Extensions of Linear Regression

$$
\hat{Y}=\beta_{0}+\beta_{1} Z_{1}+\cdot+\beta_{k} Z_{k}
$$

where Z_{i} are functions of X_{1}, \ldots, X_{p}.

```
> mod2 <- lm(Sales ~ TV + log(TV), data=Advertising)
>summary (mod2)
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $2.629151 \quad 1.606838 \quad 1.636 \quad 0.10339$

TV	0.032968	0.005748	5.736	$3.61 e-08 \quad \star * *$	
$\log (T V)$	1.401023	0.490802	2.855	0.00477	$* *$

Signif. codes: $0{ }^{\prime} \star \star^{\prime \prime} 0.001$ ' $^{\prime} \star^{\prime} 0.01$ '*' $^{\prime} 0.05$ '.' 0.1 , ' 1
Residual standard error: 3.201 on 197 degrees of freedom
Multiple $R-$ squared: 0.6273 , Adjusted $R-$ squared: 0.6235
F-statistic: 165.8 on 2 and 197 DF, p-value: < 2.2e-16
ggplot(mod2) + geom_point(aes(x=TV, y=Sales)) + geom_line(aes(x=TV, $y=. f i t t e d), ~ c o l o r=" b l u e ")$

Polynomial Regression

$$
\hat{Y}=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\cdot+\beta_{k} X^{k}
$$

```
> summary(lm(Sales ~ poly(TV,3), data=Advertising))
```

Coefficients:

```
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.0225 0.2286 61.353 <2e-16 ***
poly(TV, 3)1 57.5727 3.2322 17.812 <2e-16 ***
poly(TV, 3)2 -6.2288 3.2322 -1.927 0.0554.
poly(TV, 3)3 4.0074 3.2322 1.240 0.2165
Signif. codes: 0 `***' 0.001 '**' 0.01 '*' 0.05 `' 0.1 ' ' 1
Residual standard error: 3.232 on 196 degrees of freedom
Multiple R-squared: 0.622, Adjusted R-squared: 0.6162
F-statistic: 107.5 on 3 and 196 DF, p-value: < 2.2e-16
```


Polynomial Regression

```
qplot(TV, Sales, data=Advertising) +
    geom_smooth(method="lm", formula=y~poly(x,3))
```


Step Function Regression

$$
\hat{Y}=\beta_{0}+\beta_{1} I\left(X<c_{1}\right)+\beta_{2} I\left(c_{1} \leq X<c_{2}\right)+\cdot+\beta_{k} I\left(c_{k} \leq X\right)
$$

```
> summary(lm(Sales ~ cut(TV,10), data=Advertising))
```

```
Coefficients:
```

ntercept)	6.7423	0.6425	10.493	$<2 \mathrm{e}-16$ ***
cut (TV, 10) $(30,59.7]$	3.1310	1.0623	2.947	0.00361
cut (TV, 10) (59.7,89.3]	4.5910	0.9613	4.776	$3.57 \mathrm{e}-06$ ***
cut (TV, 10) (89.3,119]	4.9799	1.0046	4.957	$1.58 \mathrm{e}-06$ ***
cut (TV, 10) $(119,149]$	7.1577	0.9889	7.238	$1.09 \mathrm{e}-11$ ***
* * *				

Residual standard error: 3.276 on 190 degrees of freedom Multiple R-squared: 0.6235, Adjusted R-squared: 0.6057
F-statistic: 34.96 on 9 and 190 DF, p-value: < $2.2 \mathrm{e}-16$

Step Function Regression

```
qplot(TV, Sales, data=Advertising) +
    geom_smooth(method="lm", formula=y~cut(x,10))
```


Regression Splines

In general

$$
\hat{Y}=\beta_{0}+\beta_{1} b_{1}(X)+\beta_{2} b_{2}(X)+\cdot+\beta_{k} b_{k}(X)
$$

where b_{i} are basis functions.

- Splines are piece-wise polynomials that connect smoothly at the points where the pieces meet (knots).
- Partition interval using k knots:

$$
a=c_{0}<c_{1}<\cdots<c_{k}<c_{k+1}=b
$$

- For cubic splines we have a cubic polynomial in each interval:

$$
s(x)=A_{0}+A_{1} x+A_{2} x^{2}+A_{3} x^{3}
$$

- At each knot we have 3 conditions: value, first derivative and second derivative must match on both sides

Regression Splines

- Total number of coefficients: $4(k+1)$.
- Total number of constraints: $3 k$
- Degrees of freedom left to fit the model: $k+4$
- Additional boundary constraints may be imposed, e.g. natural spline is linear at the boundaries.
- Degrees of freedom left: $k+2$.
- Natural splines are more stable at the boundary.

Regression Splines

```
library(splines)
qplot(TV, Sales, data=Advertising) +
    geom_smooth(method="lm", formula=y~bs(x,df=5))
```


Regression Splines

```
qplot(TV, Sales, data=Advertising) +
    geom_smooth(method="lm", formula=y~bs(x,df=5)) +
    geom_smooth(method="lm", formula=y~ns(x,df=5), color="red")
```


Model Selection

$$
\hat{Y}=\beta_{0}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
$$

The goal is to find a model that is a good balance between complexity and fit.

- Variable selection.
- Ridge regression:

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2} \longrightarrow \min
$$

- LASSO:

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right| \longrightarrow \min
$$

λ is called penalty parameter and is determined separately.

Model Selection

- Variable selection will select a model with only some of the variables.
- Ridge regression always produces a model with all predictors, however:
- computationally less expensive;
- good choice of λ would produce better fit.
- LASSO:
- forces some coefficients to be exactly zero, i.e. performs variable selection;
- computationally between the other two.

Penalty Parameter

The bias-variance trade-off:

$$
M S E=(\text { BIAS of } \hat{f})^{2}+(\text { Variance of } \hat{f})
$$

- Many degrees of freedom allow a closer fit to the data, resulting in low bias and high variance.
- Few degrees of freedom result in stiffer fit with low variance and high bias.
- As $\lambda \rightarrow 0$ the penalty term is weak and allows more flexibility.
- As $\lambda \rightarrow \infty$ the bias of the estimator increases while the variance decreases.
- There is a value of λ that minimizes MSE.

Ridge/LASSO Regression

```
x <- model.matrix(Sales ~ ., data=Advertising)[,-1]
y <- Advertising$Sales
tf <- sample(c(FALSE,TRUE), size=length(y),
    prob=c(0.1,0.9),repl=TRUE)
```


library (glmnet)

```
> # For ridge regression set alpha=0
```

$>r r<-g l m n e t(x[t f],, y[t f], ~ a l p h a=0, ~ l a m b d a=s e q(0.01,0.1, b y=0.01))$
> y.pred <- predict(rr, newx=x, type="response")
> MSE <- colMeans ((y.pred - y[!tf,)^2)
> rbind(lambda=rr\$lambda, MSE)

	$s 0$	$s 1$	$s 2$	$s 3$	$s 4$	$s 5$	$s 6$	$s 7$	$s 8$	$s 9$
lambda	0.100	0.090	0.080	0.07	0.060	0.050	0.040	0.030	0.020	0.010
MSE	1.804	1.799	1.795	1.79	1.785	1.781	1.777	1.773	1.769	1.765

> \# For lasso set alpha=1
lasso <- glmnet (x[tf,], y[tf], alpha=1, lambda=seq(0.01,0.1,by=0.01))
y.pred <- predict(lasso, newx=x[!tf,], type="response")
MSE <- colMeans ($\mathrm{y} . \mathrm{pred}-\mathrm{y}[!\mathrm{tf}])^{\wedge} 2$)
rbind(lambda=lasso\$lambda, MSE, DF=lasso\$df)

| | $s 0$ | $s 1$ | $s 2$ | $s 3$ | $s 4$ | $s 5$ | $s 6$ | $s 7$ | $s 8$ | $s 9$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| lambda | 0.100 | 0.090 | 0.080 | 0.070 | 0.060 | 0.050 | 0.040 | 0.030 | 0.020 | 0.010 |
| MSE | 1.778 | 1.766 | 1.755 | 1.746 | 1.742 | 1.738 | 1.735 | 1.737 | 1.744 | 1.753 |
| DF | 2.000 | 2.000 | 2.000 | 3.000 | 3.000 | 3.000 | 3.000 | 4.000 | 4.000 | 4.000 |

Automatic selection of λ

In k-fold Cross Validation the training set is split into k subset. The i-th subset is left out and the model is fit. The MSE over the i-th set is computed, denote $M S E_{i}$. The cross-validation statistic is

$$
C V_{k}=\frac{1}{k} \sum_{i=1}^{k} M S E_{i} .
$$

- LOOCV - leave one out cross-validation when $k=n$.

```
> # 20-fold cross-validation of lasso
> cv.out <- cv.glmnet(x, y, nfolds=20, alpha=1)
> cv.out$lambda.min
[1] 0.07452947
> plot(cv.out)
```


Non-parametric regressions

Most generally we have the model

$$
\hat{Y}=f(X)
$$

- Smoothing splines: set f to be a cubic spline with given knots and solve

$$
\sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int\left(f^{\prime \prime}(x) d x\right)^{2} \longrightarrow \min
$$

- The smoothing parameter, λ can be chosen by cross-validation.

```
> sp1 <- smooth.spline(Advertising$TV, Advertising$Sales, df=5)
> sp1.p <- predict(sp1, Advertising$TV)
> qplot(TV, Sales, data=Advertising) +
    geom_line(aes(x=TV, y=sp1.p$y))
```


Smoothing splines

Local regression

- Local regression: set $f=f(x ; \beta)$ to be some parametric regression model and allow the parameters, β to change with x
- For given x, find β that solves the following weighted minimization

$$
\sum_{i=1}^{n} K\left(x, x_{i}\right)\left(y_{i}-f\left(x_{i} ; \beta\right)\right)^{2} \longrightarrow \min
$$

- Set $f(x)=f(x, \beta)$ for the value of β found above.

Local regression

- The weights should add-up (or integrate) to 1 and give more weight to points close to x.
- Some choices of the weights, K, include
- $1 / k$ fraction of all points nearest x

$$
K\left(x, x_{i}\right)= \begin{cases}k / n, & x_{i} \text { is among the } n / k \text { points nearest } x \\ 0, & \text { otherwise }\end{cases}
$$

- Uniform over window of width h :

$$
K\left(x, x_{i}\right)= \begin{cases}1 / h, & \left|x-x_{i}\right|<h \\ 0, & \text { otherwise }\end{cases}
$$

- Gaussian with standard deviation h

$$
K\left(x, x_{i}\right)=\varphi\left(x_{i} ; \mu=x, \sigma=h\right)
$$

Local regression

qplot(TV, Sales, data=Advertising) +
geom_smooth(method="loess", degree=2, span=0.2, aes(color="0.2")) + geom_smooth (method="loess", degree=2, span=0.7, aes (color="0.7")) + theme_classic() + labs(color="Fraction of points") + theme (legend.justification=c (0, 1), legend.position=c (0, 1))

IBM lectures

Reminder:

- February 1 - Cognos Workspace in HP5345
- February 22 - SPSS Modeler in HP5345
- March 7 - Watson Analytics in HP5345

