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Abstract

It is widely appreciated that 3D structures may be com-
puted from multiple 2D images of the same scene given
point correspondences between images. Of greater inter-
est, however, is the generation of surfaces that give a com-
pact representation of the geometric model. Assuming we
are dealing with smooth surfaces, we show that B-spline
is a good choice for this purpose and we describe how to
construct it by approximating the 3D data points. The cru-
cial step is the parameterization of the 3D points in a 2D
domain. By studying the geometric constraints of multiple
views, we show that the original images can be used for pa-
rameterization. The implications of the B-spline surfaces
for improving the quality of texture mapping is discussed.

1 Introduction

Reconstructing surfaces in 3-space from two-
dimensional images is a central problem in computer
vision and photogrammetry. Many applications require
surface reconstruction. For example, reverse engineering of
CAD models from existing objects, virtual and augmented
reality, and computer animation.

The theory of 3D structure reconstruction is now well
developed for discrete points with known correspondences
and camera calibration parameters. However, most appli-
cations require a surface representation, particularly in the
case where only sparse 3D points are available. Several spe-
cial cases have been considered. Cross and Zisserman [2]
constructs quadric surfaces. Commercial software, for in-
stances, PhotoModeler and ShapeCapture, which are based
on photogrammetry techniques [17], construct conic sur-
faces and spheres. For any non-standard surface types,
piecewise linear surfaces are used. This means a large num-

ber of polygons are needed to approximate a smooth surface
well.

Cipolla and Giblin [1] and Zhao and Mohr [22] studied
surface reconstruction using profiles (apparent contours).
The usual set up is to put the object to be constructed on
a turntable and use a fixed camera to take a series of im-
ages. The advantage of this method is that it can deal with
general smooth surfaces with no textures. The drawback is
that certain concave part of the surface cannot be recovered.

Sullivan and Ponce [18] fit triangular B-splines to a crude
polyhedral model obtained from silhouette based recon-
struction methods. The problem of this method is that many
surface patches have to be used to approximate a complex
surface.

Sinha and Schunck [16] treats the stereo data fitting
problem as a large scale optimization problem. Without
solving the parameterization problem, the algorithm is in-
efficient and can fail to converge.

Non-analytical models were also used for representing
stereo data. Fua [5] proposed to use particle system to ap-
proximate stereo data. Fua and LeClerc [6] and Zhang and
Seitz [20] deform a mesh model to fit stereo data. The ad-
vantage of these methods is that they work with uncalibrated
images. They both solve a nonlinear optimization problem.
When the number of points to fit is large, the algorithm is
slow and there is no guarantee of convergence.

In this work we investigate the reconstruction of general
free-form surfaces. By free-form, we mean surfaces that
cannot be represented by a single simple algebraic func-
tion. Examples of free-form surfaces abound in the phys-
ical world, both natural and man-made objects; for exam-
ples human and animal bodies, sculptures, and shapes of
automobiles and airplanes.

We consider the situation where users take a small num-
ber of images from arbitrary positions. Then a number
of feature points in the images are identified and matched
across the images by either user assisted or automatic track-



ing methods. Finally, a 3D surface representation is con-
structed and texture mapped. Figure 1 illustrates this pro-
cess. Our objective here is to enhance the current model
building tools to handle more general surface types.

In section 2 we discuss reconstruction of discrete points
using a projective geometry formulation. In section 3 we
develop a method for fitting B-spline surfaces on the recon-
structed 3D points. In particular, we show that the images
and corresponding image points can be used for computing
parameters in the fitting process. In section 6 we discuss
texture mapping techniques for smooth B-spline surfaces.
We demonstrate the improvements in the quality of texture
mapping resulting from the B-spline surface fitting. Finally,
concluding remarks are given in section 7.

2 3D point reconstruction

Let X = [X Y Z 1]> be the homogeneous coordinate of
a point in the 3D world andx = [u v 1]> be the homoge-
neous coordinate of the corresponding image point. Under
the assumption of a pinhole camera model, the relationship
betweenX and its projection on the image plane is

γx = K[R t]X (1)

whereγ is an non-zero scale factor,R is a rotation matrix,
andt is a translation vector. The3 × 3 matrix K contains
camera intrinsic parameters

K =

 f s u0

0 αf v0

0 0 1


wheref is the focal length,α is the aspect ratio,s is the
skew factor, and(u0, v0) is the position of the principal
point on the image plane. Equation 1 is often written in a
compact formx = PX, whereP = K[R t] is a3× 4 per-
spective projection matrix, also known as camera matrix.

For two views, any two pointsx = P1X andx′ = P2X
in the two images corresponding to a 3D pointX satisfy the
bilinear (epipolar) constraint

x′>Fx = 0

whereF is the3 × 3 fundamental matrix. This matrix can
be computed with 8 or more corresponding points [7].

For two images of a planar object, the corresponding
points in the two images are related by a linear form, called
homography:

x′ = Hx

whereH is a 3 × 3 matrix. A homography matrix can be
estimated using 4 or more corresponding points [8].

From equation 1 we can see that the projection of a 3D
point to an image point depends on the camera intrinsic pa-
rameters inK and the position and orientation,R andt, of

the camera, called extrinsic parameters. Once these param-
eters are determined, the camera and its images are called
calibrated.

A point in a calibrated image back projects to a ray in the
three-dimensional space. Two corresponding points in two
separate images define two rays that lie in the same plane.
Intersecting these two rays results in the reconstruction of a
3D point.

In this work, we carry out the task of point reconstruction
in three steps. First, we compute the intrinsic parameters of
the camera. Second, we find out the rotation matrix and the
translation vector. Third, we compute the ray intersections
to obtain 3D points.

In the ideal situation, the user calibrates the camera’s in-
trinsic parameters using a calibration pattern before taking
the images of the scene to be reconstructed. Several pattern-
based calibration method have been proposed, for exam-
ple [9, 19]. We used a recent method suggest by Zhang [21]
with a planar checkerboard pattern.

In the case that we do not have the luxury of having the
user calibrate the camera beforehand, it is still possible to
compute 3D structures from the images, using a technique
known asautocalibration. In our implementation, we used
a method due to Mendonça and Cipolla [12]. This calibra-
tion method uses only image point correspondences from
which the fundamental matrices are estimated. Comparing
to the bundle adjustment methods [17], it takes less time to
compute because only a few parameters are involved. In
practice, we assume the skew factor to be zero and the prin-
cipal point is at the center of the image. When more than
two views are used, satisfactory results are obtained [15].
We usually get within 10% of the calibration parameter val-
ues obtained from using pattern-based calibration methods.

3 B-spline surface fitting

In this section we show that it is possible to represent a
smooth surface by reconstructing only a few sparse points
on it. This is achieved by fitting a B-spline surface on the
reconstructed sample points. This capability is useful to in-
teractive model building systems in which the user has to
manually identify feature points and match them in differ-
ent images. On the other hand, reconstructions resulting
from dense stereo may contain too many points. In this
case, B-spline fitting provides a compact representation of
the surface.

A B-spline surface is the tensor product function given
by

S(u, v) =
n∑
i=0

m∑
j=0

Np
i (u)Nq

j (v)Pi,j (2)

wherePi,j is an array of(n + 1) × (m + 1) control points
andNp

i (u) is the ith B-spline basis function of degreep,
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Figure 1. Surface reconstruction process

defined recursively as

N0
i (u) =

{
1 if ui ≤ u < ui+1

0 otherwise

Np
i (u) =

u− ui
ui+p − ui

Np−1
i (u) +

ui+p+1 − u
ui+p+1 − ui+1

Np−1
i+1 (u)

on a knot vector

U = {0, . . . , 0︸ ︷︷ ︸
p+1

, up+1, . . . , ur−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

}.

Nq
j (v) is defined analogously [13].
LetQ1, . . . , QN be the reconstructed 3D points. Assume

uniform knot sequences, for any fixed degreep andq, we
solve the least square problem

min
Pi,j

N∑
i=1

‖Qi − S(ui, vi)‖2

for the control pointsPi,j . Here(u1, v1), . . . , (uN , vN ) are
the parameterization of the data points. We discuss param-
eterization and least square fitting in the next two sections.

4 Parameterization

A parameterization is a one-to-one mapping between a
planar domain and the data points in 3-space. For B-spline,
the planar domain is a rectangular areaD = [a, b] × [c, d].
Therefore, the process of parameterization is to find a func-
tion Φ : D → {Qi}. For a data pointQk we seek a pair
of parameters(uk, vk) ∈ D, that is a point in the parameter
domain.

If the data points are organized in a mesh, the inverse
mapΦ−1 should preserve the same mesh topology in the
parameter domain. It is also desirable to minimize the
shape distortions. Many techniques for mesh parameteri-
zation have been proposed, for examples [3, 4, 10]. In ad-
dition to surface fitting, parameterization is also essential to
many applications such as remeshing, mesh compression,
and mesh smoothing.

In our case, the 3D data points are unorganized. Ma and
Kruth [11] and Piegl and Tiller [14] suggested the projection
of the 3D data points to a base surface such as a Coons
patch derived from the boundaries of the surface, then the
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parameters of the projected points on the Coons patch are
used for fitting the B-spline surface.

Notice that the image of an object is a mapping between
the points on the 3D surface and a planar rectangular do-
main. It is natural to use the images for parameterization.
The problem is that we have multiple images and we need
one single mapping. Therefore, we need to merge the im-
ages into a single one and use that as a parameterization.

Recall from section 2 that the images of a planar object
can be related to each other by homographies. If we choose
one image as the fixed image, other images that share at
least four points with the fixed image can be merged to it,
since a homography matrix can be computed from four cor-
responding points. As shown in Figure 2, the first view and
the third view can be merged into the second view by ap-
plying the homography matricesH12 andH32 to them re-
spectively.

In general, the scene under consideration is not planar
and the homography is only an approximation to the trans-
formations between images. Therefore, merging images us-
ing homography will cause distortions. But since our objec-
tive here is parameterization rather than mosaicking images
for visualization, distortions are expected.

Figure 2. Homographic parameterization

In general, if we have a sequence of overlapping images,
I1, I2, . . . , In, and we choose oneIr (1 ≤ r ≤ n) as the
reference view, the transformation applied to the points in
imageIk is

Tk =
{
Hk,k+1Hk+1,k+2 . . .Hr−1,r if 1 ≤ k < r
Hk,k−1Hk−1,k−2 . . .Hr−1,r if r < k ≤ n

whereHp,q is the homography matrix between two adjacent
views.

Through this kind of piecewise merging, all the visible
points in all the images are transformed into a single 2D co-
ordinate system. For each 3D pointX, assume it appears
in m images withu1, . . . ,um as its corresponding homo-
geneous coordinates. Letwi = Tiui and letw̃i be the
inhomogeneous coordinate ofwi. The parameter ofX is

computed as the average of all the transformed points:

ux =
1
m

m∑
i=1

w̃i

.
Figure 3 shows a result of a parameterization (Fig-

ure 3(b)) from the merge of three views (Figure 3(a)).

5 Least square fitting

Reorder the array of control points by row so that it be-
comes a linear list of pointsP1, P2, . . . , PM , whereM =
(n + 1)(m + 1). A point Pi(1 ≤ i ≤ M) in the linear list
maps to the control point arrayPs,t, where the subscriptss
andt are computed as

s =
⌊

i

m+ 1

⌋
t = i mod (m+ 1).

Using the same subscript scheme, we can denote

Ni(u, v) = Ns(u)Nt(v).

Then we can rewrite equation 2 as

S(u, v) =
M∑
i=1

Ni(u, v)Pi.

For fitting a B-spline surface with given data points
Q1, Q2, . . . , QN , we wish to solve the following equations

M∑
i=1

Ni(uk, vk)Pi = Qk 1 ≤ k ≤ N. (3)

Let Px = [P1x . . . PMx]> andQx = [Q1x . . . QNx]>,
wherePix andQix are thex coordinates ofPi andQi re-
spectively.

Write equation 3 in a matrix form

NPx = Qx (4)

whereN is aN ×M matrix of scalars

N =

 N1(u1, v1) . . . NM (u1, v1)
...

...
...

N1(uN , vN ) . . . NM (uN , vN )


whereM ≥ N . The least square solution to equation 4 is

Px = (N>N)−1N>Qx.

The other two coordinatesPy andPz are solved analo-
gously using the same matrixN and matrixN>N.

Figure 4 shows an example of the B-spline surface con-
structed. Note that the natural B-spline surface goes beyond
the data points. The shaded part is the actual surface define
by the data and trimmed away from the original surface us-
ing the boundary of the data set.
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Figure 3. Parameter mesh from merging views

Figure 4. Fitting result of a degree 2 B-spline
surface

6 Texture mapping

One of the advantages of reconstructing surfaces from
multiple images is that the surfaces can be texture mapped
naturally from the images. Coordinates of the image points
become the texture coordinates of their corresponding 3D
points. A triangle in the 3D mesh maps to a triangle in one
of the images. Figure 6(a) shows an example of a texture
mapping. As we can see, since there are only a small num-
ber of 3D points, the texture mapped model shows obvious
artifacts.

As we have a smooth B-spline surface approximating the
initially reconstructed 3D points, we can improve the tex-
ture mapping by mapping the images to a finer mesh that
better approximates the true surface geometry. A hierarchy
of meshes with different resolutions can be constructed by
refining triangles.

For refining a triangle, we divide the longest of its edges.
As shown in Figure 5, if we want to divide the edgeAC, we

first compute its mid-pointM , and then we projectM onto
the B-spline surface. The projection finds the pointN on the
B-spline surface that is closest toM . This can be done using
Newton’s iteration with initial parameter values being the
mid-point coordinates ofA andB in the parameter space.
Finally, the two triangles∆(A,B,C) and∆(A,C,D) shar-
ing the edgeAC are replaced by four smaller triangles:
∆(A,B,N), ∆(B,C,N), ∆(N,C,D), and∆(A,N,D).

Figure 7(c) shows the results of texture mapping on two
different levels of refinement. With the initial reconstruc-
tion of 37 triangles, we can see obvious artifacts. After
B-spline surface fitting and refining to 450 triangles, the
texture mapping is much improved but still shows some
artifacts. Refining to 7038 triangles, no sign of artifact is
shown.

Figure 5. Dividing a triangle edge and pro-
jecting the mid edge point onto the B-spline
surface

7 Conclusions

We have described a method for reconstructing free-form
surfaces from multiple images. Assuming surface smooth-
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ness, we fit B-spline surfaces to the reconstructed 3D points.
In this way, complex models can be constructed using only
sparse feature points. Texture mapping is greatly improved
by using a smooth surface representation. The technique of
using a homography for parameterizing 3D data points is
both simple and efficient. This method is best suited for an
interactive system in which users manually select and match
a small number of feature points. It is therefore a useful ex-
tension to the current photo modeling systems.

We used projective vision techniques for camera calibra-
tion and 3D structure reconstruction. These techniques are
simple to implement and in many cases provide fast linear
solutions to the reconstruction problem. The linear solu-
tions are sufficient for many applications that do not de-
mand a high accuracy. They can also be used as initial esti-
mations for the more accurate nonlinear iterative methods.
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(a)

(b)

Figure 6. Wooden horse example. (a) reconstruction and texture mapping (37 triangles); (b) after
B-spline fitting and mesh refinement (2346 triangles).
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(a)

(b)

(c)

Figure 7. Soccer ball example. (a) input images; (b) initial reconstruction and two levels of refine-
ments with 18, 450, and 7038 triangles; (c) texture mapping on the original reconstruction and the
two levels of refinement after B-spline fitting.
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