Stereo Vision – A simple system

Dr. Gerhard Roth
Stereo

• Stereo
 • Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints
 • Humans use only two eyes/images (try thumb trick)

• Two important problems in stereo
 • Correspondence and reconstruction

• Correspondence
 • What parts of left and right images are parts of same object?

• Reconstruction
 • Given correspondences in left and right images, and possibly information on stereo geometry, compute the 3D location and structure of the observed objects
Stereo

- Scene point
- Image plane
- Optical center
Stereo

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - Camera calibration
 - Point correspondence
Pinhole Camera Model

\[x = -f \frac{X}{Z} \]

Image plane

\[p = (x, y) \]

Virtual Image

\[P = (X, Y, Z) \]
Simple Stereo System

• Left and right image planes are coplanar
 • Represented by I_L and I_R

• So this means that all matching features are on the same horizontal line
 • So we can think of this as a 2D situation

Left

Right

scanline
Simple Stereo System (2D)

- Distance between centers of projection is called the baseline T
- Centers of projection of cameras C_L and C_R
- Point P in 3D space projects to P_L and P_R
- X_L and X_R are co-ordinates of P_L and P_R with respect to principal points C_L and C_R
- Z is the difference between point P and the baseline
 - Z is called the depth
Simple Stereo System
Basic Stereo Derivations

Derive expression for Z as a function of x_1, x_2, f and B
Basic Stereo Derivations

Similar triangles (P_L, P, P_R) and (O_L, P, O_R)

\[
\frac{T + x_l - x_r}{Z - f} = \frac{T}{Z}
\]

Define the disparity: $d = x_1 - x_2$

\[
Z = f \frac{T}{d}
\]
Disparity Map

- \(D = ||x_1 - x_2|| \) measures the distance between corresponding points in two images
 - Normally disparity is stated as number of pixels
 - Clearly a particular simple stereo configuration has a maximum and minimum possible disparity

- Depth is inversely proportional to disparity

- If we compute the disparity for the entire images then we have a disparity map

- Display it as an image
 - Bright points have highest disparity (closest)
 - Dark points have lowest disparity (farthest)

- Disparity map is a 3D image
Disparity Map
Characteristics of Simple Stereo

- **FOV** is field of view of cameras
 - Overlap of the two cameras
- **Baseline** is a system parameter
 - It is also a tradeoff
- If B is the Baseline
 - Depth Error $\propto \frac{1}{B}$
- **PROS** of Longer baseline
 - better depth estimation
- **CONS**
 - smaller common FOV
 - Correspondence harder due to increased chance of occlusion
 - Occlusion means that a feature is visible in one image but not in another because something occludes it
Real-Time Stereo Systems

- There are a number of systems that can compute disparity maps.
- In practice, systems only work if there is texture in the regions that must be matched.
- Often such systems return sparse depth:
 - A few thousand images in regions where there is texture.
 - Do some interpolation when there is no texture.
- Point Grey research makes such a camera:
 - A successful Canadian company.
- Produces a variety of stereo cameras.
BumbleeBee
Example image from BumbleBee