
Extensions of Linear Regression

Ŷ = β0 + β1Z1 + ·+ βkZk

where Zi are functions of X1, . . . ,Xp.

> mod2 <- lm(Sales ~ TV + log(TV), data=Advertising)
>summary(mod2)

* * *
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.629151 1.606838 1.636 0.10339
TV 0.032968 0.005748 5.736 3.61e-08 ***
log(TV) 1.401023 0.490802 2.855 0.00477 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.201 on 197 degrees of freedom
Multiple R-squared: 0.6273, Adjusted R-squared: 0.6235
F-statistic: 165.8 on 2 and 197 DF, p-value: < 2.2e-16

ggplot(mod2) + geom_point(aes(x=TV, y=Sales)) +
geom_line(aes(x=TV, y=.fitted), color="blue")

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Polynomial Regression

Ŷ = β0 + β1X + β2X 2 + ·+ βkX k

> summary(lm(Sales ~ poly(TV,3), data=Advertising))

* * *
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 14.0225 0.2286 61.353 <2e-16 ***
poly(TV, 3)1 57.5727 3.2322 17.812 <2e-16 ***
poly(TV, 3)2 -6.2288 3.2322 -1.927 0.0554 .
poly(TV, 3)3 4.0074 3.2322 1.240 0.2165

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.232 on 196 degrees of freedom
Multiple R-squared: 0.622, Adjusted R-squared: 0.6162
F-statistic: 107.5 on 3 and 196 DF, p-value: < 2.2e-16

Polynomial Regression

qplot(TV, Sales, data=Advertising) +
geom_smooth(method="lm", formula=y~poly(x,3))

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Step Function Regression

Ŷ = β0 + β1I(X < c1) + β2I(c1 ≤ X < c2) + ·+ βk I(ck ≤ X)

> summary(lm(Sales ~ cut(TV,10), data=Advertising))

* * *
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.7423 0.6425 10.493 < 2e-16 ***
cut(TV, 10)(30,59.7] 3.1310 1.0623 2.947 0.00361 **
cut(TV, 10)(59.7,89.3] 4.5910 0.9613 4.776 3.57e-06 ***
cut(TV, 10)(89.3,119] 4.9799 1.0046 4.957 1.58e-06 ***
cut(TV, 10)(119,149] 7.1577 0.9889 7.238 1.09e-11 ***

* * *
Residual standard error: 3.276 on 190 degrees of freedom
Multiple R-squared: 0.6235, Adjusted R-squared: 0.6057
F-statistic: 34.96 on 9 and 190 DF, p-value: < 2.2e-16

Step Function Regression

qplot(TV, Sales, data=Advertising) +
geom_smooth(method="lm", formula=y~cut(x,10))

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Regression Splines
In general

Ŷ = β0 + β1b1(X) + β2b2(X) + ·+ βkbk (X)

where bi are basis functions.

I Splines are piece-wise polynomials that connect smoothly
at the points where the pieces meet (knots).

I Partition interval using k knots:

a = c0 < c1 < · · · < ck < ck+1 = b

I For cubic splines we have a cubic polynomial in each
interval:

s(x) = A0 + A1x + A2x2 + A3x3

I At each knot we have 3 conditions: value, first derivative
and second derivative must match on both sides

Regression Splines

I Total number of coefficients: 4(k + 1).
I Total number of constraints: 3k
I Degrees of freedom left to fit the model: k + 4

I Additional boundary constraints may be imposed, e.g.
natural spline is linear at the boundaries.

I Degrees of freedom left: k + 2.
I Natural splines are more stable at the boundary.

Regression Splines

library(splines)
qplot(TV, Sales, data=Advertising) +

geom_smooth(method="lm", formula=y~bs(x,df=5))

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Regression Splines

qplot(TV, Sales, data=Advertising) +
geom_smooth(method="lm", formula=y~bs(x,df=5)) +
geom_smooth(method="lm", formula=y~ns(x,df=5), color="red")

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Type of spline

general

natural

Model Selection

Ŷ = β0 + β1X1 + · · ·+ βpXp

The goal is to find a model that is a good balance between
complexity and fit.

I Variable selection.
I Ridge regression:

n∑
i=1

(yi − ŷi)
2 + λ

p∑
j=1

β2
j −→ min

I LASSO:
n∑

i=1

(yi − ŷi)
2 + λ

p∑
j=1

∣∣βj
∣∣ −→ min

λ is called penalty parameter and is determined separately.

Model Selection

I Variable selection will select a model with only some of the
variables.

I Ridge regression always produces a model with all
predictors, however:

I computationally less expensive;
I good choice of λ would produce better fit.

I LASSO:
I forces some coefficients to be exactly zero, i.e. performs

variable selection;
I computationally between the other two.

Penalty Parameter

The bias-variance trade-off:

MSE =
(

BIAS of f̂
)2

+
(

Variance of f̂
)

I Many degrees of freedom allow a closer fit to the data,
resulting in low bias and high variance.

I Few degrees of freedom result in stiffer fit with low variance
and high bias.

I As λ→ 0 the penalty term is weak and allows more
flexibility.

I As λ→∞ the bias of the estimator increases while the
variance decreases.

I There is a value of λ that minimizes MSE .

Ridge/LASSO Regression

x <- model.matrix(Sales ~ ., data=Advertising)[,-1]
y <- Advertising$Sales
tf <- sample(c(FALSE,TRUE), size=length(y),

prob=c(0.1,0.9),repl=TRUE)
library(glmnet)

> # For ridge regression set alpha=0
> rr <- glmnet(x[tf,], y[tf], alpha=0, lambda=seq(0.01,0.1,by=0.01))
> y.pred <- predict(rr, newx=x, type="response")
> MSE <- colMeans((y.pred - y[!tf,)^2)
> rbind(lambda=rr$lambda, MSE)

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
lambda 0.100 0.090 0.080 0.07 0.060 0.050 0.040 0.030 0.020 0.010
MSE 1.804 1.799 1.795 1.79 1.785 1.781 1.777 1.773 1.769 1.765
> # For lasso set alpha=1
lasso <- glmnet(x[tf,], y[tf], alpha=1, lambda=seq(0.01,0.1,by=0.01))
y.pred <- predict(lasso, newx=x[!tf,], type="response")
MSE <- colMeans((y.pred - y[!tf])^2)
rbind(lambda=lasso$lambda, MSE, DF=lasso$df)

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9
lambda 0.100 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010
MSE 1.778 1.766 1.755 1.746 1.742 1.738 1.735 1.737 1.744 1.753
DF 2.000 2.000 2.000 3.000 3.000 3.000 3.000 4.000 4.000 4.000

Automatic selection of λ

In k-fold Cross Validation the training set is split into k subset.
The i-th subset is left out and the model is fit. The MSE over
the i-th set is computed, denote MSEi . The cross-validation
statistic is

CVk =
1
k

k∑
i=1

MSEi .

I LOOCV - leave one out cross-validation when k = n.
> # 20-fold cross-validation of lasso
> cv.out <- cv.glmnet(x, y, nfolds=20, alpha=1)
> cv.out$lambda.min
[1] 0.07452947
> plot(cv.out)

Non-parametric regressions

Most generally we have the model

Ŷ = f (X)

I Smoothing splines: set f to be a cubic spline with given
knots and solve

n∑
i=1

(yi − f (xi))
2 + λ

∫ (
f ′′(x)dx

)2 −→ min .

I The smoothing parameter, λ can be chosen by
cross-validation.

> sp1 <- smooth.spline(Advertising$TV, Advertising$Sales, df=5)
> sp1.p <- predict(sp1, Advertising$TV)
> qplot(TV, Sales, data=Advertising) +

geom_line(aes(x=TV, y=sp1.p$y))

Smoothing splines

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

0 100 200 300
TV

S
al

es

Degrees of Freedom

 5

10

15

Local regression

I Local regression: set f = f (x ;β) to be some parametric
regression model and allow the parameters, β to change
with x

I For given x , find β that solves the following weighted
minimization

n∑
i=1

K (x , xi) (yi − f (xi ;β))
2 −→ min .

I Set f (x) = f (x , β) for the value of β found above.

Local regression

I The weights should add-up (or integrate) to 1 and give
more weight to points close to x .

I Some choices of the weights, K , include
I 1/k fraction of all points nearest x

K (x , xi) =

{
k/n, xi is among the n/k points nearest x ;
0, otherwise.

I Uniform over window of width h:

K (x , xi) =

{
1/h, |x − xi | < h;
0, otherwise.

I Gaussian with standard deviation h

K (x , xi) = ϕ(xi ;µ = x , σ = h).

Local regression
qplot(TV, Sales, data=Advertising) +

geom_smooth(method="loess", degree=2, span=0.2, aes(color="0.2")) +
geom_smooth(method="loess", degree=2, span=0.7, aes(color="0.7")) +
theme_classic() + labs(color="Fraction of points") +
theme(legend.justification=c(0,1), legend.position=c(0,1))

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

10

20

0 100 200 300
TV

S
al

es

Fraction of points

0.2

0.7

IBM lectures

Reminder:

I February 1 - Cognos Workspace in HP5345

I February 22 - SPSS Modeler in HP5345

I March 7 - Watson Analytics in HP5345

