Stereo Vision – A simple system

Dr. Gerhard Roth

Stereo

- Stereo
 - Ability to infer information on the 3-D structure and distance of a scene from two or more images taken from different viewpoints
 - Humans use only two eyes/images (try thumb trick)
- Two important problems in stereo
 - Correspondence and reconstruction
- Correspondence
 - What parts of left and right images are parts of same object?
- Reconstruction
 - Given correspondences in left and right images, and possibly information on stereo geometry, compute the 3D location and structure of the observed objects

Basic Principle: Triangulation

- Gives reconstruction as intersection of two rays
- Requires
 - Camera calibration
 - Point correspondence

Pinhole Camera Model

$$x = -f\frac{X}{Z}$$

Simple Stereo System

- Left and right image planes are coplanar
 - Represented by I_L and I_R
- So this means that all matching features are on the same horizontal line
 - So we can think of this as a 2D situation

Simple Stereo System (2D)

- Camera pointing along positive z axis
- Distance between centers of projection is called the baseline T
 - From the figure positive in x direction is to the left
- Centers of projection of cameras C_L and C_R
- Point P in 3D space projects to P_L and P_R
- X_L and X_R are co-ordinates of P_L and P_R with respect to principal points C_L and C_R
- Z is the difference between point P and the baseline
 - Z is called the depth

Simple Stereo System

Basic Stereo Derivations

Derive expression for Z as a function of x_1 , x_2 , f and B

Basic Stereo Derivations

Similar triangles (P_L,P,P_R) and (O_L,P,O_R) $\frac{T + x_l - x_r}{T + x_l - x_r} = \frac{T}{T}$

$$\frac{1}{Z-f} = \frac{1}{Z}$$

Define the disparity: $d = x_1 - x_2$

$$Z = f \frac{T}{d}$$

Disparity Map

- D = ||x₁ x₂|| measures the distance between corresponding points in two images
 - Normally disparity is stated as number of pixels
 - Clearly a particular simple stereo configuration has a maximum and minimum possible disparity
- Depth is inversely proportional to disparity
 - If we compute the disparity for the entire images then we have a disparity map (computed relative to one image)
- Display it as an image
 - Bright points have highest disparity (closest)
 - Dark points have lowest disparity (farthest)
- Disparity map is a 3D image

Disparity Map

Characteristics of Simple Stereo

- FOV is field of view of cameras
 - Overlap of the two cameras
- Baseline is a system parameter
 - It is also a tradeoff
- If B is the Baseline
 - Depth Error \propto 1/B
- PROS of Longer baseline
 - better depth estimation
- CONS
 - smaller common FOV
 - Correspondence harder due to increased chance of occlusion
 - Occlusion means that a feature is visible in one image but not in another because something occludes it

Real-Time Stereo Systems

- There are a number of systems that can compute disparity maps
- In practice systems only work if there is texture in the regions that must be matched
- Often such systems return sparse depth
 - A few thousand images in regions where there is texture
 - Do some interpolation when there is no texture
- Point Grey research makes such a camera
 - A successful Canadian company
- Produces a variety of stereo cameras

BumblelBee

Example image from BumbleBee

Stereo of human body

