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Abstract: 3D anthropometric data obtained from 3D imaging technology 
provide unprecedented information about the human shape. At the same time, 
3D data present tremendous challenges. New software tools and analytical 
methods have to be designed to realise the full potential of the 3D data. One 
prominent character of the 3D data is that they are a collection of coordinates in 
3-space and do not have a natural order. This poses problems for performing 
statistical analysis. In order to make sense about this type of data, 3D points 
have to be registered such that meaningful correspondences across all the 
models can be established. Other issues include data completion, compression, 
and visualisation. In this paper, we describe a framework and the techniques 
involved in processing the 3D anthropometric data for the purpose of making 
them usable for designing products that fit the human shapes. 
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human shape modelling. 

Reference to this paper should be made as follows: Shu, C. Wuhrer, S. and  
Xi, P. (2012) ‘3D anthropometric data processing’, Int. J. Human Factors 
Modelling and Simulation, Vol. 3, No. 2, pp.133–146. 

Biographical notes: Chang Shu is a Senior Research Scientist at the National 
Research Council of Canada. He is also an Adjunct Research Professor at the 
School of Computer Science, Carleton University. He received his PhD in 
Computer Science from Queen Mary College, University of London, UK, in 
1992, and his BSc from Harbin Institute of Technology, China, in 1985.  
His research has been focused on developing geometric techniques for  



   

 

   

   
 

   

   

 

   

   134 C. Shu et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

solving problems in computer vision, computer graphics, scientific computing, 
robotics, and ergonomics. He currently leads the digital human modelling 
project at the NRC where he works on geometric and statistical methods for 
understanding human and other biological forms. 

Stefanie Wuhrer is an Independent Research Group Leader at the Cluster of 
Excellence on Multimodal Computing and Interaction at Saarland University, 
Germany. She received her PhD in Computer Science in 2009 and MSc in 2006 
from Carleton University, Canada. From 2009 to 2011, she was a Research 
Associate at the National Research Council of Canada. Her research interests 
include geometry processing and shape analysis. 

Pengcheng Xi received his MSc in Computer Science from the University of 
Ottawa, Canada, in 2007. He is currently a Research Officer with Visual 
Information Technology group at National Research Council Canada (NRC). 
His research interests include 3D mesh processing, modelling, and statistical 
shape analysis. 

This paper is a revised and expanded version of a paper entitled ‘Geometric and 
statistical methods for processing 3D anthropometric data’ presented at the 
First International Symposium on Digital Human Modelling (DHM 2011), 
Lyon, France, 14–16 June 2011. 

 

1 Introduction 

Anthropometry, the study of human body measurement, provides information about the 
human shape variation to industrial design. Traditionally, simple tools like tape measures 
and callipers were used to measure linear distances between landmarks or circumferences 
at specific locations. Although these tools are inexpensive and easy to use, they only 
provide limited shape information. Meanwhile, during the past twenty years, 3D imaging 
technology has matured to the point that we can digitise the full surface of the human 
body with reasonable accuracy and efficiency. Around the world, there have been many 
3D anthropometry surveys. For example, the CAESAR project is the earliest and one of 
the largest (Robinette et al., 1999). 

3D anthropometry opens up new opportunities to understand the human shape 
variability. Initially, the most obvious uses of the 3D data include visualising the 3D 
shape and performing repeated measurements on the 3D shapes. However, as the 3D data 
accumulate, it becomes clear that we need to build statistical models in order to realise 
the full potential of these data. In this paper, we describe a framework of processing the 
3D anthropometric data to understand the human shape variability. 

One prominent character of the 3D data is that they are a collection of coordinates in 
3-space. In contrast to the traditional anthropometric measurement, the geometry of the 
human body is represented directly in the three-dimensional Euclidean space. A 
geometric approach toward representing and analysing shapes, called geometric 
morphometrics, was first developed in biological sciences, where variation of biological 
forms and their relations to functionality are studied. Bookstein applied multivariate 
statistics to manually placed landmark coordinates (Bookstein, 1991; Zelditch et al., 
2004). Meanwhile, Kendall and other statisticians developed a theoretical foundation 
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(Kendall, 1984, 1989; Dryden and Mardia, 1998) for statistical shape analysis. This new 
type of statistics retains the surface geometry and reveals shape variations that are 
impossible to capture with the traditional measurements. The results can also be 
visualised in an intuitive way using modern computer graphics techniques. 

In principle, we can apply the geometric morphometric approach to 3D scans. 
However, the difficulty is that each scan has a different number of points and these points 
do not have a natural order. In order to perform statistical shape analysis, we need to 
register the 3D points such that meaningful correspondences across all of the models can 
be established. In other words, we need to parameterise the data models such that they all 
have the same number of vertices and the same topological structure. 

Techniques from computer graphics, computer vision, and machine learning can be 
used to solve the correspondence problem. One way of establishing a correspondence 
across the models is to fit a generic surface model to each scan such that the key 
anatomical points are in correspondence. The fitting can be guided by the anthropometric 
landmarks. However, placing the landmarks on the subjects prior to scanning is a tedious 
and time-consuming task. We show that it is possible to locate the landmarks 
automatically. The method is based on statistical learning. Local surface properties and 
distances between landmarks are used to learn the parameters of a probabilistic graphical 
model. The prediction of the landmark locations is formulated as finding the maximum 
likelihood configuration of the landmark labelling. 

Once we have parameterised the data models, we are ready to perform statistical 
shape analysis. Multivariate statistics can be applied to the coordinates of the vertices. 
Since a typical 3D scan consists of 100,000 to 500,000 points, the shape space is high 
dimensional. Well-known statistical techniques such as principal component analysis 
(PCA) can be used to reduce the dimensionality. It turns out that there is usually a  
low-dimensional subspace for human shape data. Thus we can obtain a compact 
representation of the space of human shapes. 

Figure 1 illustrates the framework of processing and analysing the 3D anthropometric 
data. The goal is to prepare the data such that we can build a statistical model of the 
human shape. From this model, we can develop a variety of applications such as data 
exploration tools for understanding the shape variability, or design and simulation tools 
for solving specific engineering problems. 

Figure 1 3D anthropometric data processing framework (see online version for colours) 
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2 Geometry processing 

2.1 Data parameterisation 

The goal of data parameterisation is to establish a correspondence among the models. An 
early attempt to solve this problem adopts a volumetric approach (Ben Azouz et al., 2004, 
2006a, 2006b). Each model is embedded in an m × n × k regular grid. By carefully 
orienting and normalising the models, a correspondence in the ambient space and thus a 
correspondence among the models is established. The advantage of this method is that it 
is landmark-free. It is also easy to implement. The drawback, however, is that the 
correspondence it produces is not accurate. Holes have to be filled before a model can be 
embedded into a grid. This proved to be a difficult task because certain parts of the 
model, for example, the area under the arms, have large holes. In some parts, like the 
hands and ears, up to 50% of the information is missing. A more effective approach is to 
fit a generic mesh model to each data scan, while possibly allowing for large-scale 
transformations (Allen et al., 2003, 2006; Mochimaru et al., 2000; Mochimaru and 
Kouchi, 2000; Pauly et al., 2005; Amberg et al., 2007; Hasler et al., 2009; Yeh et al., 
2011). This model is complete and has well-shaped and well-distributed triangles. The 
fitting deforms the generic model to each scan such that the two models are made 
geometrically equivalent. When deforming the generic model, the correspondence 
between the anatomical parts has to be maintained. This is achieved by using landmarks, 
which serves as the initial conditions for the solution of the problem. When deforming 
the generic model, we have to carefully maintain the smoothness of the surface. 
Otherwise, the triangles can go into each other, causing invalid meshes and consequently 
leading to the failure of the deformation algorithm. 

Figure 2 Template fitting (see online version for colours) 

 

Deforming a generic mesh smoothly to a data scan can be formulated as an optimisation 
problem. Here, the variables we need to solve are the x, y, and z coordinates of the 
generic model. The initial solution can be simply the generic model. Given an 
intermediate solution, the cost function is defined by estimating the difference between 
the solution and the target data model. This includes three kinds of errors: 
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1 the landmark error, which accounts for the sum of the distances between the known 
corresponding landmarks 

2 the smoothness error, which quantifies the local smoothness at every mesh point 

3 the data error, which measures the sum of the distances between every pair of 
corresponding points. 

Figure 2 shows examples of fitting a generic model (left column) to two different data 
scans (middle and right columns). The texture mapped figures show that while the 
parameterised models have different shapes, they have the same structure. 

2.2 Landmark locating 

In the CAESAR dataset, each scan contains 73 anthropometric landmarks. Placing these 
landmarks on the subjects involves palpating the subjects and requires special skills. The 
accuracy of the position varies between different operators. Furthermore, not all of the 
datasets have landmarks, and in the future, it is unlikely that a lot of 3-D anthropometry 
surveys will have landmarks data. 

For human body shapes, Creusot et al. (2011) developed an approach to locate a set 
of keypoints on human face models automatically. These keypoints can then be used to 
extract a set of landmarks in a fully automatic way. The approach is based on machine 
learning, and it learns the distributions of a set of local shape descriptors at the landmark 
positions. 

Dekker et al. (2001) attempted to locate the landmarks automatically. They define a 
set of rules for each landmark based on its local surface properties, such as curvature or 
distances to certain feature points. Then locating the landmarks becomes a classification 
problem. The problem of this approach is that the rules are based on intuitive 
observations. Because of the variations among humans, there are always exceptions and 
therefore the number of the rules quickly becomes too large to handle. More principled 
ways of specifying the landmarks are necessary. 

Ben Azouz et al. (2006a, 2006b) introduced an approach that is based on statistical 
learning. They used a subset of the CAESAR dataset as a training set. A graphical 
probabilistic model is used to model the positions of the landmarks. A node of the graph 
represents a landmark and an edge of the graph represents the relationship between a pair 
of neighbouring landmarks. Figure 3 shows the graph of the landmarks. The probability 
of a surface point to be a particular landmark depends on the local surface properties as 
well as its relationships with other landmarks. These constraints are naturally modelled 
by Markov random field (MRF) or Markov network. 

The landmark graph G(V, E) is an undirected graph, where V is the set of nodes that 
represent the locations of the landmarks and E is the set of edges that represents the 
dependency between the landmarks. Let L = {l0,…,lN–1} be the set of random variables 
representing the locations of the landmarks. We associate a potential φi(li) with each node 
li in V corresponding to the likelihood that landmark li is located at a given vertex on the 
surface of the model. Furthermore, we associate a potential ψi,j(li, lj) with each edge  
e = (li, lj) in E corresponding to the joint likelihood that landmark li is located at one 
given vertex and that landmark lj is located at another vertex. The joint probability of the 
MRF is 
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where Z is a normalising factor. 

Figure 3 Landmarks and landmark graph (see online version for colours) 

 

Figure 4 Results of automatic landmark locating (see online version for colours) 

 

 

Note: The green dots indicate the predicted locations and the red dots are the landmarks 
placed by the operators. 
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In the training stage, the distributions of surface geometric properties such as the SPIN 
image (Johnson, 1997), and the relative positions of landmarks are computed. In the 
subsequent matching stage, landmarks are located by identifying the surface points that 
maximises the joint probability defined by the Markov network. The probability of 
placing a landmark at a particular position depends on two types of information. One is 
the local surface property of that landmark. Another is the relationship to its neighbouring 
landmarks. We use Euclidean distance to measure this relationship. Both kinds of the 
probability distributions can be learned from the training data. We may also use geodesic 
distance. But since the landmarks are usually placed on the joints, the geodesic distance is 
usually proportional to the Euclidean distance. 

The probability optimisation problem has a prohibitively large search space; exact 
computation is infeasible. An approximate method, called belief propagation (Pearl, 
1988), is used to solve this problem. Belief propagation is an efficient technique for 
solving large probabilistic optimisation problem. When the graph has no loops, that is, 
when it is a tree, the solution is exact. When the graph has loops, we can only have an 
approximate solution. Our landmark graph contains loops. But in practice it works well. 
Figure 4 shows the results of the predicted landmarks. On average, the algorithm predicts 
the landmark locations within 2.0 cm of the experts’ locations. Note that these landmarks 
are used for guiding the template fitting; they are not accurate enough for dimensional 
measurements. 

3 Statistical shape analysis 

Having established the correspondence among all of the models, we can perform 
statistical shape analysis. At this point, we have a set of parameterised models, each has 
the same number of points and the same mesh topology. The vertices of a parameterised 
model provide a geometric representation of the shape. The variables on which we 
perform statistics are the coordinates of the vertices on the meshes. Unlike traditional 
anthropometry where only a sparse number of measurement is taken, the geometric 
approach uses dense point sets to represent the shape. A typical 3D model consists of 
100,000 to 300,000 points; they provide much richer and more complete shape 
information. 

In general, the models may live in different coordinate frames. For models in similar 
posture, Procrustes alignment can be used to transform them into a single coordinate 
frame (Dryden and Mardia, 1998). Procrustes alignment is an iterative process. Starting 
with an arbitrary model in the parameterised dataset, rigidly align every other models to 
this reference model using the corresponding points. Next, compute the mean shape and 
set it as the new reference shape. Then align every model to the new reference shape. The 
process is repeated until the total rigid movement converges. In practice, the final 
reference model is sometimes oriented according to the coordinate system that is 
convenient for the product design. 

The downside of the geometric approach is the large amount of data. To understand 
the shape variability from the geometric data, we need to create statistical models. PCA is 
the most often used statistical technique for understanding high-dimensional data. To 
perform PCA, a shape vector Ψ is formed for each model by concatenating all of the 
coordinates of the model. The average over N models is given by 
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The deviation vectors i i= −Φ Ψ Ψ  are arranged in a matrix A = [Φ1 Φ2 ··· ΦN] PCA  
is based on an eigen analysis of the covariance matrix Σ = (1 / (N – 1))AAT. The 
eigenvectors of Σ form a basis of the shape space. Each shape can be represented as the 
sum of the mean shape and the linear combination of basis vectors: 
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i ij j
j

c
=

= +∑ uΨ Ψ  (2) 

where uj is the eigenvector and cij = Φi · uj. 
Note that PCA can only be applied successfully to the vertex coordinates of models in 

similar posture. If the posture of the models has large variations, the models need to be 
represented in a posture-invariant way before PCA can be applied. Hasler et al. (2009) 
developed one such representation. 

The eigen analysis transforms the data into a new coordinate system in which  
the modes of variations are ordered from large to small. The absolute values of the 
eigenvalues determine the significance of the corresponding variations [principal 
components (PCs)]. In practice, many of them are negligibly small. In other words, every 
model can be reconstructed by the linear combination of a subset of the eigenvectors. 

1

 ,
M

i ij j
j

c
=

≈ +∑ uΨ Ψ  (3) 

where M ≤ N. 

Figure 5 The compression rate of PCA (see online version for colours) 
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Figure 6 Reconstruction using (a) 5 and (b) 50 PCA components (see online version  
for colours) 

 
(a) 

 
(b) 

Notes: The left figure is the original shape; the middle figure is the reconstruction using 
PCA components; the right figure shows the colour-coded differences. The errors 
are shown in metres. 
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Figure 7 PCA reconstruction errors (see online version for colours) 

 

The quality of the reconstruction can be evaluated by the fraction of cumulative 

eigenvalues 
1 1

/ ,
M N

i ii i= =∑ ∑λ λ  representing the percentage of the variance spanned by 

the eigenvectors chosen for the reconstruction. In our experiments with a variety of full 
body and head datasets, fewer than 50 PCs can explain more than 90% of the shape 
variability. Therefore, PCA gives us a compact way of describing the shape variability by 
using a small number of parameters. Figure 5 illustrates the compression power of  
PCA using a head scan dataset. Figure 6 shows the reconstruction of a model using 5 and 
50 PCA components respectively. Figure 7 shows the reconstruction errors with different 
number of PCs. 

From a design point of view, the number of PCs to use depends on the level of details 
we need to account for the shape variability in the particular application. The lower PCs 
represent small and detailed surface changes. However, these variations can also be the 
digitising noise. If the surface detail is important for the design and we have high quality 
data, then we can include more PCs to achieve this goal. For the majority of design 
applications, the first 20 PCs are more than sufficient. 

The mesh density of the generic model also affects the quality of the statistical 
analysis. In general, the density of the generic model should match the sampling  
density of the scan data in order to make full use of the original data. More  
importantly, after fitting, the generic model should faithfully represent the original  
data. The generic model does not have to have the same sampling density as the  
scan data everywhere on the surface. The high-curvature areas need to be sampled  
more densely to preserve geometry fidelity. However, it is worth noting that this  
uneven sampling will not introduce statistical bias. PCA captures the overall shape 
variabilities and arranges them from large to small. The detailed sampling gives  
rise to detailed shape variations in the area, but it does not affect the larger shape 
variations. This is different from applying PCA to traditional anthropometric data  
where the measurements are so sparse one has to be careful about where to sample in 
order to avoid biases. 
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4 Data exploration 

Designers are often intrinsically visual people. When designing products that fit the 
human shape, they need intuitive tools to explore the anthropometric data in order to 
understand the shape variability of the population. The traditional anthropometric data are 
linear measurements of the body dimensions. They are usually presented in the forms of 
tables and summary statistics. The only way to visualise this data is perhaps through 
histograms which give information about the distribution of the data. However, histogram 
cannot handle dimension higher than three. Furthermore, the variability of the data does 
not easily translate to the variability of the shape. 

Statistical shape analysis works directly on the 3D shape data. As we have seen in 
Section 3, PCA reduces the complex 3D data to a small number of parameters. By 
varying the coefficients along the PCA axes we are able to reconstruct any shape in the 
shape space represented by the dataset [equation (3)]. This provides a new way of 
exploring and understanding the shape data. Figure 8 shows the first two PCA 
components, in which the first one corresponds to the height and second one corresponds 
to the weight. Another PCA component (PCA-14) is shown in Figure 9, which captures 
the shape changes of the legs. This kind of variation is not easy to find through  
traditional anthropometric data. Note that not every PCA component has ordinary-life 
interpretations. In general, these components can be considered as a way of quantifying 
shapes. 

Figure 8 The first two PCs 
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Figure 9 PCA-14: captures the change in the shape of the legs (see online version for colours) 

 

Since the reconstruction of the shape from the linear combination of the eigenvectors can 
be done efficiently, it is possible to visualise the shape variability in real-time. Modern 
graphics hardware allows to render the shape change as an animation. Since the human 
eyes are sensitive to motion, subtle, nonetheless important changes, can be captured in 
animation. 

A demonstration version of a software for exploring shape data variability, called 
Procrustica, can be downloaded from http://www.humanshape.net. Figure 10 shows the 
user interface of this programme. The sliding bars on the right panel allows users to 
change the coefficients of the PCA components and see the shape changes continuously 
in the display area on the left. 

Figure 10 Procrustica, a programme for visualising shape variability (see online version  
for colours) 

 

As the 3D data are parameterised by a generic model, analysis can be performed on 
segments of the body such as the head, torso, arms and legs (Xi et al., 2007). 
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5 Conclusions 

Processing 3D anthropometry data requires special techniques in geometry processing. 
We have drawn tools from computer vision, computer graphics, and machine learning to 
solve the problem of correspondence. Statistical shape analysis reveals patterns of 
changes in the human shape. The detailed and intuitive visualisation gives designers a 
powerful tool for making decisions. At the same time, these new tools also pose 
challenges. The PCA components do not always correspond to everyday measurements 
of shape changes. Effective use of them remains a research problem. 

A more challenging problem is analysing human shapes in different postures. This 
allows the study of the human shape in dynamic environments. Again, the essential 
problem is establishing a correspondence among the models. This general problem is 
studied by a large research community (van Kaick et al., 2010). For the case of 
computing correspondences between human shapes in different postures, several authors 
have made some initial progresses in this area (Allen et al., 2006; Hasler et al., 2009; 
Wuhrer et al., 2010, 2011). However, much research remains to be done to find more 
robust and efficient algorithms. 
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