Announcements

- IBM Lecture on Watson Analytics will be next Monday March 07 in RB 3201 http://carleton.ca/ims/rooms/river-building-3201/
- Schedule of project presentations. Enter your preferences to the file shared on Slack
- Details about Data Day 3.0
- Register (free) and attend Data Day on Tuesday March 29 http://carleton.ca/cuids/cu-events/data-day-3-0-2/
- Consider participating in Graduate Student Poster Competition (prizes: 750\$, 500\$, 250\$ for 1st, 2nd and 3rd place, respectively)
http://carleton.ca/cuids/cu-events/data-day-3-0-graduate-student-poster-competition/
- Volunteers wanted. Please email Kathryn Elliot (kathryn.elliott@carleton.ca) if interested

Machine Learning

February 29, 2016

Naïve Bayes Classification

Naive Bayes classifiers are especially useful for problems:

- with many input variables,
- categorical input variables with a very large number of possible values,
- text classification.

Naive Bayes would be a good first attempt at solving the categorization problem.

Naïve Bayes Classification

- Applicable for categorical response with categorical predictors.
- Bayes theorem says that

$$
P\left(Y=y \mid X_{1}=x_{1}, X_{2}=x_{2}\right)=\frac{P(Y=y) P\left(X_{1}=x, X_{2}=x_{2} \mid Y=y\right)}{P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)}
$$

- The denominator can be expanded by conditioning on Y

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)=\sum_{z} P\left(X_{1}=x_{1}, X_{2}=x_{2} \mid Y=z\right) P(Y=z)
$$

- The Naïve Bayes method is to assume the X_{j} are mutually conditionally independent, i.e.

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2} \mid Y=z\right)=P\left(X_{1}=x_{1} \mid Y=z\right) P\left(X_{2}=x_{2} \mid Y=z\right)
$$

- Now the probabilities on the right-hand side can be estimated by counting from the data.

Example of Naïve Bayes

library (e1071)

D <- mutate (Default, income=cut (income, 3), balance=cut (balance, 2)) nb.D <- naiveBayes(default~., data=D, subset=train)

A-priori probabilities:
Y

No	Yes
0.96570645	0.03429355

Conditional probabilities:
student

	No	Yes
No	0.7073864	0.2926136
Yes	0.6181818	0.3818182

balance
$Y \quad(-2.65,1.33 e+03] \quad(1.33 e+03,2.66 e+03]$

No	0.86454029	0.13545971
Yes	0.09090909	0.90909091

income
Y (699,2.5e+04] (2.5e+04,4.93e+04] (4.93e+04,7.36e+04]

No 0.3242510	0.5497159	0.1260331	
Yes	0.3927273	0.4836364	0.1236364

Example of Naïve Bayes

```
D <- mutate(Default, income=cut(income, 10), balance=cut(balance, 10))
nb.D <- naiveBayes(default~., data=D, subset=train)
nb.pred <- predict(nb.D, subset(D, test))
table(Actual=D$default[test], Predicted=nb.pred)
    Predicted
\begin{tabular}{crr} 
Actual & No & Yes \\
No & 1905 & 18 \\
Yes & 40 & 18
\end{tabular}
```


Neural Networks

Neural Networks

$$
\begin{gathered}
Z_{m}=\sigma\left(\alpha_{0 m}+\alpha_{1 m} X_{1}+\cdots \alpha p m X_{p}\right) \\
Y_{j}=\beta_{0 j}+\beta_{1 j} Z_{1}+\cdots+\beta_{M j} Z_{M}
\end{gathered}
$$

- The input neurons are attached to the predictors X_{1}, \ldots, X_{p}.
- They are activated by a function $\sigma(v)=\frac{1}{1+e^{-v}}$.
- The neurons in the hidden layer, Z_{1}, \ldots, Z_{m} are linear combinations of the inputs.
- There may be zero, one, or multiple hidden layers, with each layer being a linear combination of the previous one.
- The last layer is attached to the outputs.

Neural Networks Example

```
> library(nnet)
> nnet.fit <- nnet(default~., data=Default, subset=train, size=5)
# weights: 26
initial value 6553.347412
iter 10 value 1136.024073
iter 20 value 1135.901203
final value 1135.901077
converged
> summary(nnet.fit)
a 3-5-1 network with 26 weights
options were - entropy fitting
    b->h1 i1->h1 i2->h1 i3->h1
    -0.10 -0.22 -0.37 -0.47
    b->h2 i1->h2 i2->h2 i3->h2
        0.05 -0.46 -0.25 0.25
    b->h3 i1->h3 i2->h3 i3->h3
    -0.33 0.55 0.44 0.40
    b->h4 i1->h4 i2->h4 i3->h4
        0.30 0.27 0.08 -0.28
    b->h5 i1->h5 i2->h5 i3->h5
    -0.04 0.01 -0.06 -0.07
        b->0 h1->o h2->0 h3->o h4->0 h5->o
-22.19 -0.01 8.29 10.50 0.18 0.35
```


Neural Networks Example

```
> nnet.pred <- predict(nnet.fit, newdata=subset(Default, test),
    type="class")
> table(Actual=Default$default[test], Predicted=nnet.pred)
        Predicted
Actual No
    No 1939
    Yes }7
```

- The table is missing the "Yes" column because the neural network didn't predict any positives.
- The neural network model is over-parametrized and there is danger of over-fitting.
- The minimization is unstable and random initialization leads to different solution each time.

K-Means Clustering

- Pick a number of clusters, say K.
- Start with a random assignment of each observation to one of the K clusters.
- For each cluster, compute the centroid as the mean of the points in the cluster.
- Reassign observations to clusters, with each observation going to the cluster with the nearest centroid.
- Repeat until convergence.

K-Means Clustering

Example with simulated data.

```
pts <- read.csv('pts_2clusters.csv', header=TRUE)
qplot(x, y, data=pts, color=cl) + labs(color="Cluster")
```

Actual clusters

K-Means Clustering

Solve for two clusters.

```
km.out <- kmeans(pts, 2)
qplot(x, y, data=mutate(pts, cl.1=factor(km.out$cluster)), color=cl.1)
```


K-Means Clustering

Hierarchical Clustering

- Here we don't pick the number of clusters in advance, this is decided by the algorithm.
- We need a distance or dissimilarity measure
- Start with each point in its own cluster.
- Compute all pairwise dissimilarities and merge the two most similar clusters.
- Repeat until some stopping criterion is reached.
- To compute dissimilarity between two clusters, A and B, one may look at different possibilities.
- Take the dissimilarity of the two centroids.

Compute all pairwise dissimilarities between points in A and points in B.

- Complete linkage: take the maximum
- Single linkage: take the minimum;
- Average linkage: take the average.

Hierarchical Clustering

Example with the same simulated data.

library (grDevices)
hc.out <- hclust (dist(pts[c('x','y')]), method="complete") plot(hc.out, xlab="", main="Complete linkage", sub="")

Complete linkage

Hierarchical Clustering

```
cl.1 <- cutree(hc.out, k=2)
qplot(x, y, data=mutate(pts, cl.1=factor(cl.1)), color=cl.1)
plot(hc.out, xlab="", main="Complete linkage", sub="")
```

Complete linkage

Hierarchical Clustering
Complete linkage

Association rules

- Data is a binary matrix with columns corresponding to products and rows corresponding to baskets.
- Entry (i, j) is TRUE if customer i purchased product j.
- Apriori algorithm looks at most probable sets of products and combines them

Association rules

- Association rule is a claim such as: $A \& B \Rightarrow C$.
- Support for the rule is the probability of all items being together

Support $(A \& B \& C)=\frac{\text { Number of baskets with } \mathrm{A}, \mathrm{B} \text { and } \mathrm{C}}{\text { Total number of baskets }}$

- Confidence of a rule is the conditional probability of the implied item

$$
\operatorname{Confidence}(A \& B \Rightarrow C)=\frac{\operatorname{Support}(A \& B \& C)}{\operatorname{Support}(A \& B)}
$$

- Lift of a rule is

$$
\operatorname{Lift}(A \& B \Rightarrow C)=\frac{\operatorname{Confidence}(A \& B \Rightarrow C)}{\operatorname{Support}(C)}
$$

Association rules

- We start by computing the supports of all single items and sort them.
- Then prune at say 80% and compute the support of all rules with two items of the remaining ones.
- Sort and prune. Then proceed with rules with three items, not including pairs that have been pruned. And so on.

Association rules

```
> mb <- read.csv('MarketBasket.csv') # Simulated data
> library(arules)
> rules <- apriori(mb, parameter=list(supp=0.8, conf=0.8, target="rules"
Parameter specification:
    confidence minval smax arem aval originalSupport support minlen maxlen 
        ext
    FALSE
Algorithmic control:
    filter tree heap memopt load sort verbose
        0.1 TRUE TRUE FALSE TRUE 2 TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[5 item(s), 500 transaction(s)] done [0.00s].
sorting and recoding items ... [3 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 done [0.00s].
writing ... [12 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
```


Association rules

	lhs		rhs	support	confidence	lift
1	\{ \}	=>	\{V4\}	0.932	0.9320000	1.0000000
2	\{ \}	=>	\{V1\}	0.950	0.9500000	1.0000000
3	\{ \}	=>	\{V3\}	1.000	1.0000000	1.0000000
4	\{V4 \}	=>	\{V1\}	0.882	0.9463519	0.9961599
5	\{V1\}	$=>$	\{V4\}	0.882	0.9284211	0.9961599
6	\{V4 \}	=>	\{V3\}	0.932	1.0000000	1.0000000
7	\{V3 \}	=>	\{V4\}	0.932	0.9320000	1.0000000
8	\{V1\}	$=>$	\{V3\}	0.950	1.0000000	1.0000000
9	\{V3 \}	$=>$	\{V1 \}	0.950	0.9500000	1.0000000
10	\{V1,					
	V4 \}	=>	\{V3 \}	0.882	1.0000000	1.0000000
11 \{V3,						
	V4\}	=>	\{V1 \}	0.882	0.9463519	0.9961599
	\{V1,					
	V3 \}	=>	\{V4 \}	0.882	0.9284211	0.9961599

