {
        tt <- table( Actual, factor(Prob>p, levels=c(FALSE, TRUE)) )
        data.frame( sensitivity=tt[2,2]/sum(tt[2,]),
                                specificity=tt[1,1]/sum(tt[1,]) ) })
    ss <- do.call("rbind", ss)
    qplot(1-specificity, sensitivity, data=ss) +
        xlim(0,1) + ylim(0,1) +
        geom_abline(intercept=0, slope=1) + theme_bw()
}
```

ROC curve

roc.plot(Default\$default[test], test.prob)

Visualization

```
train.fit <- glm(default ~ balance + income, data=Default,
    family=binomial, subset=train)
grid <- with(Default, expand.grid(
    balance=seq(floor(min(balance)), ceiling(max(balance)), length.out=201),
    income=seq(floor(min(income)), ceiling(max(income)), length.out=201)))
grid <- mutate(grid, prob=predict(train.fit, newdata=grid,
type="response"), pred=factor(prob>0.5, labels=levels(Default$default)))
qplot(balance, income, data=Default, colour=default, size=I(0.9)) +
    geom_point(aes(color=pred), data=grid, size=I(0.2))
```


Visualization

k-Nearest Neighbour

- For each point where prediction is needed, find the k nearest points in the training set and use majority vote. Ties are broken at random.

```
library(class)
train.X <- model.matrix(~0+balance+income, data=subset(Default,train))
test.X <- model.matrix(~0+balance+income, data=subset(Default,test))
train.Y <- Default$default[train]
test.Yknn <- knn(train.X, test.X, train.Y, k=5)
table(Actual=Default$default[test], Predicted=test.Yknn)
    Predicted
Actual No Yes
    No 1912 11
    Yes 54 4
grid.knn <- knn(train.X, grid[,c("balance", "income")], train.Y, k=5)
p <- qplot(balance, income, data=Default, colour=default, size=I(0.9))
p <- p + geom_point(aes(color=grid.knn), data=grid, size=I(0.2))
p + theme_bw() + theme(legend.justification=c(1,1),
        legend.position=c(0.95,0.95))
```


Visualization of k-NN

Trees

- Split the p-dimensional space of X_{1}, \ldots, X_{p} into J disjoint regions, R_{1}, \ldots, R_{J}.
- For every point in R_{j} set the predicted value of \hat{Y} to the average observed Y in R_{j}.

How to form the regions R_{j}, so that:

$$
R S S=\sum_{j=1}^{J} \sum_{i \in R_{j}}\left(y_{i}-\bar{y}_{R_{j}}\right)^{2} \longrightarrow \min
$$

Trees

- Recursive binary splitting algorithm is a greedy, top-down solution.
- We select a predictor X_{j} and a cut point c_{j} and form two regions $R_{1}=\left\{X \mid X_{j}<c_{j}\right\}$ and $R_{2}=\left\{X \mid c_{j} \leq X_{j}\right\}$ so that the resulting RSS is minimal.
- At the next step we do the same, but this time we split one of the regions we already have in a way that makes the greatest improvement of RSS.

Trees

- Trees are intuitive: easy to explain and easy to understand by non-experts.
- Easily handle numerical and categorical variables with any number of levels in both predictors and response without need for dummy variables.
- Generally the predictive power is lower than other methods.

Example of Regression Tree

```
data(Hitters)
H <- Hitters[, c("Hits", "Years", "Salary")]
H <- subset(H, !is.na(Salary))
library(tree)
tree.H <- tree(Salary~Hits+Years, data=H)
node), split, n, deviance, yval
            * denotes terminal node
1) root 263 53320000 535.9
    2) Years < 4.5 90 6769000 225.8
        4) Hits < 39.5 5 3131000 676.5 *
        5) Hits > 39.5 85 2564000 199.3
        10) Years < 3.5 58 309400 138.8 *
        11) Years > 3.5 27 1586000 329.3 *
    3) Years > 4.5 173 33390000 697.2
        6) Hits < 117.5 90 5312000 464.9
        12) Years < 6.5 26 644100 334.7 *
        13) Years > 6.5 64 4048000 517.8 *
        7) Hits > 117.5 83 17960000 949.2
        14) Hits < 185 76 13290000 914.3
        28) Years < 5.5 8 82790 622.5 *
        29) Years > 5.5 68 12450000 948.7 *
        15) Hits > 185 7 3571000 1328.0 *
```


Example of Regression Tree

```
plot(tree.H)
text(tree.H, cex=0.6)
```


Example of Classification Tree

```
tree.D <- tree(default~., data=Default, subset=train)
D.pred <- predict(tree.D, newdata=subset(Default, test), type="class")
table(Default$default[test], D.pred)
        D.pred
            No Yes
        No 1906 17
        Yes 42 16
tree.D
node), split, n, deviance, yval, (yprob)
            * denotes terminal node
1) root 8019 2395.00 No ( 0.965706 0.034294 )
    2) balance < 1472.99 7204 566.70 No (0.993476 0.006524 )
    4) balance < 1099.01 5669 80.33 No ( 0.999118 0.000882 ) *
    5) balance > 1099.01 1535 385.10 No ( 0.972638 0.027362 ) *
    3) balance > 1472.99 815 966.10 No ( 0.720245 0.279755 )
    6) balance < 1891.6 669 638.50 No ( 0.816143 0.183857 )
        12) balance < 1706.96 465 353.80 No ( 0.873118 0.126882 ) *
        13) balance > 1706.96 204 253.80 No ( 0.686275 0.313725 ) *
    7) balance > 1891.6 146 173.40 Yes ( 0.280822 0.719178 ) *
```


Example of Regression Tree

```
plot(tree.D)
text(tree.D, cex=0.7)
```


