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Abstract We consider the problem of computing
accurate point-to-point correspondences among a

set of human face scans with varying expressions.

Our fully automatic approach does not require any
manually placed markers on the scan. Instead, the

approach learns the locations of a set of landmarks

present in a database and uses this knowledge to
automatically predict the locations of these land-

marks on a newly available scan. The predicted

landmarks are then used to compute point-to-point

correspondences between a template model and
the newly available scan. To accurately fit the ex-

pression of the template to the expression of the

scan, we use as template a blendshape model. Our
algorithm was tested on a database of human faces

of different ethnic groups with strongly varying ex-

pressions. Experimental results show that the ob-
tained point-to-point correspondence is both high-

ly accurate and consistent for most of the tested

3D face models.
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1 Introduction

We consider the problem of computing point-to-

point correspondences among a set of human face

scans with varying expressions in a fully automatic
way. This problem arises from building a statisti-

cal model that encodes face shape and expression

simultaneously using a database of human face
scans. In order to build a statistical model, we rely

on the correct computation of dense point-to-point

correspondences among the subjects of a database.
That is, the raw scans have to be parameterized in

such a way that likewise anatomical parts corre-

spond across the models [1]. Facial expression af-

fects the geometry of the human face and therefore
is important for facial shape analysis. A statistical

model of face shapes and expressions can be used

in applications such as face recognition, expression
recognition, or reconstructing accurate 3D models

of faces from input images [2–6].

Computing accurate point-to-point correspon-
dences for a set of face shapes in varying expres-

sions is a challenging task because the face shape

varies across the database and each subject has

its own way to perform facial expressions. The
problem is further complicated by incomplete and

noisy data in the scans.

While many approaches have been proposed to
compute point-to-point correspondences [7], only

few of them have been applied to statistical model

building and shape analysis of human face shapes.
Blanz and Vetter [2] built a statistical model called



morphable model for a set of 3D face scans with

varying expressions. The correspondence algorithm
is based on using optical flow on the texture infor-

mation of the faces. This assumes that the faces

are approximately spatially aligned. Xi and Shu [8]
built a statistical model based on principal compo-

nent analysis for a set of 3D face scans with neu-

tral expressions. The correspondence algorithm is

based on fitting a template model to the scans us-
ing a non-rigid iterative closest point algorithm.

To start this algorithm, the faces need to be ap-

proximately aligned using a set of manually placed
marker positions. Both of these registration ap-

proaches fail for misaligned models.

In this work, we develop a novel technique to

compute correspondences between a set of facial
scans with varying expressions that does not re-

quire the scans to be spatially aligned. Our corre-

spondence computation procedure uses a template
model P as prior knowledge on the geometry of the

face shapes. Unlike Xi and Shu [8], we aim to find

correspondences for faces with varying expressions.

Hence, it is not enough to have a template model
that captures the face shape of a generic model,

but we also need to capture the expressions of a

generic model. To achieve this, we model P as a
blendshape model as in Li et al. [9]. In a blend-

shape model, expressions are modeled as a linear

combination of a set of basic expressions. Hence,
blendshape models are both simple and effective

to model facial expressions.

Our approach proceeds as follows. We first use

a database of human face scans with manually

placed landmark positions to learn local properties
and spatial relationships between the landmarks

using a Markov network. Given an input scan F

without manually placed landmarks, we first pre-
dict the landmark positions on F by carrying out

statistical inference over the trained Markov net-

work. Sections 3.1 and 3.2 discuss this step. In or-
der to perform statistical inference, we need to re-

strict the search region for each landmark. This

is detailed in Sections 3.3 to 3.6. The predicted

landmarks are used to align P to F . In order to
fit the expression of P to the expression of F , the

template is aligned to the scan as outlined in Sec-

tion 4.1 and the weights of the generic blendshape
model are optimized as discussed in Section 4.2.

Finally, the shape of P is changed to fit the shape

of F as outlined in Section 4.3. Fig. 1 shows an
overview of the method.

2 Related Work

This section reviews literature in face shape anal-

ysis related to finding landmarks on face models,

computing correspondences between three-dimen-

sional shapes, and using blendshape models for fa-
cial animation.

2.1 Finding Landmarks on Face Models

Traditionally, facial features are detected in 2D im-

ages. In this setting, facial feature detection can be
achieved in an unsupervised (see for instance [10,

11]), semi-supervised (see for instance [12]) or su-

pervised (see for instance [13]) manner. Unsuper-
vised methods do not use prior information abo-

ut the geometry of target object. However, these

methods only estimate a global affine transforma-
tion between the source and target object. On the

other hand, semi-supervised and supervised meth-

ods estimate a shape deformation described by a

set of landmarks, which provide more accurate and
consistent results. To incorporate prior knowledge

about landmark locations, it often suffices to an-

notate only a few examples manually [12].

Recent developments on 3D data acquisition

have allowed to overcome the problems attached

to the 3D technologies. However, only a few ap-

proaches consider 3D landmark detection, while
accounting for expression and pose variations [14].

It is well-studied that facial landmarks play an im-

portant role in applications, such as face or expres-
sion recognition [15].

Ben Azouz et al. [16] propose a method to find

correspondences by automatically predicting mar-

ker positions on 3D models of a human body. The
method encodes the statistics of a surface descrip-

tor and geometric properties at the locations of

manually placed landmarks in a Markov network.
This method works only for models with slight

variation of posture. Mehryar et al. [14] introduce

an algorithm to automatically detect eyes, nose,
and mouth on 3D faces. The algorithm correctly

detects the landmarks in the presence of pose, fa-

cial expression and occlusion variations. This me-

thod is useful as initial alignment but not for an ac-
curate registration. Berreti et al. [17] combine prin-

cipal curvatures analysis, edge detector and SIFT

descriptors to find 9 landmarks on the eyes nose
and mouth regions in range images. The landmarks

are properly detected in the presence of facial ex-

pressions but the method relies in anthropometric
facial proportions to define the search regions and
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Fig. 1 Overview of the fully automatic expression-invariant face correspondence approach.

assumes that the face is upright oriented. Creusot

et al. [18] present a method to localize a set of
13 facial landmark points under large pose varia-

tion or when occlusion is present. Their method

learns the properties of a set of descriptors com-
puted at the landmark locations and encodes both

local information and spatial relationships into a

graph. The method works well for neutral pose.

However, in the presence of expression variation,
the accuracy decreases considerably. Segundo et

al. [19] develop a method for face segmentation and

landmark detection in range images. The landmark
detection method combines surface curvature in-

formation and depth relief curve analysis to find

5 landmarks located on the nose and eye regions.
The landmarks are properly detected in the pres-

ence of facial expressions and hair occlusions, but

the method relies on a specific acquisition setup.

Perakis et al. [20,21] present a method to detect
landmarks under large pose variations using a Ac-

tive Landmark Model (ALM), which is a statistical

shape model learned from 8 manually annotated
landmarks. Using a combination of the Shape In-

dex descriptor and Spin Images, the search space

for the fitting of the ALM is defined. The final
set of landmarks is defined by selecting the set

of candidates that satisfies the geometric restric-

tions encoded in the ALM. The experiments show

that the method works in the presence of facial
expressions and pose variation up to 80 degrees

around the y-axis. Nair and Cavallaro [22] use a

point distribution model to estimate the location
of 49 landmarks on the eyebrow, eye and nose re-

gions. The method works well in the presence of

expressions and noisy data. However the error in

the localization of landmarks is quite high (a com-
parison of the results is provided in Section 5.2).

Lu and Jain [23] present a multimodal approach

for facial feature extraction. The nose tip is lo-
cated using only the 3D information, and the eyes

and mouth corners are extracted using 2D and 3D

data. As their focus is handling changes in head

pose and lighting conditions, variations due to fa-
cial expressions are not considered in their exper-

iments. This multimodal approach is used by Lu

et al. [24] as part of a system for face recognition
in the presence of pose and expression variation

(only smiling expression variations are included in

the test data). The authors claim that the expres-
sion changes decrease the accuracy of the system.

However, quantitative results of the landmark de-

tection are not provided. In addition, the require-

ment of the texture data is a limitation of the mul-
timodal approaches because sometimes such infor-

mation is not available.

As our aim is to obtain accurate point-to-point

correspondences, we derived a landmark predic-
tion method based on the approach of Ben Azouz

et al. [16]. The surface descriptor we used is able

to catch the local geometry properly [26] and, by

combining it with a canonical representation [27],
our approach is able to detect landmarks in the

presence of facial expressions. We select a machine

learning-based approach to avoid classic assump-
tions such as: the nose tip is the closest point to

the camera [28], the inner-corners of the eyes and

the tip of the nose are the most salient points [19],
the 3D face scan is in a frontal upright canoni-
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cal pose [17], among others. The advantage is that

learning-based approaches can easily be extended
to other contexts.

2.2 Correspondence Computation

Several methods have been proposed to solve the

problem of establishing a meaningful correspon-

dence between shapes. Here, we focus on comput-
ing correspondences between human face shapes.

Methods that do not assume templates usually

have the problem that some points are not reg-
istered accurately. To remedy this, we assume a

template model. In the following, we only review

approaches that use template models (for details

about methods for correspondence computation see
the survey of van Kaick et al. [7]).

Passalis et al. [29] proposed a 3D face recogni-

tion method that uses facial symmetry to handle

pose variation and missing data. A template is fit-
ted to the shape of the input model as follows:

an Annotated Face Model [30] is iteratively de-

formed towards the input using automatically pre-
dicted landmarks and an algorithm based on Simu-

lated Annealing. When dealing with facial expres-

sions, the performance of the recognition system

decreases. This is due to an incorrect registration
of the mouth region. Mpiperis et al. [31] propose

a method that supports both 3D face recognition

and expression recognition. A template model is
fitted to the shape of the input model using an

elastic deformation model. Both works do not show

direct evaluations of the fully-automatic registra-
tion methods as this is not the main part of these

works.

Guo et al. [25] propose a multimodal approach

to automatically compute correspondences between

3D face models. The approach predicts 17 land-
marks using a PCA-based method and uses these

features to deform a template to the input model

using a thin-plate spline. Although the registra-
tion results are shown to be accurate, the method

cannot compute correspondences in the presence

of expression variation.

Huang et al. [32] recently presented an approach

to register 3D facial models in the presence of fa-
cial expressions. They first detect a set of land-

marks using texture information with the help of

an active appearance model. These points are used
in an iterative fitting procedure, which combines

displacement mapping, point-to-surface mapping,

and a regional blending algorithm to fit a tem-
plate to the 3D surface. The fitting accuracy of this

method is evaluated on manually selected land-

marks, and a high fitting accuracy is presented,
thereby demonstrating that the combined use of

geometry and texture leads to good results. In con-

trast, our method is purely geometry-based, and
could therefore in principle also be applied to 3D

data of faces without reliable texture information.

Statistical learning-based approaches have been

effectively used to model facial variations oriented

to both the synthesis and recognition of faces. Blanz
and Vetter [2] developed a 3D morphable model

(3DMM) for the synthesis of 3D faces from pho-

tographs. As the registration is specific to the scan-

ning setup, rigid alignment of the scans is assumed.
Lu and Jain [33] present an approach to perform

face recognition using 3D face scans. The approach

builds a 3DMM for each subject in the database.
When a test image becomes available, the approach

matches the scan to a specific individual using the

learned 3DMM. Unlike our method, their training
data is parameterized using manually placed land-

marks and the test scans are parameterized using

individual-specific deformation models. Basso et

al. [34] extend the method of Blanz and Vetter [2]
to register 3D scans of faces with arbitrary identity

and expression. The rigid alignment of the scans is

also assumed for registration. To avoid the use of
texture information, Amberg et al. [35] present a

method to fit a 3DMM to 3D face scans using only

shape information. They demonstrate the perfor-
mance of the method in the presence of expression

variation, occlusion and missing data, but do not

conduct extensive evaluations of the registration.

Registration methods based on iteratively de-

forming a template to the data are an alternative

to statistical learning-based approaches. Allen et
al. [36] present an approach to parameterize a set

of 3D scans of human body shapes in similar pos-

ture. To fit the template to each scan, the method
proceeds by using a non-rigid iterative closest point

(ICP) framework coupled with a set of manually

placed marker positions. Xi and Shu [8] extend the
method of Allen et al. [36] to deform a template

model to a head scan. The shape fitting is carried

out as in Allen et al. [36] but uses radial basis func-

tions to speed up the deformation process. Unlike
our method, this only allows for neutral expres-

sions and uses manually placed markers to align

the template to a head scan. Wuhrer et al. [37] pro-
pose a method to deform a template model to a hu-

man body scan in arbitrary posture. The method

works in two stages: posture and shape fitting. Pos-
ture fitting relies on the location of different land-
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marks, which are predicted in a fully automatic

way using a statistical model of landmark posi-
tions learned from a population. Our method can

be viewed as an extension of this approach, but

instead of fitting the posture, we fit the expression
using blendshapes (see Section 2.3).

Methods that compute a correspondence be-
tween two surfaces by embedding the intrinsic ge-

ometry of one surface into the other one by using

Generalized Multi-Dimensional Scaling (GMDS) [38]
are another alternative to deal with variations due

to facial expressions [39]. The performance of these

methods has been demonstrated for face recogni-
tion. As GMDS methods do not take care that

close-by points on one surface map to close-by po-

ints on the other, the results are often spatially

inconsistent. This prevents such methods from be-
ing used for shape analysis.

2.3 Use of Blendshape Models

Modeling expressions using blendshape models is

an alternative to approaches based on statistical
models where a comprehensive database annota-

tion process has to be carried out to extract varia-

tional information. In a blendshape model, move-

ments of the different facial regions are assumed to
be independent. Any expression is then modeled

as a linear combination of the differences between

a set of basic expressions, called blendshapes, and
a neutral expression. That is, to produce an ex-

pression, the displacements causing the movement

are linearly combined. Using a representative set
of blendshapes, this simple model is effective to

model facial expressions.

Li et al. [9] propose a method to transfer the

expression of a subject to an animated character.

Their framework allows to create optimal blend-
shapes from a set of example poses of a digital

face model automatically. Weise et al. [40] present

a framework for real-time 3D facial animation. The
method tracks the rigid and non-rigid motion of

the user’s face accurately. They incorporate the

expression transfer approach of Li et al. [9] in or-
der to find much of the variation from the example

expressions. The registration stage requires offline

training where a generic template is fitted to the

face of a specific subject. To obtain the results,
manual marking of features has to be carried out.

Because of the advantages of modeling expres-

sion using linear blendshapes, we use it to aid the

shape matching. We only optimize a blending weight
per expression. This reduces the dimensionality of

the optimization space drastically. Since our databa-

se of blendshapes is small, the expression fitting
stage of our algorithm is efficient and helps to im-

prove the results significantly.

3 Landmark Prediction

This section outlines how to predict a set of land-

mark positions on a face scan. To establish the

correspondences across the whole database, we fit
a template to each model. The fitting process be-

gins with the extraction of the locations of eight

landmarks shown as red spheres in Fig. 2. The lo-
cations of the landmarks were selected based on

the fact that in the presence of facial expressions,

the corners of the eyes, and the base and tip of the
nose do not move drastically. Each landmark is lo-

cated automatically on the face surface by means

of a Markov network following the procedure pro-

posed by Ben Azouz et al. [16]. The network learns
the statistics of a property of the surface around

each landmark and the structure of the connec-

tions shown in Fig. 2.

Fig. 2 Face model with landmarks. Locations and land-
mark graph structure.

3.1 Learning

Two important aspects have to be defined for the
training of the Markov network. First, each land-

mark li (i = 1, 2, . . . , L), represented by a net-

work node, is described using a node potential φi.
We use a surface descriptor based on the Finger

Print (FP) [26]. The descriptor uses a measure re-

lated to the area of a geodesic circle centered at

the point to be characterized. The descriptor at
a point pk (k = 1, 2, . . . , N , N is the number of

vertices in the model) is obtained by computing

the distortion of the geodesic disks with respect to
Euclidean disks of the same radius. More specifi-

cally, the distortion of the area A(c) of the geodesic

disk c of radius r centered at pk is computed as
d(r) = A(c)/(πr2). We use as descriptor of pk a
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vector of distortions d(ri) obtained by varying the

radius ri of the geodesic disk (see Fig. 3). The rea-
son we use FP as node potential is because it is

isometry-invariant. Hence, in scenarios where the

surface undergoes changes that preserve isometry,
FP has been effective to encode the surface infor-

mation of an object. FP is used to predict land-

marks on human models in varying poses [41].

Fig. 3 Circles used to compute the Finger Print
descriptor. Red and green circles correspond to the
Geodesic and Euclidean circles, respectively.

Second, a link between landmarks li and lj , rep-

resented by a network edge, is described using an
edge potential ψi,j . Although we selected the loca-

tions of the landmarks based on the observations

that nose and eye regions do not change much in

the presence of expressions, some distortions along
the edges of the Markov network may occur. To

minimize the effects of the face movements, we

compute the canonical form [27] of each model and
define the edge potential as the relative position

of landmark li with respect to landmark lj in the

canonical form space. We compute the canonical
form as the embedding of the intrinsic geometry

of the face surface to R
3. To compute this embed-

ding, we perform least-squares multi-dimensional

scaling [42] with geodesic distances between ver-
tices as dissimilarities. That is, we find the embed-

ding coordinates xi in R
3 corresponding to vertices

pi on the scan F that minimize the energy

EMDS =
∑

i,j

(|xi, xj | − distF (pi, pj))
2, (1)

where |·, ·| corresponds to the Euclidean distance

and distF (pi, pj) denotes the geodesic distance be-

tween pi and pj on F . The geodesic distances are
computed using fast marching [27]. We choose these

standard techniques as they are efficient. The choice

of the potentials ψi,j ensures that the model is
isometry-invariant.

The Markov network training process learns
the distributions of both node and edge poten-

tials for each individual node and egde of the net-

work, respectively. We assume Gaussian distribu-
tions for both the node and edge descriptors in this

paper, and we learn the distributions using max-

imum likelihood estimation. We choose this com-
monly used distribution to derive an efficient algo-

rithm that is easy to implement. While this distri-

bution may not be satisfied in practice, we found

experimentally that using this simplified assump-
tion yields satisfactory results.

3.2 Prediction with Belief Propagation

The estimation of the location of landmarks on
a test model is carried out by using probabilistic

inference over the Markov network. That is, we

aim to find landmark locations li, such that the
joint probability

p(l1, . . . , lL) =
1

Z

∏

i

φi(li)
∏

i,j

ψi,j(li, lj) (2)

is maximized, where Z is a normalizing factor. In

practice, we find an approximate solution using the
loopy belief propagation algorithm [43]. This al-

gorithm requires a set of possible labels for each

node. In our case, this means we need to provide a
number of candidate locations for each landmark.

Wuhrer et al. [37] use canonical forms to learn

the average locations of the landmarks, but be-
cause of the flipping-invariant property of the cano-

nical forms, it is necessary to compute eight differ-

ent alignments and select the one that leads to the

minimum distance between the scan and the de-
formed template. In this work, we design a method

to restrict the search space based on a rough tem-

plate alignment. In this way, only one fitting pro-
cess has to be computed, reducing the computing

cost by a factor of eight.

3.3 Restricting the search region

There are two reasons to reduce the search space

for the landmarks: to increase the efficiency of the

landmark prediction and to eliminate the ambigu-

ity caused by the facial symmetry. We treat the
problem of restricting the search region for the

landmarks as a 3D face pose estimation problem.

In our case, the estimated pose does not have to be
so accurate since the Markov network refines the

position of the landmarks, but it has to be accurate

enough to identify the left and right sides of the
face. The proposed face pose estimation method
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finds four landmarks located on the nose region

and extracts the information of the face symmetry
planes by using a template of the landmark graph.

Once the nose landmarks are labeled, the final po-

sition of the entire set of landmarks is obtained by
transforming the template to the coordinate sys-

tem of the test model. Fig. 7 shows the main steps

of the proposed search space restriction method.

3.4 Classification of Vertices

Before explaining the rough template alignment

procedure, we introduce a method to classify a ver-

tex of a 3D model into a specific class. In our case,

the classes correspond to the nodes of the Markov
network and the 3D model corresponds to a 3D

face model. The decision rules are derived from

a clustering procedure over the Principal Compo-
nents Analysis (PCA) projections of a surface fea-

ture and a pre-selection method based on the sur-

face primitives.

As the value of the FP descriptor at each land-

mark li was computed during the Markov network

training process, we can model the distributions of
the surface descriptors and use them to classify a

vertex vk on the face surface into a class i (each

landmark corresponds to a class). PCA is a use-
ful tool to compress a high-dimensional space into

a linear low-dimensional space. When the space

corresponds to a multidimensional feature space,
sometimes, depending on the distinctiveness of the

features, it is possible that elements of the same

class form clusters in the PCA space. In our case,

the FP descriptor can be viewed as S-dimensional
vector and PCA is used to reduce the dimension-

ality to D. In this work we choose D = 3. Fig.

4 shows the results of applying PCA to the data
from the subjects in neutral and performing six ex-

pressions (for information about the database, see

Section 5.1).

Although samples of the same class tend to

form groups in the PCA space, some groups over-
lap due to symmetric landmarks. In order to im-

prove the separation between classes, we define

a new cluster, denoted as M-cluster, by remov-

ing the samples which are farther than M (M ∈
R

+) times the standard deviation from the clus-

ter medoid. Medoids are representative objects of

a cluster whose average dissimilarity to all the ob-
jects in the cluster is minimal [44]. For instance,

Fig. 4 shows theM-clusters formed by settingM =

1.5. With this value, the clusters corresponding
to the landmarks nose tip and subnasal (points

7 and 8 in Fig. 2) do not overlap any of the clus-

ters. We will show in Sections 3.5 and 3.6 that
with a good separation between these two classes,

a proper landmarks prediction can be obtained.

We derive a rule Ei for a class i based on a clus-

tering procedure. The rule Ei is defined as the min-
imum volume enclosing ellipsoid of a M-cluster i
(see Fig. 4). Ei is obtained from the representa-

tion of the ellipsoid in the center form as (pk −

Ci)
TA(pk − Ci) ≤ 1, where Ci corresponds to the

center of the ellipsoid corresponding to class i and

A is the 3×3 matrix of the ellipse equation. When

a new point pk becomes available, each Ei is eval-
uated in order to see if the point satisfies the equa-

tion. As some M-clusters are overlapping, it is pos-

sible that more than one label be assigned to the
same pk. Similarly, it is possible that pk is not as-

signed to any class because the point lies in a re-

gion that is not of interest. Fig. 5 shows an example

of the vertex classification results obtained using
the proposed method.

Fig. 5 Example of vertex labeling result. (A) Notice
how the points on the nose tip region are correctly la-
beled. (B) Some vertices are assigned to two classes.
This situation is because of the left-right symmetry of
the features. (C) Points located far from the region of
interest are discarded.

It is not efficient to compute the descriptor

value and its projection to PCA space for all the

vertices of the mesh. To reduce the search space,

we compute samples on the surface using a curva-
ture-based descriptor. More precisely, we use as

samples all surface umbilics [45], which are the

points on the surface where the principal curva-
tures are identical (that is, k1 = k2). We choose

this sampling approach because it can be observed

experimentally that most landmark positions are
located close to a umbilic, as shown in Fig. 6.
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Fig. 4 PCA-based clustering. Left to right: Landmarks on a face model. Initial clusters formed with all the samples.
Final cluster after removing the samples beyond a 1.5 standard deviations from the cluster medoid. Minimum volume
enclosing ellipsoids (3D and upper views).

Fig. 6 Umbilics of different 3D facial models of the
same subject performing different expressions. Notice
how the umbilics are distributed all over the surface,
and in most of the cases umbilics are present at the
locations of salient facial features.

3.5 Refining the Nose Landmarks

In this section we describe the procedure to se-

lect candidates for four points on the nose area,
which are used as initial guess of the landmarks:

right subalare, left subalare, nose tip, and sub-

nasal, which are labeled as 5, 6, 7 and 8, respec-

tively (see Fig. 2). Following the classification pro-
cedure described in Section 3.4, for each umbilic of

the input scan F , the FP descriptor is computed,

projected into PCA space, and labeled (in the fol-
lowing we refer to this procedure as FPPCA). The

result is a set of candidates for each landmark class

(see first row of Fig. 7). To find an initial position
of landmark li, we consider points in the neighbor-

hoods of umbilics that were labeled li.

The search starts in the nose tip region. As

starting point, we select the vertex v of F , which is

the umbilic that after FPPCA is the closest point
to the medoid of the cluster of points labeled as

nose tip. The new search space corresponds to the

set of vertices vk within the geodesic circle of ra-
dius r centered at v. For each vk, FPPCA is ap-

plied. In this step, we only consider points vk that
are either labeled as nose tip or subnasal. This pro-

cedure is depicted in the second row of Fig. 7.

Next, we refine the positions of the right and

left subalare. To this end, we start from the point v
closest to the medoid of all points that were labeled

as subnasal in the previous step. The algorithm

proceeds by classifying points vk in a geodesic neigh-
borhood of radius r of v using FPPCA. In this

step, we only consider points vk that are labeled

as right or left subalare. Since the M-clusters of

these two classes strongly overlap, most of the la-
beled points are assigned to two classes and the

non-relevant points are discarded (see third row of

Fig. 7). Since the labeled vertices are distributed
over both sides of the nose, we split up this set of

vertices into two sets by performing a k −means

clustering with k = 2. The two new sets of ver-
tices still have both labels, and we find the point

closest to the medoid of each cluster as a possible

candidate (see fourth row of Fig. 7). It remains to

determine which of these points corresponds to the
right subalare, and which one to the left.

3.6 Aligning Landmark Graph to Scan

So far, four points on the nose region have been
selected and labeled. Due to the face symmetry,

two of the points have the same labels. To solve

this problem, a template Pa of the upper part of
the face with the same structure as the landmark

graph (see Fig. 2) is roughly aligned to the input

scan F . This helps also to estimate the initial guess

of the remaining landmarks: right inner eye corner,
right outer eye corner, left inner eye corner, and

left outer eye corner, which are labeled as 1, 2, 3

and 4, respectively.

We compute a rigid alignmentT that best aligns
the point set va from Pa with the point set vb from

F . The point set va corresponds to the points la-

beled 5 to 8 of Pa, and vb corresponds to the four
points on the nose region of F . As the labels 5 and
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Fig. 7 Framework of the proposed initial alignment method.
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6 of the points in vb are unknown, there are two

possible configurations for the alignment. As a re-
sult two linear transformations T1 and T2 are ob-

tained. In order to select the transformation that

produces a valid result, the transformed point sets
P1 = T1Pa, and P2 = T2Pa, are computed. One

of the transformations produces a vertical “flip”

of the template, resulting in a wrong estimation

of the coordinates of the points in the eye region.
Therefore, the point set Pi that minimizes the sum

of Euclidean distances to closest points on F is the

correct transformation. This procedure is depicted
in the fifth row of Fig. 7.

The locations of the transformed template ver-

tices are used to define the search space region

on which statistical inference is performed, as dis-
cussed in Section 3.2. The regions are defined as

all points within distance r from the transformed

points Pi.

4 Registration

In this section, we describe how a template is fit-
ted to a 3D scan of the face. The input scan cor-

responds to a face of a subject performing a facial

expression. Fitting a template to this scan is chal-

lenging because the facial geometry has large vari-
ations due to different face shapes and facial mus-

cle movements. We propose a registration method,

where the expression and the shape are fitted sep-
arately in order to handle the complexity of the

problem. Fig. 8 shows an overview of the proposed

method.

We address the facial expression fitting prob-
lem as a facial rigging problem. In facial rigging, a

facial expression is produced by changing a set of

parameters associated with the different regions of
the face modeled using blendshapes. Conceptually,

to generate a facial shape from a 3D rest pose face

template, we just move a set of vertices to a new lo-

cation, e.g., lift an eyebrow or open the mouth (see
Fig. 9). In this sense and similar to the approach

proposed by Li et al. [9], we model a facial expres-

sion as a linear combination of facial blendshapes
(denoted by Ai), which are expressed as vectors of

displacements from the rest pose (denoted by A0).

4.1 Affine Alignment

To solve the fitting problem, the template A0 in

neutral pose is aligned to a scan F as follows. Both
A0 and F contain a set of landmarks denoted by

l̄i and li, respectively. The landmarks li were pre-

dicted using the method described in Section 3.
The alignment is carried out by finding a 3 × 4

transformation matrix TA that minimizes the en-

ergy

Elnd =

L
∑

i=1

(

TA l̄i − li
)2
, (3)

with respect to the 12 parameters in TA using a

quasi-Newton approach starting from TA as iden-

tity matrix.

4.2 Expression Fitting

We now outline how to fit the expression of the
blendshape model to F . The aim of this step is to

model expression variations using a small number

of basis shapes. An expression can be generated
using a small number of parameters as

P (αi) = A0 +

j
∑

i=1

αiAi, (4)

where A0 corresponds to the rest pose, Ai, i > 0
correspond to the blendshape displacements, and

αi (0 ≤ αi ≤ 1) are the blending weights of expres-

sion P (αi). For each blendshape Ai, Fig. 9 shows
the corresponding expressions. The 3D models used

in both the creation of A0 and the generation of Ai

were obtained using a commercial software. Notice
that mostly mouth displacements are considered.

As the expressions are generated as a linear combi-

nation of displacements, to avoid exaggerated un-

desired expressions, it is important that no two
blendshapes add the same kind of displacement.

By using a blendshape model, the facial expres-

sion fitting problem is transformed into an opti-
mization problem, where the value of each αi has

to be estimated.

Recall that A0 and F are affinely aligned. We
find the αi that best match the expression of F

by dividing P (αi) into three regions: chin, mouth,

and remaining face (as shown in Fig. 10). The di-

vision is motivated by the fact that the chin and
lip regions vary drastically from one expression to

another (mostly in terms of displacements). Thus

it is desirable to inspect the quality of the fitting in
each of these regions separately by assigning higher

weights to points in these regions than to points

in the remaining face.
To fit the expression, we use the energy
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Fig. 8 Registration procedure. First, the template and the scan are aligned using the predicted landmarks. Second,
the expression is fitted using a blendshape model. Finally, an energy-based surface fitting method is used to fit the
shape. At the end, the overlap between the scan and the template is maximized and a point-to-point correspondence
for the face shapes in different expressions is obtained.

Fig. 9 Left: template rest pose A0 and a set of blendshapes Ai. Right: examples of models generated as linear
combinations of blendshapes.

Fig. 10 Regions used in the expression fitting proce-
dure.

Eexpr =
∑

r

ωr〈(NN(pr(αi))− pr(αi)),

n(NN(pr(αi)))〉
2,

(5)

where pr(αi) are the vertices of P (αi),NN(pr(αi))
indicates the nearest neighbor point of pr(αi) on

F , n(NN(pr(αi))) is the unit outer normal vec-

tor of NN(pr(αi)), 〈., .〉 denotes the dot product
of two vectors, and ωr is a weight associated with

pr(αi). The energy pulls each vertex of the tem-

plate to the nearest point on the tangent plane of

its nearest neighbor on F . The weight ωr is used
for two purposes: to give different weight to the

mouth, chin, and remaining regions of the model,

and to make the method more robust to both the
presence of outliers and mis-oriented surfaces. To

achieve the first goal, we set ωr to either ωmouth,

ωchin, or ωremaining, depending on the region con-
taining pr(αi). To achieve the second goal, we only

consider the nearest neighbor if the angle between

the outer normal vectors of pi(αi) and NN(pr(αi))

is small. Specifically, we set ωremaining to zero if
the angle is larger than ϕ. To force the fit to be

exact, we set ωchin and ωmouth to zero if the angle

is larger than ϕ/2. The expression is fitted by min-
imizing Eq. 5 with respect to the blending weights

αi. In our experiments we set ϕ to 80 degrees.

The minimization of Eexpr is carried out in two

stages. In the first stage, we inspect if some move-
ment occurs in the chin. Once we know the position
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of the chin, to refine the match with the expres-

sion of the input model, we need to inspect the
positions of the lips. Based on this, the expres-

sion fitting procedure proceeds as follows: First,

the weight ωmouth is set to zero, thus the mini-
mization is only guided by vertices that are not

in the mouth region. In this step ωremaining is set

to one and ωchin is defined as 1 −
(

V valid
chin /Vchin

)

,

where Vchin is the number of vertices in the chin
region and V valid

chin is the number of valid nearest

neighbors in this region. The second step begins

when at least 80% of the vertices in the chin region
have valid nearest neighbors. At this time, ωmouth

is set to 1−
(

V valid
mouth/Vmouth

)

, where Vmouth is the

number of vertices in the mouth region and V valid
mouth

is the number of valid nearest neighbors in this re-

gion. The minimization process ends when at least

60% of the vertices in the mouth region have valid

nearest neighbors. This weight variation scheme
ensures that the chin and mouth regions of P (αi)

match the expression of F . The threshold values

for ωchin and ωmouth were chosen based on exper-
imental observations.

This step fits the expression of the template

to the expression of the scan. However, since the
deformations are modeled by a small number of

parameters, the deformation during this step is re-

stricted, and fine shape details cannot be modeled

by this step.

4.3 Shape Fitting

To find a more accurate local fitting, we next fit

the shape of P (αi) to the shape of F . For ease of
notation, we use P = P (αi) in the following.

The shape fitting is, again, treated as an opti-

mization problem similar to the method proposed
by Allen et al. [36] and extended by Li et al. [46].

The goal is to find a set of 3 × 4 transformation

matrices Ti for each vertex pi of P such that pi
is moved to the new location p̃i = Tipi to fit the
shape of F . The transformed version of P is de-

noted P̃ . The transformation matrices Ti are ob-

tained by minimizing an energy function, which is
a weighted sum of three energy terms.

The first term is the data term

Edata =
∑

i

ωi 〈(NN (p̃i)− p̃i) ,n (NN (p̃i))〉
2
,

(6)

where NN (p̃i) indicates the nearest neighbor of
p̃i on F , and n (NN (p̃i)) is the normalized outer

normal of NN (p̃i). The weight ωi is set to one if

the angle between the outer normal vectors of p̃i
and its nearest neighbor is at most 80 degrees, and

to zero otherwise. The data term ensures that the

template is deformed to resemble the input scan.
The second energy is a regularization term that

encourages smooth transformations between neigh-

boring vertices of the mesh. We call this energy

regularization energy Ereg and define it as

Ereg =
∑

(i,j)∈E(P̃)

(Ti −Tj)
2
, (7)

where E(P̃) is the set of edges of P̃ . This term
prevents adjacent parts of P from being mapped to

disparate parts of F , and also encourages similarly-

shaped features to be mapped to each other [36].

The final energy term encourages the trans-
formation matrices to be rigid. The rigid energy

Erigid, which measures the deviation of the column

vectors of Ti from orthogonality and unit length,
is defined as

Erigid =
r

∑

i=1

(

(

(

ai1
)T

ai2

)2

+
(

(

ai1
)T

ai3

)2

+

(

(

ai2
)T

ai3

)2

+
(

1−
(

ai1
)T

ai1

)2

+

+
(

1−
(

ai2
)T

ai2

)2

+
(

1−
(

ai3
)T

ai3

)2
)

,

(8)

where ai1, a
i
2, a

i
3 are the first three columns vectors

of Ti.
The energy terms described above are com-

bined in the weighted sum

Eshape = ωdataEdata+ωregEreg+ωrigidErigid. (9)

The shape is fitted by minimizing Eshape with

respect to the parameters Ti. We start by encour-

aging smooth and rigid transformations by setting
ωdata = 1, ω0

reg = 20000, and ω0
rigid = 10. Similar

to Li et al. [46], whenever the energy change is neg-

ligible, we relax the weights as ωt
reg = 0.5ωt−1

reg and

ωt
rigid = 0.5ωt−1

rigid to give more weight to the data
term. This allows the template to deform towards

the scan. The algorithm iterates until the relative

change in energy (Ei−1
shape −Ei

shape)/E
i−1
shape, where

i is the iteration number, is less than 0.0001. For

each set of weights, we use a quasi-Newton ap-

proach [47] to solve the optimization problem, and
we perform at most 1000 iterations.
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As our template only includes the shape of the

face and the template can be free deformed dur-
ing the shape fitting, in both expression and shape

fitting procedures, the boundary points of the in-

put model are ignored to prevent that the fitting
results include noise shapes from the hair or ears

of the input model.

5 Experiments and results

5.1 Database

We use the BU-3DFE [48] database for our exper-
iments. The database consists of 3D face models

from 100 subjects (56 Females and 44 Males) in

neutral pose and with the following facial expres-

sions: surprise, happiness, disgust, sadness, anger
and fear. There are four scans of each facial ex-

pression, corresponding to different levels of in-

tensity from low to highest. As a file containing
the raw data of each scan is also available, there

are a total of 50 files per subject, 25 raw scans

and 25 corresponding to the cropped faces. Fig. 11
shows snapshots of different scans from the BU-

3DFE database. In this work, we use a subset of

700 3D models corresponding to the cropped faces

of the subjects performing the expressions in the
highest level.

5.2 Landmark prediction accuracy

We use two different subsets of models of 50 sub-

jects (25 females and 25 males) to train the land-
mark prediction model. First, we use a subset Tn
consisting of 50 models of subjects in neutral pose

as training set. Second, we use a subset Te con-
sisting of 350 models of the same 50 subjects in

neutral pose and performing six different facial ex-

pressions as training set. As Tn covers the shape

variability and Te covers both shape and expres-
sions variability, we are able to evaluate the impor-

tance of the variabilities considered in the training

sets. The accuracy of the landmark prediction al-
gorithm is evaluated over the remaining 50 sub-

jects of the database (31 females and 19 males).

The test database corresponds to 350 models of
subjects in both neutral pose and when perform-

ing six different facial expressions.

To evaluate the accuracy of the landmark pre-

diction algorithm, we compute the error of the Eu-

clidean distance between a manually located land-
mark li and its corresponding estimation l̂i. We

compute the mean, the standard deviation and the

maximum of the error. We also compute the de-
tection rates by counting the percentage of test

models where the landmark l̂i was predicted with

an error below 10mm (T10), 20mm (T20), and
30mm (T30). Tables 1 and 2 show the results of

the evaluation for the test with Tn and Te as train-

ing databases, respectively.

The best landmark prediction results were ob-

tained when Te is used for training. In both exper-

iments, the landmarks located in the nose region
are better predicted than the ones located in the

eye region. The tip of the nose is predicted with

the lowest error and the outer corners of the eyes
are predicted with the highest error. One of the

reasons that the outer corners of the eyes are not

predicted as well as the other landmarks is that the

initial position is found based on the alignment of
the landmark template (see Fig. 7). This adds an

estimation error that is reflected in the values of

the standard deviation. The values of the detec-
tion rates show the improvement in accuracy of

the landmark prediction when Te is used as train-

ing set. This indicates that for the configuration of
the landmark prediction model used in this work,

the variations due to both shape and expression

have to be considered.

We compared our results of landmark predic-

tion with two approaches where the BU-3DFE data-

base is also used for testing. Segundo et al. [19]
used 2500 range images obtained from the raw

data, and Nair and Cavallaro [22] used 2350 of the

2500 3D cropped face models available. Table 3
shows the mean of the error of the landmark pre-

diction. For all the landmarks, our approach out-

performs the approach of Nair and Cavallaro [22].

Compared to Segundo et al. [19], for all the land-
marks but the nose tip the mean error is similar.

Recall however that Segundo et al. [19] use a more

challenging dataset for testing.

Although the obtained landmark prediction er-

ror appears to be high, it is still possible to obtain
a proper point-to-point correspondence since the

landmarks are only used to align the template to

the scan. Afterwards, a non-rigid iterative closest

point framework is used to deform the expression
and shape of the template. Fig. 12 shows some

examples of the landmark prediction results over

models of subjects with different facial shapes and
performing different expressions.

In the following, we use Te as training dataset.
Furthermore, we only consider the models where
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Fig. 11 Characteristics of the BU-3DFE database.

Landmark Mean ± Std Max. T10 T20 T30
[mm] [mm] [%] [%] [%]

Right inner eye corner 10.35 ± 6.13 33.93 53.71 87.14 92.57

Right outer eye corner 11.79 ± 7.77 34.73 27.71 85.71 93.43

Left inner eye corner 11.63 ± 6.82 34.16 44.57 86.57 94.00

Left outer eye corner 12.57 ± 7.23 34.29 31.43 89.14 95.71

Right subalare 9.96 ± 6.59 33.49 66.00 86.86 98.00

Left subalare 10.93 ± 6.87 34.15 55.14 87.43 94.29

Nose tip 7.42 ± 5.64 32.03 82.57 92.00 96.86

Subnasal 7.12 ± 5.87 33.75 84.57 87.43 95.43

Table 1 Error of landmark prediction with training set Tn. T10, T20, and T30 correspond to the detection rates
with a tolerance of 10mm, 20mm and 30mm, respectively.

Landmark Mean ± Std Max. T10 T20 T30
[mm] [mm] [%] [%] [%]

Right inner eye corner 6.14 ± 4.54 34.39 80.86 95.14 97.43

Right outer eye corner 8.49 ± 6.12 34.54 62.29 95.14 97.71

Left inner eye corner 6.75 ± 4.21 33.75 84.00 96.57 98.29

Left outer eye corner 9.63 ± 5.82 34.63 63.14 93.43 98.86

Right subalare 7.17 ± 3.3 32.23 85.43 95.14 97.43

Left subalare 6.47 ± 3.07 32.3 89.71 96.86 97.43

Nose tip 5.87 ± 2.7 29.91 93.71 97.43 100

Subnasal 5.57 ± 2.03 30.26 95.43 98.29 99.71

Table 2 Error of landmark prediction with training set Te. T10, T20, and T30 correspond to the detection rates
with a tolerance of 10mm, 20mm and 30mm, respectively.

Fig. 12 Examples of the landmark prediction results. Red and green spheres correspond to the manually placed
and predicted landmarks, respectively. First row: female subjects; Second row: male subjects.
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Landmark [19] [22] Our Method
[mm] [mm] [mm]

Right inner eye corner 6.33 20.46 6.14

Right outer eye corner N.A. 12.11 8.49

Left inner eye corner 6.33 19.38 6.75

Left outer eye corner N.A. 11.89 9.63

Right subalare 6.49 N.A. 7.17

Left subalare 6.66 N.A. 6.47

Nose tip 1.87 8.83 5.87

Subnasal N.A. N.A. 5.57

Table 3 Comparison of mean errors of our method and the approaches of Segundo et al. [19] and Nair and
Cavallaro [22].

all landmarks are predicted within 30mm of the
ground truth (332 of the 350 models).

5.3 Registration

We tested our dense point-to-point correspondence

algorithm on 332 models.

5.3.1 Landmark Fitting Accuracy

To evaluate the accuracy of the registration, we
compute the error in the location of manually placed

landmark points present in the BU-3DFE database

that are not considered for the alignment. The er-
ror corresponds to the Euclidean distance between

a manually placed point and its corresponding lo-

cation after registration. The set of points con-
sidered for the evaluation (see Fig. 4) includes 20

points on the eyebrows (10 left, 10 right), 12 points

on the eye contours (6 left, 6 right), 12 points in

the nose region, 12 points on the outer contour of
the lips, 3 points on the chin, and 12 points on the

face contour (6 left, 6 right).

Table 4 shows the mean, the standard devia-
tion, and the maximum of the error, as well as

the detection rates. In this case, we compute the

mean and standard deviation over all points in a
region and over all 332 models used for correspon-

dence computation. Furthermore, we compute the

detection rates by counting the percentage of test

models where all the points belonging to the same
region were predicted with an error below 10mm

(T10), 20mm (T20), and 30mm (T30).

The points on the eye contour and the nose
region were found with lower mean error and vari-

ation than the points on the mouth, chin, and

eyebrows regions. This situation is expected be-
cause the movements in the eyebrows and mouth

are more pronounced than in the other areas. The
big difference between the error on the face con-

tour points with respect to the other regions is

mainly because of there are no strong anatom-
ical attributes that help to define the face con-

tour, which results in highly inconsistent manually

placed markers across the database.

Next, we discuss the quality of the results af-

ter the final shape fitting step. Fig. 13 shows the

cumulative distribution of the number of models

where the error at the landmark points not used
for registration is below a threshold (due to noise,

the set of ground truth points on the face contour

was not included). Note that even when the error
at some points is slightly high, we found that both

the face regions and the surface geometry of the

input models are consistently matched with their
counterparts in the deformed template.

5.3.2 Surface Fitting Accuracy

To evaluate the accuracy of the fitting, we compute
the Modified Hausdorff Distance (MHD), which

is a metric for shape comparison that measures

the degree of mismatch between two points sets.
Therefore, it is useful to demonstrate the quality of

a registration algorithm [29]. The MHD is defined

as [49]:

MHD(P, F ) =
1

Np

Np
∑

i=1

min
fj∈F

|pi, fj | , (10)

where |pi, fj | is the Euclidean distance between
vertices of the template P and the vertices of the

input model F , and Np is the number of vertices

of P . The MHD represents the average of the min-
imum Euclidean distance of the vertices of P , to
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Points Mean ± Std Max. T10 T20 T30
[mm] [mm] [%] [%] [%]

Left Eyeb. 6.28 ± 3.30 25.36 52.87 98.79 100

Right Eyeb. 6.75 ± 3.51 23.59 45.62 98.19 100

Left Eye 3.25 ± 1.84 12.53 98.19 100 100

Right Eye 3.81 ± 2.06 12.24 96.07 100 100

Nose 3.96 ± 2.22 16.97 87.61 100 100

Mouth 5.69 ± 4.45 45.36 52.57 94.26 98.79

Chin 7.22± 4.73 33.80 58.01 95.47 99.39

L. Face 18.48± 8.52 52.17 0.60 22.36 64.05

R. Face 17.36± 9.17 58.36 0.30 22.96 60.12

Table 4 Error at landmark points not used for registration. Left: set of points. Right: summary of errors.

Fig. 13 Cumulative distribution of the number of models where the error at all the landmark points not used for
registration is below a threshold. Example of registration results (left and right). Error distribution (center).

which F is registered [29]. The values of the av-
erage, standard deviation and maximum of the

MHD for the 332 tested models were 1.42mm,

0.56mm and 3.66mm, respectively. This shows that
our method has the ability of keeping the overall

shape during the fitting.

In addition, the bottom row of Fig. 17 shows

the histograms and the false color visualization of
the mean magnitude and standard deviation of the

distance between the surfaces F and P computed

over all 332 models. For every point pr on P , its
nearest neighbor NN (pr) on F is determined, the

distance from pr to the tangent plane of NN (pr)

corresponds to distance between the surfaces. As
most of the values of the distances are concen-

trated between 0 and 1mm, in order to improve

the visualization, the color map was clamped to

this range. Notice the variation in the lower lip and
chin area, which are the regions where the surface

is deformed most due to the facial expressions.

5.3.3 Visual Evaluation

Next, we show some examples that summarize the
results of the expression and shape matching stages

of the registration process. The third column of
Fig. 14 shows examples of the expression fitting re-

sults for six different kinds of facial expression. In

all cases, the expression of the mouth region of the
input model is properly matched after linear blend-

ing. The fourth column of Fig. 14 shows examples

of the shape fitting results. The models are color-
coded with respect to the signed distance from the

input scan. Note that most points on the models

are within 2mm of the scan. Furthermore, notice

how the different expressions in the eyebrows are
properly fitted. In order to visualize the quality of

the correspondences, a chess-board texture (with

some facial features colored) was applied to the
template model (see right of Fig. 14). Results of

the texture transferring show that in most of the

face regions, the shape of the deformed template
matches the shape of the input model.

For our method, which uses nearest neighbors

to guide the deformation, the highest level of ex-
pression is the most difficult to register. All of the

experiments outlined so far have considered this

case. Fig. 15 illustrates two examples of registering
different levels of the same subject in the same ex-
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Fig. 14 Examples of registration results. The input, fitted expression, error mapped, and texture mapped models
are provided for each example.
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Fig. 15 Examples of fitting to models of the same subject performing an expression in different levels. Fear (first
three rows). Surprise (last three rows). For each example, first, second, and third rows are the input, output, and
textured models.

pression. Note that the visual differences between

the quality of the results are insignificant.

Finally, we discuss the running time of our me-

thod. On a standard PC (2.4 GHz processor), the
typical time to predict the set of landmarks for the

initial alignment is about 5 seconds for rough align-

ment and about 176 seconds for the refinement of
the position. The typical time for expression and

shape fitting is about 6 seconds and 28 seconds,

respectively.

5.4 Comparison to 3D Morphable Model

We compare our registration results to the results

obtained using the commonly used 3D morphable

model (3DMM) [2], which is a statistical model
that encodes information about a set of training
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shapes. In order to use the morphable model for

fitting, we first need to build such a model. To this
end, we use the 50 subjects in highest expression

levels that were used for training for the landmark

detection part. Before computing the model, we
first need to parameterize the training shapes. We

achieve this using manually placed marker posi-

tions that guide a non-rigid iterative closest point

deformation. This step to parameterize a training
set in a semi-automatic way is time-consuming. We

analyzed the morphable model and found that re-

taining 50 principal components yields a compact,
yet general model.

We fit the morphable model to the data by first

using the landmarks predicted by our method to
rigidly align the scan to the model, and by sub-

sequently minimizing the energy Edata defined in

Equation 6 with respect to the model parameters.

Note that unlike 3DMM, our method does not

require a parameterized training set as a start.
Furthermore, in the future, the method proposed

in our work could help building statistical models

without the need to parameterize a training set in

a semi-automatic way.

We compare our results to 3DMM in two ways.

First, we provide an evaluation of the obtained fit-
ting results. Since for the 3DMM, the amount of

displacement during the fitting is restricted to the

one learned from the training data, our method

can fit local shape details more accurately than
3DMM, as can be seen in the four examples shown

in Fig. 16. As most of the values of the distances

are concentrated between 0 and 1mm, in order
to improve the visualization, the color map was

clamped to this range. Fig. 17 compares the his-

tograms and the false color visualization of the
mean magnitude and standard deviation of the

distance between the surfaces F and P computed

over all 332 models. Notice that while both meth-

ods lead to good fitting results overall, our method
has lower mean error in localized areas such as

the tip of the nose or the eyebrows. The reason

is that unlike our method, 3DMM cannot fit to
localized shape detail such as raised eyebrows, be-

cause 3DMM restricts the search space for the cor-

respondence search to the variations observed in
the training data.

Second, we compare the results for the applica-

tion of expression recognition. Note that this ex-
periment is primarily intended to give a compar-

ative evaluation between 3DMM and our method,

and not to introduce a new method for expression
recognition.

0

≥ 1

Fig. 16 Comparison of shape distance (in mm) of
3DMM fitting and our results. Left to right: input scan,
3DMM fitting, our result.

In the following experiment, we aim to recog-
nize (the highest expression levels of) the expres-

sions anger, happiness, and surprise. The features

used for our experiment are based on anatomical
facial landmarks and are computed following the

methodology described in Rabiu et al. [50]. The

feature selection, classification and evaluation is

carried out using the pattern recognition tool de-
veloped by Duin et al. [51] with a support-vector

classifier based on a 2nd order polynomial ker-

nel. For training, we use features derived from the
ground truth landmarks of the 50 subjects that

were used for training for the landmark detection

part. For testing, we use all fitting results (with ex-
pressions anger, happiness, or surprise). The over-

all expression recognition rate using the models

fitted with 3DMM is 61.1%, while the overall ex-

pression recognition rate using the models fitted
using our method is 77.7%. While neither of these

results is competitive with human experts, who

achieve a recognition rate of 98.1% [48], the ex-
periment shows that our method achieves signifi-

cantly higher recognition rates than 3DMM. The

reason is that our method can fit better to local
shape details, as discussed above.
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Fig. 17 Distance between the surface of the template P and the surface of input model F . Histograms and the
false color visualization (different views) of the magnitude of the mean and standard deviation of the distance.

5.5 Application

Finally, we apply our fitting results to building a

statistical shape space that allows to explore the

identity and expression variations of a database of
faces separately. To this end, we use our registra-

tion results to compute a multilinear model [52].

The multilinear model expresses each face using
one weight vector ωi for identity and a second

weight vector ωe for expression. We can modify

the expression of a subject by keeping ωi fixed

while modifying ωe. Similarly, we can modify the
identity while preserving the expression by keep-

ing ωe fixed while modifying ωi. This is shown in

Fig. 18. Here, the faces shown in boxes are the
registered faces of the database that were used to

compute the multilinear model, and the remaining

faces were generated by fixing ωi to one identity
and varying ωe (top row) and by fixing ωe to the

weight of happiness and varying ωi (bottom row).
Note that in this way, realistic looking new expres-

sions and identities can be generated, respectively.

Fig. 18 Real models used to compute the multilinear
model (shown in boxes) and synthetic models generated
from the multilinear model.
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5.6 Limitations

Our method has some limitations. Sometimes, not
all local areas of a face are fitted accurately. Most

of the incorrect shape fitting occurs on the in-

ner parts of the lips. As the input scans have in-
formation in the area of the teeth, which is not

considered in the template model, the algorithm

converges to this region, thereby causing miscorre-

spondences during the shape fitting. Fig. 19 shows
an example of the limitations in the shape fitting.

Notice how the expression is matched correctly,

but the corners of the mouth are not well located,
which causes an incorrect fitting on the mouth and

chin regions.

Another limitation occurs for models with oc-

cluded parts. Fig. 20 shows the result of the pro-
posed point-to-point correspondence approach for

a model of a subject where the mouth is occluded

by a hand. In this case, the template is correctly

fitted to areas not affected by the occlusion, but
occluded regions cause unlikely face shapes.

Fig. 20 Challenging test scenario. Mapped error mod-
els correspond to the fitting result. Test was carried out
over one model of the Bosphorus database [53].

6 Conclusions

This paper presented a fully automatic method
to compute dense point-to-point correspondences

between a set of human face scans with varying

expressions. The proposed approach proceeds by
learning local shape descriptors and spatial rela-

tionships for a set of landmark points. For a new

scan, the approach first predicts the landmark po-

ints by performing statistical inference on the lear-
ned model. The approach then fits a template to

the scan in two stages. The first stage fits the ex-

pression of the template to the expression of the
scan using the predicted landmark points. The sec-

ond stage fits the shape of the template to the

shape of the scan using a non-rigid iterative closest
point technique. We applied our approach to 350

models of the BU-3DFE database, and evaluated

the results both qualitatively and quantitatively.
We showed that for 94.9% of the models, the land-

marks are predicted with an error below 30mm,

and that for most of the models, a consistent cor-
respondence is found. Furthermore, we evaluated

the algorithm on a challenging case of a face with

occlusion.

The failure cases of the algorithm are mostly
caused by noisy data in the mouth area. For future

work we plan to design algorithms that can han-

dle this challenging scenario. It is also of interest to
test the algorithm on a large database of models

with different types of occlusion, such as models

wearing eyeglasses (e.g., models from Bosphorus
database [53]) and on data acquired using differ-

ent types of sensors. Finally, with the availability

of inexpensive depth cameras, dynamic data is be-

coming increasingly important. Interesting future
work includes to extend the proposed algorithm to

compute correspondences of dynamic facial data in

a fully automatic framework.
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