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Abstract—Predictive modeling aims at constructing models
that predict a target property of an object based on its
descriptions. In digital human modeling, it can be applied to
predicting human body shape from images, measurements, or
descriptive features. While images and measurements can be
converted to numerical values, it is difficult to assign numerical
values to descriptive features and therefore regression based
methods cannot be applied. In this work, we propose to use
Predictive Clustering Trees (PCT) to predict human body
shapes from demographic information. We build PCTs using a
dataset of demographic attributes and body shape descriptors.
We demonstrate empirically that the PCT-based method has
similar predicting power as the numerical approaches using
body measurements. The PCTs also reveal interesting struc-
tures of the training dataset and provide interpretations of the
body shape variations from the perspective of the demographic
attributes.

Keywords-Predictive modeling; digital human modeling; pre-
dictive clustering tree; demographic attributes;

I. INTRODUCTION

Many applications require realistic 3D models of human
shape. One way of doing this is through digitizing real
humans using 3D imaging techniques like range scanning.
Indeed, large databases of range scans have been collected
to form samples of entire populations. The scans can be
further processed to build statistical models in which the
variability of human shape can be analyzed. The statistical
models allow parameterizing the space of human shape and
thus generate an arbitrary number of virtual, but statistically
real human shapes.

A statistical model of the human shape can also be used as
priors to infer 3D shapes from partial shape information. For
example, Blanz and Vetter [7] use a statistical model, called
morphable model, built from 3D scans of faces to reconstruct
3D face models from 2D images. 3D body shapes can also
be generated from traditional anthropometric measurements
such as height, waist circumferences, and the lengths of the
limbs [2].

In practice, demographic data are also collected in 3D
anthropometry surveys. For example, in the CAESAR survey
(CAESAR - Civilian American and European Surface An-
thropometry Resource), information such as age, ethnicity,
marital status, occupation, etc. are collected [14]. Many
of these attributes are non-numerical. For example, marital

status may have values like “single”, “married”, “divorced”
or “widowed”. Intuitively, some of these attributes must
relate to body shape. Natural questions arise: can we pre-
dict human body shape from some of these demographic
attributes? If so, to what extent can we predict? The answers
to these questions have potential applications in many areas.
For example, in a forensic investigation where a suspect’s
picture is not available, face or body shape may be predicted
from other features, e.g., age, ethnicity, marital status and
occupation. One may also use this kind of prediction for
designing and marketing products for targeted populations.

In this paper, we predict human body shapes from descrip-
tive features. We propose to exploit the relationship between
human body shape and demographic information using
Predictive Clustering Trees (PCTs) [8]. PCTs capture the
structure of the data by building hierarchical clusters. Once
the PCTs are constructed from the training data, prediction is
done by traversing the trees using the descriptive attributes.
Besides shape prediction, the PCTs also provide induction
rules that help us analyze the shape data from the perspective
of the descriptive attributes.

We test the proposed approach on the CAESAR database
which consists of 5,000 full-body scans sampled from the
North American and European populations. Each scan is
accompanied with 44 traditional anthropometric measure-
ments and 19 demographic attributes. We compare our
approach using the demographic data with the prediction
using numerical anthropometric measurements as it is done
by Allen et al. [2]. Our experiments show that the PCT-based
approach has similar predictive power.

The contributions of this work consist of two parts:
• 3D body shape prediction from demographic attributes.

This is particularly useful when body measurements are
not available.

• an interpretation of body shape difference with respect
to demographic attributes.

II. RELATED WORK

Much work has been done on the statistical shape analysis
of human heads [7], [11], [20] and bodies [1], [4], [5], [18].
Parameterization of raw scans creates new representations
which are consistent on head or body features. This enables
a morphable shape model being built for training-based
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applications, which include reconstruction from measure-
ments [1], [2], [15], 2D images [6], [7], [9], [16], [19],
landmarks [1], [4], and partial scans [3], [4].

Allen et al. [1] introduce a consistent parameterization
approach by fitting a generic body model to each body scan,
and thus build a morphable shape model. This model can be
used for feature analysis by learning a linear mapping from
body measurements to Principal Component Analysis (PCA)
coordinates [2].

Blanz and Vetter [7] apply a morphable face model to
reconstructing face models from sample images by fitting a
3D morphable model to 2D images. Facial attributes, such
as gender, attractiveness and expressions are controllable
through modifying parameters. Similar to this approach, Seo
et al. [16] suggest a data-driven approach to reconstructing
human body shape from the silhouettes.

Anguelov et al. [4] introduces a pose deformation model
and a shape model for shape completion to partial view
completion and motion capture animation. Amberg et al. [3]
introduces an expression-invariant method for face recogni-
tion by fitting an identity/expression separated 3D morphable
model to shape data.

A common character in the above approaches is that the
input can be converted to numerical values. For example,
contours extracted from an input image are represented by
coordinates of sampled 2D points. These approaches may
fail if descriptive features become part or all of the input.
In this work, we introduce data mining techniques that are
suitable for handling nonnumeric inputs.

Blockeel et al. [8] introduce an approach which adapts
the basic top-down induction of decision trees towards clus-
tering. It employs the principles of instance based learning.
According to Langley [13], each node of the tree corre-
sponds to a concept or a cluster, and the tree as a whole
thus represents a kind of taxonomy or a hierarchy.

A Predictive Clustering Tree (PCT) introduced by Dze-
roski et al. [12] allows for predicting multiple target vari-
ables. Human body shape in a statistical shape space can
be represented by multiple variables like PCA coordinates.
Therefore, it is naturally applicable to predicting body
shapes from descriptive features.

III. STATISTICAL MODEL

In CAESAR database, every raw scan of human body
contains about 150, 000 vertices and 300, 000 triangles. For
shape correspondence (also called consistent shape param-
eterization), we implemented a template-based approach as
that of [18]. For data compression, we performed PCA on
the parameterized shape data. A shape space is thus built
with the following steps.

1) Represent each parameterized shape as a vector xi,
i = 1, ...,m1(m1 is the number of subjects used for
building a shape space), and arrange all the vectors
into a matrix X = (x1, x2, ..., xm1

). A covariance

matrix cov(X) =
∑

(xi − x)(xi − x)
T is calculated,

where x is the mean vector of all the xi.
2) We next perform eigen-decomposition of the covari-

ance matrix. It creates a series of eigen vectors Φj

and their corresponding eigen values λj , where j =
1, ..., (m1 − 1). The eigen values are in a descending
order.

3) Since all the Φj are orthogonal to each other, they
form the bases of the shape space. Organizing Φj in
columns forms a new matrix Φ. Each shape vector xi
can be mapped into this space through

Bi = ΦT (xi − x) (1)

which is comprised of mapped coordinates along the
principal components. It is thus a new representation
of the original 3D shape vector.

4) If a vector of coordinates bj is given, a new shape
xnew can be reconstructed through:

xnew = x+

m2∑
j=1

Φjbj (2)

where m2(< m1) is the number of principal compo-
nents to be used for reconstruction.

IV. PREDICTIVE CLUSTERING TREE

Predictive clustering is a general framework that combines
clustering and prediction [8]. It partitions a dataset into
clusters so that variations in each cluster are minimal and
those between clusters are maximal. It is similar to clustering
but differs in that predictive clustering builds a predictive
model (an induction rule) to each cluster.

Predictive clustering tree constructs a model for predicting
a multi-objective target based on its description. The model
is learned from a set of examples for building a decision tree.
They have the form (D, T ), where D means descriptions
and T denotes the target object. At each node, the PCT tries
to find the best partition rule using D through minimizing
the variations of clustered T . As a result, each leaf node
represents a cluster, and the conjunction of the conditions
on the path from the root to the leaf forms the induction
rule [12].

A. Example for building a PCT

As an example, we look at a hypothetical weather predic-
tion problem. We build a PCT using a small set of training
data [17] listed in Table I, where weather outlook and wind
conditions are input D and temperature and humidity are
output T .

Building a PCT amounts to trying different partition tests
and computing the in-cluster and between-cluster variations.
In this example, the first test is trying “Outlook = sunny”
and putting testing cases into one cluster if the condition is
met and those into another cluster otherwise. Following this
partition is to calculate the in-cluster and between-cluster
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Outlook Windy Temperature Humidity
sunny no 34 50
sunny no 30 55
overcast no 20 70
overcast yes 11 75
rainy no 20 88
rainy no 18 95
rainy yes 10 95
rainy yes 8 90

Table I
THE TRAINING DATA FOR A WEATHER EXAMPLE.

Figure 1. A PCT tree built on weather outlook, condition, temperature
and humidity.

variations using “Temperature” and “Humidity” values of
the training cases in each cluster. Changing the partition con-
dition and selecting the one if it yields maximum between-
cluster and minimum in-cluster variations. In this example,
“Outlook = sunny” happens to be the partition condition at
the root node.

The clusters can be further partitioned into smaller ones,
until meeting a termination condition set by the user. In this
example, we set the number of training cases in each cluster
to be at least two. Every leaf node then contains a number of
training cases and the centroid of them is used for prediction.
Figure 1 shows the complete PCT. Traversing from root to
the very right leaf node leads to an induction rule “If Outlook
= rainy and Windy = No Then [Temperature, Humidity] =
[15.5, 72.5]”. In the leaf node, 2 is the number of training
cases in the cluster.

B. Algorithms for building a PCT

The following summarizes the algorithms for building the
PCT.

Algorithm 1 depicts an iterative partitioning process. It
calls on Algorithm 2 to find the best partition for the current
unclustered training set [12]. Using the returned partitioning
condition Ptest, we create a new node and a local partition
Parts. It then calls on itself for further partitioning the sub-
clusters from the local partition. By setting a termination

Algorithm 1 Generic PCT induction algorithm PCT
Input: I = {D,T}
Output: a predictive clustering tree
1: (Ptest, Parts) = BestPartition(I)
2: if Ptest = none then
3: return Node(centroid(I))
4: else
5: for each Partj ∈ Parts do
6: treej = PCT (Ij)
7: end for
8: return Node(Ptest,∪j{treej})
9: end if

Algorithm 2 Best partition algorithm BestPartition
Input: I = {D,T}
Output: (Ptest, Parts)
1: (Ptest, Parts) = (none, ∅)
2: V ar = Min Double
3: for each possible partition test Ptest∗ do
4: Parts∗ = partitions induced by Ptest∗ on I
5: V ar∗ =

∑
i6=j

V arBetweenClusters(i, j) -
∑
k

V arInCluster(k)

6: if (V ar∗ > V ar) then
7: (V ar, Parts, Ptest) = (V ar∗, Parts∗, P test∗)
8: end if
9: end for

10: return (Ptest, Parts)

condition, this iterative partitioning process will stop if it
reaches a node where no more partitions are allowed.

Algorithm 2 searches the current training set for the best
partitioning condition, which results in clusters having the
minimal in-class and maximal between-class variations. The
algorithm initializes the value of global variations V ar with
the minimum value of double type variables. It returns the
found partition condition and the derived partitions.

A variation to the general PCT is a weighted predictive
clustering tree. This means assigning weights to the targets
when computing in-class and between-class variations. In
the weather prediction example, we can assign weight 0.6
to “Temperature” and 0.4 to “Humidity”, if predicting “Tem-
perature” is more useful than “Humidity”.

C. PCT for prediction and analysis

After a PCT is built using a training set, it can be used
for prediction using a testing set. Traversing from the root
to a leaf node using the descriptions of a new testing case,
the centroid of training cases in the leaf node becomes the
prediction.

Since the conjunction of conditions from root to leaf
node naturally forms an induction rule, we can make shorter
rules by pruning the full tree. This can be accomplished
by setting a higher threshold for the minimum number of
cases clustered in each node. The induced rules from the
pruned clustering tree thus allow easier interpretation of the
relationship between the descriptions D and target object T .
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site reported height occupation
civilian reported weight education

birth-state shoe size number of children
subgroup number age gender

car make fitness marital status
car year ethnicity family income

car model

Table II
THE DEMOGRAPHIC ATTRIBUTES.

V. BODY SHAPE PREDICTION

A. Selection of training and testing datasets

We select 3D models of 1035 males and 1133 females
from North America in the CAESAR database. Two thirds
(1453) of the dataset have been randomly selected for
building a full PCT to do shape prediction. The same set
is also used for pruning the PCT to do shape analysis.
Remaining data (715) are used for testing the prediction
performance of the full PCT.

B. Selection of PCA coordinates

According to PCA result, the first ten and fifty principal
components represent 89.99% and 98.50% variations in the
dataset respectively. Therefore in the body shape prediction,
we use the first fifty normalized PCA coordinates because it
yields a high accuracy. In the body shape analysis, we limit
PCA coordinates to the first ten because they represent most
of the interesting body shape variations in the dataset.

In PCA, the degree of the variations in the training dataset
is linearized by the eigen values along the principal compo-
nents (PCs). Scaling the mapped coordinates along the PCs
using eigen values yields a normalized representation of the
original 3D shape in the new shape space. The normalized
PCA coordinates are used for computing the variations in
and between clusters.

C. Selection of demographic attributes

The demographic attributes in Table II are used for
making partitions in PCT. The attributes “reported height”
and “reported weight” are from what people reported at
scanning, and thus may not be accurate.

D. Weight selection for building a weighted PCT

The selection on weights for building a weighted PCT
is numerous. Here, we assign on each PCA coordinate i a
weight

√
λi (λi as in section III) for the computations of

variations in and between clusters. This selection is based
on the fact that

√
λi represents the shape variation depicted

by the i− th principal component. A weighted PCT is thus
built by setting the minimal number of training cases in each
leaf node to 20. Due to page limitations, we put the PCT in
supplementary materials.

Acromial Height, Sitting Ankle Circumference
Spine-to-Shoulder Spine-to-Elbow

Arm Length (Spine to Wrist) Arm Length (Shoulder to Wrist)
Arm Length (Shoulder to Elbow) Armscye Circumference

Bizygomatic Breadth Chest Circumference
Buttock-Knee Length Chest Girth at Scye

Crotch Height Elbow Height, Sitting
Eye Height, Sitting Face Length

Foot Length Hand Circumference
Hand Length Head Breadth

Head Circumference Head Length
Hip Breadth, Sitting Hip Circumference, Maximum

Hip Circ Max Height Knee Height
Neck Base Circumference Shoulder Breadth

Sitting Height Stature
Subscapular Skinfold Thigh Circumference

Thigh Circumference Max Sitting Thumb Tip Reach
TTR 1 TTR 2
TTR 3 Triceps Skinfold

Total Crotch Length (Crotch Length) Vertical Trunk Circumference
Waist Circumference, Pref Waist Front Length

Waist Height, Preferred Weight (kg)

Table III
THE BODY MEASUREMENTS.

Figure 2. Prediction accuracy comparison along the first fifty components
by linear regression and predictive clustering tree.

E. Evaluation of shape prediction performance

We use the demographic attributes from the testing dataset
and traverse the weighted PCT for shape predictions. Denote
the predicted PCA coordinate vector for testing case i as
PC∗i = [PC∗i,1, ..., PC

∗
i,50] and the actual PCA coordinate

vector as PCi = [PCi,1, ..., PCi,50], where i = 1, 2, ..., 715.
A distance vector can be computed as Di = [(PC∗i,1 −
PCi,1)2, ..., (PC∗i,50−PCi,50)2]. For all the testing cases, a
global prediction error vector can be calculated as EPCT =

[

√
715∑
i=1

Di,0

/
715, ...,

√
715∑
i=1

Di,50

/
715].

For comparison, we also implemented the linear regres-
sion approach [2]. Using the same training cases as weighted
PCT, we pulled the forty-four body measurements (see Ta-
ble III) from the CAESAR dataset and used the normalized
PCA coordinates for building a linear mapping. Testing with
the same cases as weighted PCT, a global prediction error
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Figure 3. Shape prediction results. On each row from left to right: the
original shape, predicted shape using linear regression and predicted shape
using PCT.

vector Eregression is calculated for comparison to EPCT .
The comparison made in Figure 2 shows a close prediction
accuracy between the linear regression approach using 44
measurements and the weighted PCT using 19 demographic
attributes.

Besides the comparison on prediction errors, we also
compare visually the body shapes reconstructed through
Equation 2. Figure 3 shows examples of male and female
prediction using the linear regression and weighted PCT
approaches. It is no wonder that linear regression creates
shapes being close to the original because it uses 44 body
measurements for constraints. The reconstructions using the
weighted PCT also show a close shape as the original.

VI. PRUNED PCT FOR BODY SHAPE ANALYSIS

For shape analysis, we concentrate on the first ten com-
ponents, among which we also limit our analysis to prin-
cipal components 1, 2, 4, 5 and 8. The reason is that the
other components within the first ten all relate to posture
variations. Figure 4 shows the shape variations along the
selected principal components, by blending the global mean
shape and shapes at ±3

√
λj(j = 1, 2, 4, 5, 8) [10]. PC1 is

showing shape variations between a short female body and a
tall male body. PC2 shows weight gains mainly around the
waist line with both arms opening up. PC4 displays longer
arms and legs, and weight gains around the waist line. PC5
shows weight gains on the upper body, including torso and
arms.

From the 19 demographic attributes listed in Table II, we
select 6 of them for shape analysis (the third column). These
attributes offers interesting analysis because they are related
to shape but the relationship is not obvious. In contrast, the
attributes in the first column are not related to shape and the
attributes in the second column are directly related to shape.

With the six selected demographic attributes, we rebuild
the PCT and set the minimal number of cases in a leaf node
to 150. The pruned new PCT is displayed in Figure 5. From
this tree we find that family income is not as related as
the other five attributes because it is not used in any of the
partition nodes.

The first interesting thing we find from the pruned PCT
is that for males, body shape is mostly related to marital
status and education being the second. For females, the most
important factor is occupation, then number of children,
leaving education the least related factor. It is also found
that body shape in males is less affected by occupation than
that in females.

We only put in Figure 5 those partition conditions having
a short list of possible values, but list in full the following
nine rules created by the pruned predictive clustering tree.
The number at the end of each rule is the number of training
cases in that cluster.

Rule 1 IF Gender = Male AND Marital-Status = ’ Single’ THEN
[CLUSTER 1]: 355

Rule 2 IF Gender = Male AND Marital-Status in {’ Married’,’ Di-
vorced’,’ Widowed’,’ Engaged’,’ No Response’} AND Educa-
tion in {’ High School’,’ Bachelors’,’ Associates’,’ None of the
above’} THEN [CLUSTER 2]: 292

Rule 3 IF Gender = Male AND Marital-Status in {’ Married’,’ Di-
vorced’,’ Widowed’,’ Engaged’,’ No Response’} AND Educa-
tion in {’ Masters’,’ Doctorate’,’ Post-Doctoral Studies’} THEN
[CLUSTER 3]: 230

Rule 4 IF Gender = Male AND Marital-Status in {’ Married’,’ Di-
vorced’,’ Widowed’,’ Engaged’,’ No Response’} AND Educa-
tion in {’ Technical Training’,’ No Response’,’ Some College’}
THEN [CLUSTER 4]: 158

Rule 5 IF Gender = Female AND Occupation in {’ Technician’,’
Administative Support’,’ Machine Operator’,’ Retired’,’ Unem-
ployed’} THEN [CLUSTER 5]: 293

Rule 6 IF Gender = Female AND Occupation in {’ No Response’,’ Ser-
vice Occupation’,’ Computer Programmer/Software Engineer’,’
Homemaker’} THEN [CLUSTER 6]: 150
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PC1 PC2 PC4 PC5 PC8
Figure 4. Shape variations along selected principal components

Rule 7 IF Gender = Female AND Occupation in {’ Manage-
ment’,’ Degreed Engineer’,’ Administrator’,’ Other Specialty
Occupation’,’ Supervisor’,’ Attorney or Judge’,’ Transporta-
tion Occupation’,’ Student’,’ Scientist’,’ Sales/Marketing’,’
Classroom Teacher’,’ Mechanic’,’ Health Diagnosing Occupa-
tion’,’ Armed Services’,’ Construction’,’ Material Handler’,’
Other Legal/Judicial Occupation’,’ Training/Continuing Edu-
cation’,’ Health Non-Diagnosing Occupation’,’ Farm Occu-
pation’,’ Forestry or Fishing Occupation’} AND Number-of-
Children in {0.0,4.0,’ No Response’,5.0} AND Education in
{’ Technical Training’,’ Bachelors’,’ Masters’,’ Post-Doctoral
Studies’} THEN [CLUSTER 7]: 306

Rule 8 IF Gender = Female AND Occupation in {’ Manage-
ment’,’ Degreed Engineer’,’ Administrator’,’ Other Specialty
Occupation’,’ Supervisor’,’ Attorney or Judge’,’ Transporta-
tion Occupation’,’ Student’,’ Scientist’,’ Sales/Marketing’,’
Classroom Teacher’,’ Mechanic’,’ Health Diagnosing Occupa-
tion’,’ Armed Services’,’ Construction’,’ Material Handler’,’
Other Legal/Judicial Occupation’,’ Training/Continuing Edu-
cation’,’ Health Non-Diagnosing Occupation’,’ Farm Occu-
pation’,’ Forestry or Fishing Occupation’} AND Number-of-
Children in {0.0,4.0,’ No Response’,5.0} AND Education in {’
High School’,’ Doctorate’,’ Associates’,’ No Response’,’ None
of the above’,’ Some College’} THEN [CLUSTER 8]: 151

Rule 9 IF Gender = Female AND Occupation in {’ Manage-
ment’,’ Degreed Engineer’,’ Administrator’,’ Other Specialty
Occupation’,’ Supervisor’,’ Attorney or Judge’,’ Transporta-
tion Occupation’,’ Student’,’ Scientist’,’ Sales/Marketing’,’
Classroom Teacher’,’ Mechanic’,’ Health Diagnosing Occupa-
tion’,’ Armed Services’,’ Construction’,’ Material Handler’,’
Other Legal/Judicial Occupation’,’ Training/Continuing Edu-
cation’,’ Health Non-Diagnosing Occupation’,’ Farm Occu-
pation’,’ Forestry or Fishing Occupation’} AND Number-of-
Children in {3.0,1.0,2.0,6.0,’ 7 or more’} THEN [CLUSTER
9]: 233

To have a better understanding of the actual body shape
in each cluster, we reconstruct the (i) global mean shape,
(ii) the shapes at the centroids of clusters, and (iii) the
shapes being farthest from the global mean and inside the
95% covering sphere of each cluster. Figure 6 and 7

Figure 6. Male body shapes on cluster centers and 95% coverage spheres.

shows for males (Rules 1 to 4) and females (Rules 5 to
9) the reconstructed shapes described here. In each figure,
the center body shape is the global mean and it is the
same for males and females. The global mean shape is first
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Figure 5. Pruned predictive clustering tree for shape analysis.

surrounded by shapes at the centroids of clusters, then by
shapes meeting the criterion (iii) above.

Figure 6 shows that centroids and extreme shapes of
Rule 2, 3 and 4 gained more body weight than those in
Rule 1, which belongs to a cluster of single males. For
those other than being single, subjects having education in
“Masters, Doctorate, Post-doctorate” (Rule 3) have a lower
body weight and height than those who do not have the
education (Rules 2 and 4).

Figure 7 shows that a difference in occupation as de-
scribed in Rules 5 and 6 creates two clusters of females in a
different height. According to the pruned tree, clusters 7 and
8 as a whole have less number of children than cluster 9. The
reconstructed shapes show that females in clusters 7 and 8
have a lower body weight than cluster 9. Between cluster 7
and 8, the attribute difference is on education (according to
the tree) and the shape difference is mainly on body height
(according to Figure 7). The female subjects having received
a higher education (Rule 7) are lower in height than those
who did not (Rule 8).

VII. DISCUSSION

In the weighted PCT, the first partition node is always
gender. This is important in that the predicted body shape
will have the right gender. If not using the weight, gender
may not be the first partition node.

The predictive clustering tree also works in cases when
both measurements and demographic attributes are avail-
able. Adding body measurements to the training set grows
the predictive clustering tree. When a set of attributes or

measurements are missing, the clustering tree can make a
prediction by combining its leaf clusters.

In shape analysis according to the demographic attributes,
the induction rules for males are easier for reading than those
for females. Occupation as the main factor for clustering
females has more possible attribute values than the rest of
the demographic attributes. This prevents us from comparing
between a combined cluster (clusters 5 and 6) and another
combined cluster (clusters 7, 8 and 9).

VIII. CONCLUSION

In this work, we propose a predictive clustering tree,
which has proved to be a robust and flexible tool for body
shape prediction. It is also a fine analyzer for relations from
demographics to body shape.

Building a weighted predictive clustering tree yields sim-
ilar prediction accuracy as the linear regression approach.
Also note that the clustering tree uses only 19 demographic
attributes and the linear regression uses 44 body measure-
ments. What is common in this comparison is that both
approaches use 50 principal components.

Analysis on relation between body shape and demo-
graphic attributes creates some interesting findings. In anal-
ysis to body shape, the most related demographic attributes
through a pruned PCT are marital status and occupation for
males and females respectively.

For males other than being single, higher education leads
to human bodies with a lower weight. For females, occupa-
tion does make the biggest difference; however, those with
more children are likely to have a heavier weight.
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Figure 7. Female body shapes on cluster centers and 95% coverage
spheres.

Our future work may include conducting leave-one-out
experiment on the demographic attributes and testing the
shape prediction performance.
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