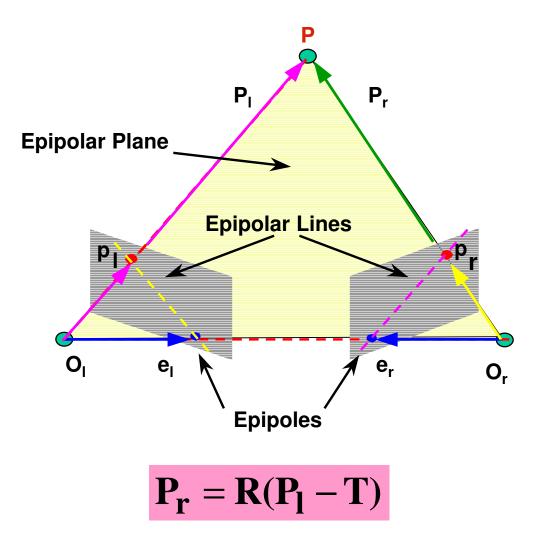
Homography

Dr. Gerhard Roth

Epipolar Geometry



Homography

•Consider a point x = (u,v,1) in one image and x'=(u',v',1) in another image

•A homography is a 3 by 3 matrix M

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

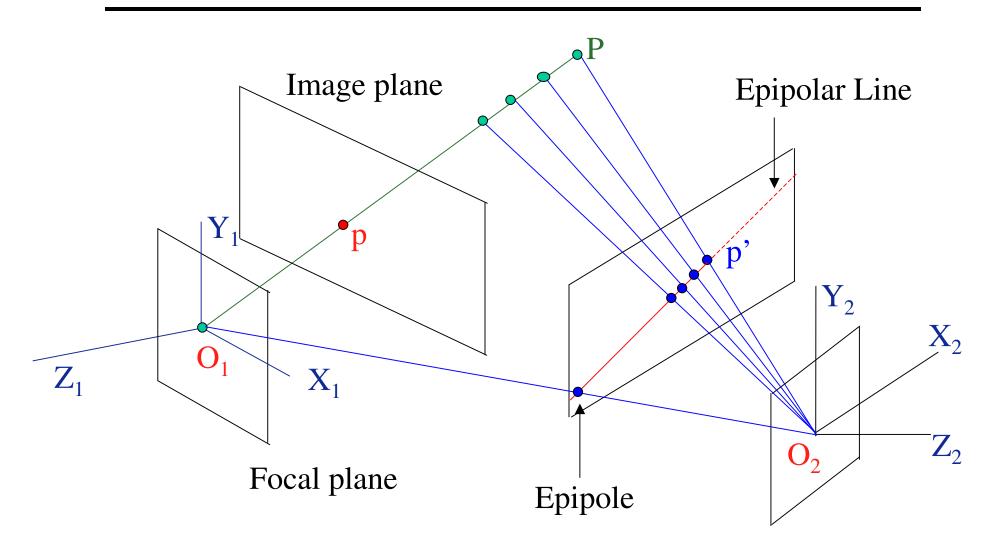
•The homography relates the pixel co-ordinates in the two images if x' = M x

•When applied to every pixel the new image is a warped version of the original image

Homography conditions

- Two images are related by a homography if and only if
- Both images are viewing the same plane from a different angle (your assignment)
- Both images are taken from the same camera but from a different angle
 - Camera is rotated about its center of projection without any translation
- Note that the homography relationship is independent of the scene structure
 - It does not depend on what the cameras are looking at
 - Relationship holds regardless of what is seen in the images

What does Essential Matrix Mean?



Homography for Rotation

- •If there is no translation $P_r = RP_1$
- •Home position projection equation

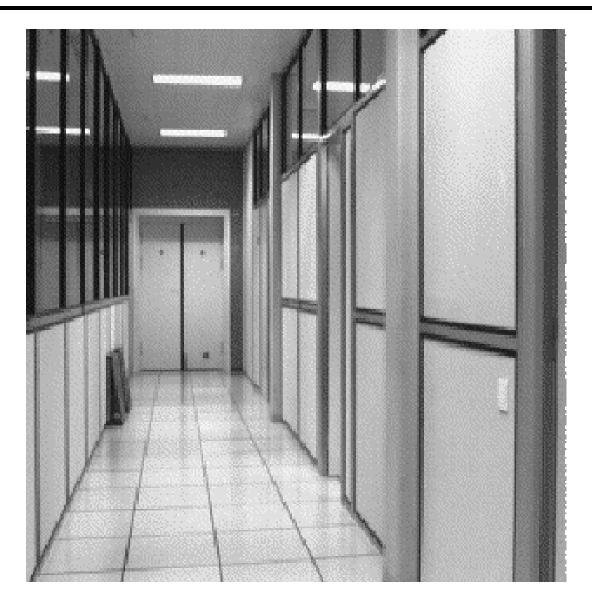
$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} \mid \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{X}$$

•Rotation by a matrix R – projection equation

$$\mathbf{x'} = \mathbf{K} \begin{bmatrix} \mathbf{R} \mid \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ 1 \end{bmatrix} = \mathbf{K} \mathbf{R} \mathbf{X}$$

•So $x' = KRK^{-1}x$ where K is calibration matrix •Where KRK^{-1} is a 3by3 matrix M called a homography

Original camera view



Downward rotation via homography

Sideways rotation via homography

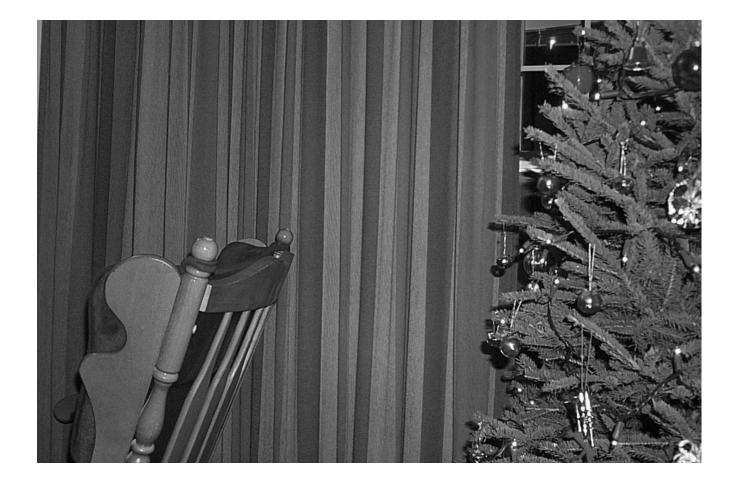
Homgraphy versus epipolar geometry

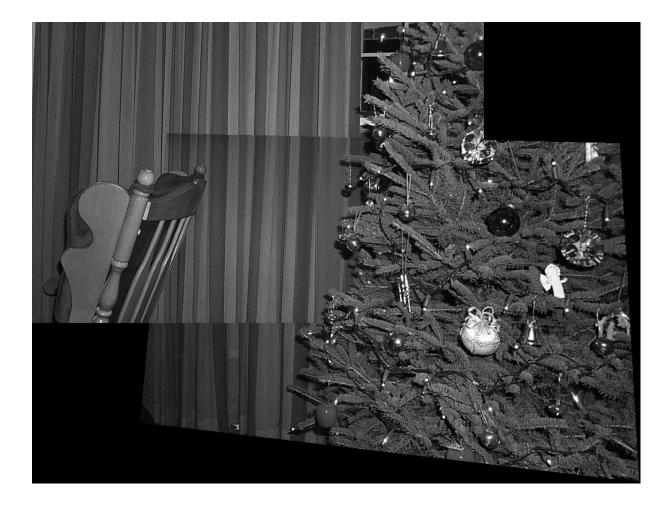
- If two cameras are translated then epipolar geometry holds
 - It maps a point in one image to a line in the other image
 - Actual matching point depends on the depth of that point, that is its distance from the camera
- As the translations -> 0 the baseline b of the two cameras also goes to zero
 - Once it is zero epipolar geometry does not hold any longer
- Homgraphy holds when no translation
 - It maps a point in one image to a point in the other image
 - The mapping does not depend on the depth (distance) of point to the camera
 - This makes sense because baseline z zero means ordinary stereo triangulation equations fail

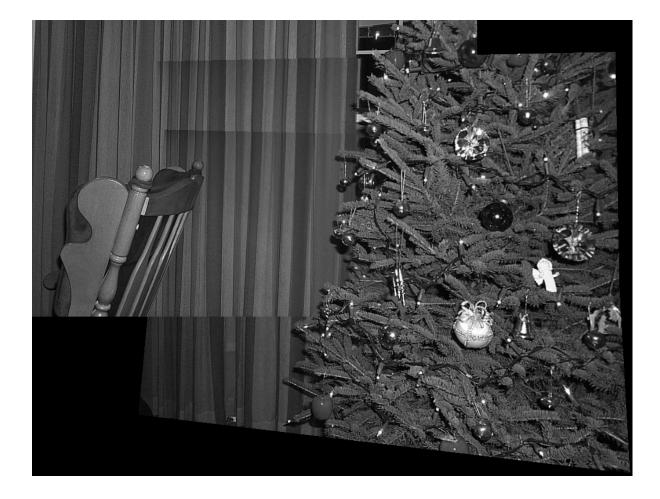
•Computing homography

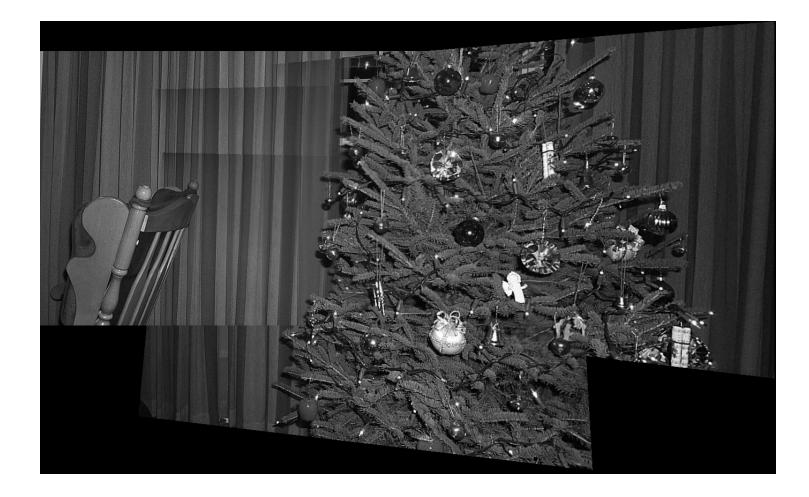
- •If we know rotation R and calibration K, then homography M can be computed directly $x' = KRK^{-1}x$
 - Applying this homography to one image gives image that we would get if the camera was rotated by R
 - Inverting M, to get M⁻¹ is same as applying inverse rotation R⁻¹
- •But if we have two rotated images but do not know the rotation then how can we compute the homography?
 - Given a set of correspondences; pixels in left image that equal the right image
 - Write down homography equations that must related these correpsondences x <-> x'
 - Compute the homography using the same method as we used to compute fundamental matrix or to compute the projection matrix
 - Basically compute the eigenvector assoicated with the smallest eigenvalue of the matrix A A^T

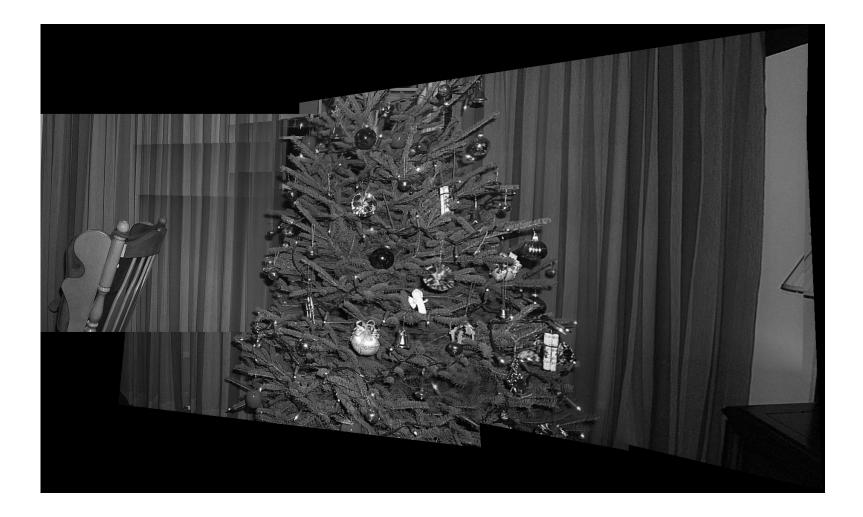
Automatic Mosaicing – Input

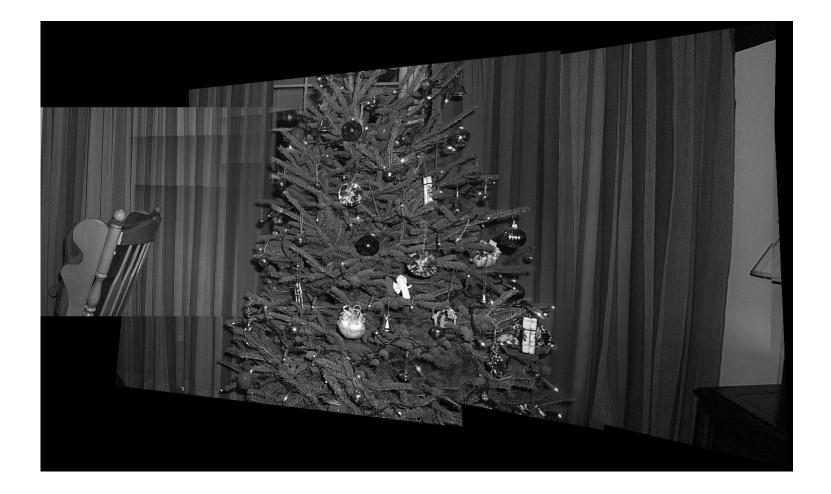












Computing mosaic

- Take a camera on a tripod
 - Rotate it around the axis of projection
 - Choose one of the images as the reference image
 - Compute the homography that aligns all the other images
 relative to that image
 - Need to find correspondences manually or automatically
- You get a single large image, a mosaic which looks like a high resolution image taken from that reference image
 - This large image is called a mosaic
- This is the basis of Quicktime mosaics

Computing homography

- For your purposes important to understand
 - When translation is null epipolar geometry fails to hold
 - In this case you only have image rotation
 - Can not compute depth for any point for which you have correspondences
 - Can compute the homography matrix from
 - The camera calibration and the know rotation or
 - Correspondences between the two images
 - If you just use correspondences you can make a mosaic from rotating images
 - Actually, can make a mosaic whenever you have a homograpy relationship
 - when you are looking at a plane and when rotating
 - Like having a high resolution camera from a single point of view