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We present an approach to find dense point-to-point correspondences between two de-

formed surfaces corresponding to different postures of the same non-rigid object in a fully

automatic way. The approach requires no prior knowledge about the shapes being regis-
tered or the initial alignment of the shapes. We consider surfaces that are represented by

possibly incomplete triangular meshes. We model the deformations of an object as isome-

tries. To solve the correspondence problem, our approach maps the intrinsic geometries
of the surfaces into a low-dimensional Euclidean space via multi-dimensional scaling.

This results in posture-invariant shapes that can be registered using rigid correspon-

dence algorithms.

1. Introduction

We consider the problem of finding dense point-to-point correspondences between
two deformed surfaces S(1) and S(2) corresponding to different postures of the
same non-rigid object. That is, given a position x(1) on S(1), we aim to find the
position x(2) on S(2) that corresponds to the same intrinsic location on S(2) as
does x(1) on S(1). If the position x(2) is absent on S(2) due to incomplete data,
no correspondence is found for x(1). Finding dense point-to-point correspondences
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between two deformed surfaces is a key problem in various applications such as
mesh deformation and animation 3, shape registration 21, object recognition 17,
and mesh parameterization 20, 27. The 3D models used in these applications usually
come from digitizing real-world objects from a discrete set of measurements using a
3D laser-range scanner or image-based reconstruction. Therefore, the reconstructed
surfaces are often incomplete.

The main difficulty in finding point-to-point correspondences is that local re-
gions on the surface are often not distinctive. Hence, finding the correspondence for
all object points corresponds to searching a large set of candidate correspondences.
Previous methods to find point-to-point correspondences for deformable surfaces
either restrict the search space using prior knowledge about the objects being regis-
tered 1 or use probabilistic methods to solve the problems 2 which has the drawback
of producing inaccurate correspondences.

The method proposed in this paper considers surfaces that are represented by
possibly incomplete triangular meshes. We model deformations of an object as
isometries. We aim to find dense point-to-point correspondences between two in-
complete triangular surfaces S(1) and S(2) consisting of n(1) and n(2) vertices, re-
spectively, using a fully automatic correspondence algorithm that does not assume
knowledge about markers or template shapes.

We propose an approach to solve the registration problem that can be viewed
as an extension of Jain et al.’s approach 18 and that is related to Bronstein et al.’s
approach 7. Both the approach by Jain et al. and the approach by Bronstein et al.
have only been used to compute the correspondence between a small set of samples
consisting of no more than 3000 vertices. This is due to the high complexity of
the algorithms. We extend the approach of Jain et al. by applying a course-to-fine
strategy, thereby making the approach useful for real-life data sets containing tens
of thousands of vertices.

Our approach consists of three main steps. First, we compute uniformly distrib-
uted sample sets P (r) containing n′(r) vertices from S(r) for r = 1, 2. We compute
the geodesic distance δi,j between the vertices pi and pj for i, j ∈ P (r) using the
fast marching technique introduced by Kimmel and Sethian 19. Furthermore, we

compute confidence values ωi,j = 1− mh
i,j

mi,j
, where mi,j is the number of edges on the

geodesic path computed by the fast marching technique from pi to pj and where
mh

i,j is the number of edges tracing a hole of S(r) on the geodesic path from pi to pj .
We say that an edge traces a hole of S(r) if the edge crosses a triangle that contains
at least one vertex on the hole. We use the geodesic distances δi,j as dissimilarities
and the confidence values ωi,j as weights to embed the samples P (r) of the manifold
S(r) via multi-dimensional scaling (MDS). Let X(r) denote the embedding. The ap-
proach embeds P (r) into a low-dimensional Euclidean space Rk using least-squares
MDS.

Second, we compute the rigid correspondence between the posture-invariant
canonical forms. Our approach employs the Hungarian method 24 for this compu-
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tation. The Hungarian method finds a maximum weight matching in a weighted
bipartite graph.

Third, all vertices of S(r) \ P (r) are projected to the embedding space. The
approach finds the correspondence of the projected vertices by evaluating an ap-
proximating thin-plate spline mapping the embedding X(1) to X(2).

The paper is organized as follows. Section 2 reviews previous work on the reg-
istration problem. Section 3 gives an overview of the algorithm. Sections 4 and 5
describe and analyze the approach taken in this paper. Section 6 shows experimen-
tal results and discusses limitations of the approach. Finally, Section 7 concludes
and gives ideas for future work. Our approach is compared to the approaches taken
by Jain et al. 18 and Bronstein et al. 7.

2. Related Work

This section reviews previous work aiming to find dense point-to-point correspon-
dences between two deformed surfaces corresponding to different postures.

Allen et al. 1 deform a known template mesh of a generic human body to fit a
range scan of a human body. The deformation is guided by a small set of known
marker positions on the object and it is ensured that the deformation is smooth
in the neighborhood of each vertex. While this method performs well, a template
model as well as a sparse set of marker positions need to be available.

Recently, markerless registration methods have received considerable atten-
tion 2, 18, 7. Anguelov et al. 2 model the registration problem using a Markov
network. Two surfaces are registered by maximizing a joint probabilistic model
over all correspondences. The method aims to preserve geodesic distances on the
surface. Furthermore, the method ensures that close by points in one surface map
to close by points in the other surface. This method encounters problems when
registering surfaces of a human body due to symmetry alignments.

Jain et al. 18 and Bronstein et al. 7 solve the non-rigid correspondence problem
by embedding the intrinsic geometry of the surface into a suitable embedding space
using MDS. Denote the two surfaces being registered by S and Q. Jain et al. em-
bed the intrinsic geometries of both S and Q into Euclidean space using classical
MDS 14. MDS aims to embed the points on S and Q, respectively, into Euclidean
space Rk, such that the geodesic distances on S and Q, respectively, are approxi-
mated well by the Euclidean distances between the corresponding embedded points.
The embedded surfaces are then aligned in embedding space, which yields a one-
to-one correspondence between S and Q. This fully automatic approach does not
assume a template mesh or marker positions to be known. The approach was shown
to perform well for surfaces with intrinsic geometry that can be represented well
in Euclidean spaces. For surfaces with non-Euclidean intrinsic geometry, symmetry
alignment problems may arise. The main drawback of this approach is its quadratic
time and space complexity that restricts the use of this method to small models. The
experiments of Jain et al. compute correspondences for models containing between
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180 and 250 vertices.
We extend this approach and make it applicable to real-life data sets by im-

plementing a coarse-to-fine strategy. Another drawback of Jain et al.’s approach is
that the surface models can only contain insignificant amounts of missing data. We
overcome this problem by using weighted geodesic distances during the embedding.
The embedding is then performed using least-squares MDS 5 . This allows us to
register surfaces with significant amounts of missing data.

Bronstein et al. embed the intrinsic geometry of S into the surface Q using
generalized MDS 6. The approach also employs a coarse-to-fine strategy to overcome
the high time and space complexity of the embedding problem. Generalized MDS
aims to embed the points on S into the surface Q, such that the geodesic distance
on S is approximated well by the geodesic distance of the corresponding points
on Q. This method avoids the large embedding errors caused by embedding into
Euclidean space. Bonstein et al. show that the method performs well in practice.
The method was tested on data sets of up to 3000 vertices obtained by coarsening
larger data sets 28.

Bronstein et al. point out that the method is suitable for registration of incom-
plete surfaces. However, note that this claim is correct only if one of the surfaces to
be registered is complete. If S is an incomplete surface and Q is a complete surface,
the geodesic distances on S can be weighted similarly to our approach. However,
consider the registration of two incomplete surfaces S and Q. In order to embed
the intrinsic geometry of S into the surface Q, the GMDS algorithm repeatedly
computes geodesic distances on Q. These distances are taken to be accurate by the
GMDS algorithm. If the surface Q is incomplete, this results in large embedding
errors. Hence, to use the algorithm by Bronstein et al., at least one of the sur-
faces to be registered needs to be almost complete to avoid large embedding errors.
When the aim is to register two incomplete surfaces, a template mesh is required.
However, the approach by Bronstein et al. does not require prior knowledge about
marker positions.

3. Correspondence via least-squares multi-dimensional scaling

We find the point-to-point correspondence between vertices on S(1) and S(2), re-
spectively, using a method that extends the work of Jain et al. 18. One limitation of
Jain et al.’s approach is its quadratic space complexity. This complexity stems from
the computation of the canonical form and limits the scalability of the approach.
The models considered for Jain et al.’s experiments all have at most 250 vertices.
We overcome this limitation and make the approach applicable to real-world data
consisting of tens of thousands of vertices by taking a coarse-to-fine approach.

Our algorithm is summarized in Algorithm 1 and outlined in more detail in
Section 4. The input of the algorithm consists of two possibly incomplete triangular
manifolds S(1) and S(2) consisting of n(1) and n(2) vertices, respectively.
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Algorithm 1: Overview of the Algorithm.
/* Step 1: Compute samples: */
Compute sample sets P (r), r = 1, 2 of size n′(r) on S(r) using Voronoi1

sampling;
/* Step 2: Compute the correspondence between the two sample sets (coarse

correspondence): Lines 2-10 */
for Each pi, i ∈ P (r) do2

for Each i, j ∈ P (r) do3

Compute the geodesic distance δi,j between the vertices pi and pj on4

S(r) using the fast marching technique;
Compute confidence values ωi,j approximating the fraction of the5

length of the geodesic path between pi and pj that does not trace a
hole of S(r);

end6

end7

Use δi,j and ωi,j to embed the sample vertices P (r) = {p(r)
1 , . . . , p

(r)

n′(r)} into8

Rk for a constant embedding dimension k. The embedding is given as
X(r) =

[
X

(r)
1 , . . . , X

(r)

n′(r)

]
;

Find an initial alignment of X(1) and X(2) using eigenmode sign assignments;9

Compute the correspondence between X(1) and X(2) based on Euclidean10

distances using the Hungarian algorithm;
/* Step 3: Compute thin-plate spline: */
Compute an approximate thin-plate spline matching Φ(X(1)) from X(1) to11

X(2);
/* Step 4: Compute the correspondence between the non-matched vertices

(fine correspondence): Lines 12-19 */
for Each p ∈ S(r) \ P (r) do12

Add p to the embedding X(r);13

end14

/* The added points are X
(r)

n′(r)+1
, . . . , X

(r)

n(r) . */
for i = n′(1) + 1, . . . , n(1) do15

Evaluate X̃
(1)
i = Φ(X(1)

i );16

Find the nearest neighbor X
(2)
j of X̃

(1)
i in X

(2)
j , j = n′(2) + 1, . . . , n(2);17

Choose X
(2)
j as corresponding point of X

(1)
i if X̃

(1)
i and X

(2)
j are nearest18

neighbors;
end19

4. Description of the Algorithm

In this section, we describe each step of the approach in detail. First, the approach
computes a small number of uniformly distributed sample points P (1) and P (2)
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on S(1) and S(2), respectively, using Voronoi sampling. Uniformity in this context
means that the sample density is approximately constant over the surface. Voronoi
sampling, also called Farthest Point Sampling, allows to obtain uniformly distrib-
uted samples in an iterative way. Farthest point sampling was introduced to image
processing by Eldar et al. 13. It starts from a random sample and iteratively com-
putes the next sample as the vertex which is farthest from the samples computed so
far. Combining the fast marching technique and farthest point sampling to obtain
samples used to perform MDS works well in practice 12, 18. Hence, we use farthest
point sampling to obtain P (r) and compute an MDS embedding.

Second, we establish a coarse correspondence between the sample points P (1)

and P (2) as described in Section 4.1. Third, we establish the the fine correspondence,
that is, the correspondences between vertices in S(1) \ P (1) and S(2) \ P (2). This
step is described in Section 4.2.

4.1. Coarse Correspondence

We establish the coarse correspondence, which is the correspondence between the
two sample sets, using a variation of the approach introduced by Jain et al. 18. For
the sample set P (r), r = 1, 2, we compute the pairwise geodesic distances δi,j on S(r)

between the vertices pi and pj for i, j ∈ P (r) using the fast marching technique 19. In
fact, due to the close relationship between the fast marching technique and farthest
point sampling, we compute δi,j at the same time as we compute the sample points.
We do this by storing all of the geodesic distances between each sample point pi

and all of the other vertices of S(r). We also compute confidence values ωi,j as
approximate fraction of the geodesic path between pi and pj that does not trace a

hole of S(r). We use confidence values ωi,j = 1− mh
i,j

mi,j
, where mi,j is the number of

edges on the geodesic path from pi to pj on S(r) and where mh
i,j is the number of

edges tracing a hole of S(r) on the geodesic path on S(r) from pi to pj . Since S(r) is a
manifold, we can find the edges of S(r) tracing a hole of S(r) as edges with less than
two incident faces, since every edge not adjacent to a hole of S(r) has two incident
faces. We choose this measure for ωi,j , since it can be computed more efficiently
than the fraction of the length of the path that does not trace the boundary of a
hole. When working with data obtained from laser range scanners, ωi,j is a good
approximation of the fraction of the path that does not trace the boundary of a
hole, because all of the edges of S have similar lengths. This choice of confidence
values has been demonstrated to yield MDS embeddings that represent well the
geodesic distances on S(r) 29.

We embed the sample vertices P (r) = {p(r)
1 , . . . , p

(r)
n′ } into Rk for a constant

embedding dimension k. The embedding X(r) =
[
X

(r)
1 , . . . , X

(r)
n′

]
is found using

MDS. MDS is a commonly used technique to reduce the dimensionality of high-
dimensional data. Given a set of n objects O1, . . . , On in d dimensions as well as
the pairwise dissimilarities δi,j , 1 ≤ i, j ≤ n with δi,j = δj,i between objects Oi and
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Oj , the aim is to find points X1, . . . , Xn in k dimensions with k < d, such that the
Euclidean distance di,j(X) between Xi and Xj equals δi,j for 1 ≤ i, j ≤ n. This
aim can be shown to be too ambitious, since in general it is not possible to find
positions X1, . . . , Xn in k dimensions such that di,j(X) = δi,j for all i, j. To find
a good approximation, least-squares MDS aims to find points Xi in k dimensions,
such that ELS =

∑n
i=1

∑n
j=i+1 ωi,j (δi,j − di,j(X))2 is minimized, where ωi,j are

non-negative weighting coefficients with ωi,j = ωj,i. Since the objective function
ELS is a complicated function, it is easier to iteratively approximate the objective
function by a simple function τ . This approach is pursued in the algorithm Scal-
ing by Maximizing a Convex Function (SMACOF) that is explained by Borg and
Groenen 5 and used by Elad and Kimmel 12 to compute canonical forms. We min-
imize τ using the limited-memory Broyden-Fletcher-Goldfarb-Shanno scheme 22,
a quasi-Newton method, as discussed by Bronstein et al. 8 and implemented by
us 29. We perform least-squares MDS with the geodesic distances δi,j as dissimi-
larities and the confidence values ωi,j as weights to embed the samples P (r) of the
manifold S(r) to an embedding configuration X(r) in Rk. The configurations X(r)

have the property that Euclidean distances in embedding space approximate well
the geodesic distances on S(r) according to ELS . Hence, X(r) is called the bending
invariant form or canonical form 12.

Since the embeddings X(1) and X(2) are approximately bending invariant, we
can find correspondences between the sample sets by rigid registration of the canon-
ical forms. As the canonical forms X(r) are invariant with respect to rotation, trans-
lation, and reflection 10, we need to consider multiple alignments of X(1) and X(2).
We do this by aligning both X(1) and X(2) by their respective eigenvectors and
by computing an optimal rigid correspondence using the Hungarian method for
each sign assignment of the eigenvectors. After computing the 2k different rigid
correspondences, we choose the one that yields the lowest cost. A similar approach
has been implemented by Jain et al. 18. Without loss of generality assume that
n′(1) ≤ n′(2). To compute the optimal rigid correspondence for a given sign assign-
ment, we aim to find an assignment function a(i) that assigns exactly one point

X
(2)
a(i) to every point X

(1)
i , such that EH =

∑n′(1)

i=1 d(X(1)
i , X

(2)
a(i)) is minimized, where

d denotes the Euclidean distance in Rk. This problem can be viewed as an assign-
ment problem and it can be solved in cubic time using the Hungarian algorithm 24.
After assigning a point X

(2)
a(i)) to a point X

(1)
i , we can measure e = d(X(1)

i , X
(2)
a(i)).

As e is measured as Euclidean distance in embedding space, e is an approximation
of the error made by corresponding X

(1)
i to X

(2)
a(i) measured as geodesic distance on

S(1) or S(2).
To eliminate erroneous matchings that assign a point X

(2)
a(i) to a point X

(1)
i

although the part corresponding to p
(1)
i is missing in S(2), we eliminate matching

points where e is larger than the sampling resolution along the mesh.
Note that any rigid or almost rigid registration algorithm can be used to find the

coarse correspondence. Jain et al. 18 use a modified iterative closest point method
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for this step. As there is a one-to-one correspondence between P (r) and X(r), the
correspondences of the points P (1) and P (2) directly follow.

4.2. Fine Correspondence

This section describes how to compute the fine correspondence given the coarse
correspondence. We model the deformation of X(1) to X(2) using an approximate
thin-plate spline. The following description is due to Dryden and Mardia 11. De-
note the matrix of points of X(1) that have a valid corresponding point in X(2) by
T =

[
~t1~t2 . . .~tl

]
with l ≤ n′(1). Furthermore, denote the matrix of points of X(2)

corresponding to T in that order by Y = [~y1~y2 . . . ~yl]. The thin-plate spline defor-
mation is Φ(~t) = ~c + A~t + WT s(~t), where ~c is a k-dimensional vector, A is a k × k

matrix, W is a l × k matrix, and s(~t) =
[
φ(~t− ~t1) . . . φ(~t− ~tl)

]T
is a l-dimensional

vector with

φ(~t) =

{∥∥~t∥∥2
log

∥∥~t∥∥,
∥∥~t∥∥ > 0,

0, otherwise
.

We find Φ(~t) by solving the linear system of equationsS + λI 1 TT

1T 0 0
T 0 0

W

cT

AT

 =

Y T

0
0

 ,

where I is the identity matrix, 1 is an l × 1 vector containing 1 at each position,
and λ is a constant. Following Jain et al. 18, we choose λ as the median distance
between matching point pairs. The approximate thin-plate spline gives us a way of
transforming any point from the embedding X(1) to the embedding X(2).

We establish the fine correspondence, that is, the correspondences between ver-
tices in S(1) \ P (1) and S(2) \ P (2). To compute the correspondence in embedding
space, we add all of the points in S(r) \ P (r) to the embedding X(r) for r = 1, 2 29.
To add p

(r)

n′(r)+j
, j > 0 to the least-squares MDS embedding, we compute the geo-

desic distances δn′(r)+j,1, . . . , δn′(r)+j,n′(r) as dissimilarities and the confidence val-
ues ωn′(r)+j,1, . . . , ωn′(r)+j,n′(r) as weights as before. We then aim to find a position
X

(r)

n′(r)+j
such that

E∗
LS =

n′(r)∑
i=1

ωn′(r)+j,i

(
δn′(r)+j,i − dn′(r)+j,i(X)

)2

is minimized. The function E∗
LS can be minimized using a limited-memory Broyden-

Fletcher-Goldfarb-Shanno quasi-Newton approach 22, 29. Note that the geodesics
and weights do not need to be recomputed, since we computed and stored those
values during farthest point sampling. Let the embedded points be denoted by
X

(r)

n′(r)+1
, . . . , X

(r)

n(r) . Once the embedded points are known, we use the approximate
thin-plate spline to find the correspondences in bending invariant space. We first
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compute X̃
(1)
i = Φ(X(1)

i ) for i = n′(1) + 1, . . . , n(1). We choose X
(2)
j , j = n′(2) +

1, . . . , n(2) as corresponding point of X
(1)
i if X̃

(1)
i and X

(2)
j are nearest neighbors.

As in the case of coarse correspondences, we eliminate matching points where
the Euclidean distance between the points is larger than the sampling resolution
along the mesh to reduce the number of erroneous matchings.

Note that this heuristic algorithm is similar, albeit more general than the work
by Jain et al. 18. Jain et al. use a slight modification of step 2 described in Algo-
rithm 1 to register two surfaces S(1) and S(2). By deriving a coarse-to-fine approach
for the correspondence problem using canonical forms, we make the use of canon-
ical forms applicable to real-life data sets with tens of thousands of vertices. The
reason is that the coarse-to-fine approach overcomes the quadratic time and storage
complexity of the algorithm. A detailed analysis of the presented algorithm follows.

5. Analysis of the Algorithm

We analyze the total space and time complexity of the algorithm by analyzing each
step given in Algorithm 1. Let n = max(n(1), n(2)), n′ = max(n′(1), n′(2)). The
Voronoi sampling in step 1 of the algorithm takes O(n′n log n) time and space.
We can store the dissimilarities and weights computed during the execution of the
sampling algorithm. That way, all the weights and dissimilarities needed during the
execution of the algorithm are precomputed.

The coarse correspondence in step 2 of the algorithm takes O(tn′2) time to
compute the canonical forms of P (r), where t is the maximum number of iterations
required by the quasi-Newton algorithm. Trying all align assignments of the eigen-
modes and executing the Hungarian method each time takes O(2kn′3) time. Hence,
the total time in step 2 is O(n′2(t + 2kn′)).

Computing the RBF in step 3 of the algorithm requires solving a linear system
of equations of size n′ + k + 1. This takes O((n′ + k)3) time 25.

Finally, step 4 of the algorithm takes O(tkn) time to project all the points
in S(r) \ P (r) to the embedding X(r), where t is the maximum number of iter-
ations required by the quasi-Newton algorithm. This holds since all the weights
and dissimilarities are precomputed. Evaluating the RBF for all of the points takes
O(nk) time. It remains to find the nearest neighbor in X(2) for each point in X̃(1).
We use a kd-tree on X(2) to perform this step more efficiently. The tree can be
built in O(n log n) time and uses O(n) storage. Using the kd-tree, it takes O(n

√
n)

to find all the nearest neighbors. The total time consumed by step 4 is therefore
O(n(tk +

√
n)).

Hence, the total time complexity of the algorithm is O(n′n log n+n′2(t+2kn′)+
(n′ + k)3 + n(tk +

√
n)).

Since k is a constant and since in the average case n′ << n, the running time
becomes O(n

√
n). The total space complexity is O(n′2 + n), which is O(n) for the

average case n′ << n. Hence, we reduced the average asymptotic space and time
requirement compared to the algorithm suggested by Jain et al. 18, thereby making
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the technique scalable.
Note that the running time of our algorithm for an average case is dominated by

finding all the nearest neighbors. We can improve the asymptotic running time of
this step, thereby improving the average asymptotic running time of our algorithm.
The exact neighbors in Rk can be found in O(kO(1) log n) time 23, 9. This reduces the
running time of our algorithm on average to O(nkO(1) log n). However, the space
requirement of the data structures used to answer the nearest neighbor queries
grows exponentially in k.

If we allow approximate nearest neighbors, the time and space complexity of
our algorithm can be improved. Let the nearest neighbor of point X̃

(1)
i be denoted

by X
(2)
j . An approximate nearest neighbor of X̃

(1)
i with approximation constant

1 + ε, ε > 0 is defined as a point in X(2) with distance at most (1 + ε)d(X̃(1)
i , X

(2)
j )

from X̃
(1)
i . An approximate nearest neighbor of X̃

(1)
i can be found in O((k log n

ε )O(1))
time using O(n1/εO(1)

) space 16, 15. Using this technique reduces the average running
time of our algorithm to O(n(k log n

ε )O(1)).
In our implementation, we use a kd-tree to perform the nearest neighbor search

due to the simplicity of its implementation.
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(a) (b) (c)

Fig. 1. Models of alien in postures (a) to (c) with known ground truth. The first row shows the

models, the second row shows the sample points used to find the coarse correspondence, the third
row shows the canonical forms of the sample points, and the fourth row shows the color-coded

correspondence.
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Fig. 2. Histogram of errors made by correspondence algorithm. The black columns show the his-

togram of errors when corresponding posture (a) to posture (b). The grey columns show the
histogram of errors when corresponding posture (a) to posture (c).

6. Experimental Results

We implemented and tested the algorithm using models from the CAESAR data-
base 26, the McGill 3D shape benchmarka, and the Princeton Shape Benchmarkb.
We further used models with known ground truth to evaluate the quality of the
approach.

We first describe the experiment that evaluates the quality of our approach.
We chose a model of an alien from the Princeton Shape Benchmark, subdivided
the model to obtain a high resolution mesh, and animated the model to obtain
multiple postures with known correspondences using the automatic technique by
Baran and Popović 4. Figure 1 illustrates the experiment. The three postures of
the alien used to conduct the experiment consist of 6858 vertices and are shown
in the first row of the figure. The second row of the figure shows the 2500 sample
vertices found on each model using farthest point sampling. The third row of the
figure shows the canonical forms of the sample points. The fourth row shows the full
fine correspondence found by the algorithm. We found the correspondences between
posture (a) and postures (b) and (c) in this experiment. Each vertex is assigned

ahttp://www.cim.mcgill.ca/ shape/benchMark/
bhttp://shape.cs.princeton.edu/benchmark/
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a unique color between red and green in posture (a). The corresponding points in
postures (b) and (c) are then displayed using the same color in row four of Figure 1.
We can see that a visually pleasing correspondence is found.

We compare the correspondences found by our algorithm to the ground truth
by computing the geodesic distances between the correspondence found by the al-
gorithm and the true correspondence for each vertex. We measure the error in
correspondence as the number of edges along the shortest path between the corre-
spondence found by the algorithm and the true correspondence. Since the algorithm
rejects erroneous matchings automatically as outlines in Section 4.1, some points do
not obtain a correspondence. We do not assign an error to rejected correspondences.
When registering posture (a) and posture (b), 1935 correspondences are rejected as
erroneous. When registering posture (a) and posture (c), 1842 correspondences are
rejected as erroneous. A histogram of the error encountered is shown in Figure 2.
The histogram shows two different data sets: the set of errors when corresponding
posture (a) to posture (b) is shown in black and the set of errors when correspond-
ing posture (a) to posture (c) is shown in grey. Nearly all of the correspondences
found by our algorithm are accurate within a distance of two edge lengths. This
shows that the approach taken in this paper yields correspondences of high quality.

For some poses of the alien model, the correspondences found are erroneous due
to symmetry alignment. A case for which this problem occurs is when registering
the posture shown in Figure 1 (a) with the posture shown in Figure 3. In this case,
the left side of the posture shown in Figure 1 (a) is found to correspond to the right
side of the posture shown in Figure 3 and vice versa. To illustrate this, Figure 3
shows a true correspondence we aim to find in green and the correspondence found
by the algorithm in red. The problem of symmetric alignments is a limitation of
our approach and it is discussed in more detail below.

Fig. 3. Erroneous correspondence due to symmetry problems.
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We further conducted two experiments with incomplete real-life data sets. The
first articulated model we experimented with is the model of a teddy bear from the
McGill 3D shape benchmark. Figure 4(a) shows the first model consisting of 21338
vertices, 2000 of which were chosen as sample points. Figure 4(b) shows the second
model consisting of 25658 vertices, 2050 of which were chosen as sample points. Note
that both models contain many small holes. Figure 5 shows the aligned canonical
forms of the two bears. The canonical forms are almost rigid transformations. The
correspondence computed by our algorithm is visualized in Figure 6. We visualize
the result by assigning a unique color to each vertex on the first model and by
drawing vertices on the second model in same color as their corresponding vertices.

(a) (b)

Fig. 4. Models of teddy bears from the McGill 3D shape benchmark.

The second articulated model we experimented with is a subject of the CAESAR
data base. The models of the CAESAR data base are available in three different
postures. The three original models are shown in Figures 7(a) to (c). We manually
changed the models to exclude the chair and fix large holes on the back for models
(b) and (c). For model (b), the hands were detached from the legs, since our method
cannot cope with changing topologies. Furthermore, we excluded one hand for each
of the models to avoid symmetry problems during registration. The changed models
are shown in Figures 8(a) to (c) and the modified models contain about 30,000
vertices. The sample sizes were chosen between 2,000 and 3,000 vertices.

Figure 9 shows the results of registering the models using the proposed algo-
rithm. Figure 9(a) shows the registration of model (a) with model (c). We visualize
the result by segmenting model (a), by assigning each segment a unique color, and
by drawing vertices on the model (c) in same color as their corresponding vertices.
We can see that the overall correspondence is correct, although some vertices of the
head in (a) correspond to the left arm in (c). Figure 9(b) shows the registration
of model (b) with model (c). We visualize the result by using the segmentation of
model (c), by assigning each segment a unique color, and by drawing vertices on the



December 5, 2007 16:36 WSPC/INSTRUCTION FILE
correspondence˙ijsm

Posture Invariant Correspondence of Incomplete Triangular Manifolds 15

Fig. 5. Optimal rigid alignment of canonical forms.

Fig. 6. Fine correspondence computed by the algorithm.

model (b) in same color as their corresponding vertices. It is clearly visible that the
correspondence registered the left side of model (c) with the right side of model (b).
This happens although we excluded one hand from consideration to avoid problems
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(a) (b) (c)

Fig. 7. Models of CAESAR data base.

(a) (b) (c)

Fig. 8. Modified models of CAESAR data base.

of this kind.
All the experiments shown in this Section were conducted on a Pentium(R) D

with 3.0 GHz and 3.5 GB of RAM. Since the emphasis of this paper is on the fact
that our algorithm is a theoretically more efficient approach than the approaches
presented by Bronstein et al. 7 and Jain et al. 18, we developed a non-optimized
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(a) (b)

Fig. 9. Fine correspondence computed by the algorithm.

experimental implementation. Hence, the running time of the experiments were just
under twenty minutes for the largest of the data sets. Those running times could
be improved by using multi-threading and by implementing some of the algorithms
on the GPU as in Bronstein et al. 7.

7. Conclusion

This section summarizes the contribution of this work by comparing our algorithm
to the algorithms proposed by Jain et al. 18 and to recent related work by Bronstein
et al. 7. Furthermore, we summarize limitations of our algorithm.

Our algorithm works well for non-symmetric surfaces which can be represented
well in Euclidean spaces. The main advantage of our algorithm is that no prior
knowledge about the objects being registered is required. The approach presented
in this paper is more time and space efficient than the approach by Jain et al.
due to our coarse-to-fine strategy. While Jain et al.’s approach was a conceptual
contribution, all of the experiments conducted were on small-scale models consisting
of about 250 vertices. Our approach extends this concept and makes it applicable
to real-life data sets with tens of thousands of vertices by overcoming the quadratic
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time and space complexity using a coarse-to-fine strategy.
The approach presented in this paper can be viewed as a variation of the ap-

proach by Bronstein et al. Both approaches were developed independently at the
same time. The main difference between the two approaches is the choice of the
embedding space. While we embed to Rk, Bronstein et al. use generalized multi-
dimensional scaling to embed one manifold into another. While the approach of
Bronstein et al. is more suitable to embed spaces that are not flat such as surfaces
of human bodies, the approach assumes that one of the meshes is a complete mesh
or a template mesh. Our approach does not assume this prior knowledge. Therefore,
our approach is favorable for manifolds with nearly flat intrinsic geometry, where
both models being registered contain significant amounts of missing data. Another
limitation of Bronstein et al.’s approach is its high time complexity. To compute
the canonical form, our approach recomputes the Euclidean distances di,j(X) along
with the gradient of di,j(X) with respect to X in each SMACOF iteration. The ap-
proach by Bronstein et al. needs to compute geodesic distances on the template
mesh to replace di,j(X). This means that in each SMACOF iteration, geodesic
distances along with the gradient of the geodesic distances with respect to the posi-
tions of the points on the template surface need to be computed. Hence, while our
algorithm takes O(tn′2) time to compute the canonical form of n′ sample points in
t iterations, the approach by Bronstein et al. takes O(tn′2 log n′) time. This makes
our approach more efficient and therefore more suitable for large data sets. While
our approach finds dense point-to-point correspondences for data sets with tens of
thousands of vertices, the approach by Bronstein et al. was only shown to compute
correspondences between coarse sample sets containing about 3000 vertices.

Finally, we summarize some limitations of our approach that should be ad-
dressed in the future:

• Surfaces that cannot be represented well in Euclidean spaces cannot be
registered reliably using this algorithm. The human shapes in the experi-
mental section show that although the shape itself is not symmetric, the
canonical forms become symmetric due to the embedding error.

• Symmetric surfaces may be registered wrong by the coarse correspondence
step of the algorithm.

• Surfaces with large holes cannot be registered reliably using this algorithm,
since large holes alter the global shape of the canonical embedding of the
sample points. This is the reason we fixed the back parts of the sitting
human models.

• Surfaces with many significant outliers cannot be registered reliably using
this algorithm, because MDS is not robust with respect to outliers 10. This
means that outliers can alter the global shape of the canonical embedding
of the sample points.
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