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Abstract

We present a heuristic algorithm to compute approx-
imate geodesic distances on a triangular manifold S
containing n vertices with partially missing data. The
proposed method computes an approximation of the
geodesic distance between two vertices pi and pj on
S and provides an upper bound of the geodesic dis-
tance that is shown to be optimal in the worst case.
This yields a relative error bound of the estimate that
is worst-case optimal. The algorithm approximates
the geodesic distance without trying to reconstruct the
missing data by embedding the surface in a low dimen-
sional space via multi-dimensional scaling (MDS). We
derive a new heuristic method to add an object to the
embedding computed via least-squares MDS.

1 Introduction

The computation of geodesic distances on a given trian-
gular manifold S with n vertices is a well-studied prob-
lem in computational geometry and differential geome-
try. Algorithms computing geodesic distances on poly-
hedral surfaces can be classified into two approaches.
Algorithms following the first approach view S as a
graph and algorithms to compute shortest distances on
graphs are extended to find geodesic distances on S.
Mitchell et al. [9] presented an algorithm that computes
the exact geodesic distances from one source point on S
to all other points of S in O(n2 log n) time. Surazhsky
et al. [11] implemented the algorithm and found the al-
gorithm’s average running time to be much lower, which
makes the algorithm relevant for practical tasks. Algo-
rithms following the second approach view S as a dis-
cretized differentiable surface and algorithms from dif-
ferential geometry are extended to find geodesic paths
on S. Kimmel and Sethian [7] presented an approach
called Fast Marching Method (FMM) on triangular do-
mains that computes approximations to the geodesic
distances from one source point on S to all other points
of S by solving the Eikonal equation on a triangular
grid. The algorithm’s running time is O(n log n) and
therefore optimal. The accuracy of the approach de-
pends on the quality of the underlying triangulation;
namely on the longest edge and the widest angle in the
triangular mesh.
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The computation of geodesic distances on a triangular
manifold is a common operation in many areas such as
computer graphics, computer vision, and pattern recog-
nition [2, 6, 11]. The 3D models used in these applica-
tion areas usually come from digitizing real-world ob-
jects from a discrete set of measurements. For incom-
plete triangular manifolds, all of the above-mentioned
methods compute the geodesic path between two points
on opposite sides of a hole by tracing along the bound-
ary of the hole as in Figure 1. This results in erroneous
geodesic distances.

We explore the problem of computing estimates
of geodesic distances with worst-case optimal upper
bounds on a triangular manifold S with partially miss-
ing data without attempting to fill the holes of S. To
our knowledge, this problem has not been explored so
far. The main advantage of this approach compared
to previous approaches to compute geodesic distances
on triangular manifolds [9, 7, 11] is that the error of
the estimate is bounded for incomplete surfaces. The
resulting approximated geodesic distances can be used
to modify the above-mentioned applications for models
with incomplete surface descriptions.

The approximation of the geodesic distance consists
of three main steps. First, we compute the geodesic
distance δi,j between the vertices pi and pj for i, j ∈ P ,
where P is a set of indices of uniformly distributed sam-
ple points on S, using FMM. The geodesic path between
pi and pj computed by FMM may trace a hole of the
model and therefore be incorrect, see Figure 1. How-

ever, we can compute confidence values ωi,j = 1− mh
i,j

mi,j
,

where mi,j is the number of edges on the geodesic path
computed by FMM from pi to pj and where mh

i,j is the
number of edges tracing a hole of S on the geodesic path
from pi to pj . Second, we use the geodesic distances
δi,j as dissimilarities and the confidence values ωi,j as
weights to embed the manifold S in a low-dimensional
Euclidean space via multi-dimensional scaling (MDS).
In this way, we obtain a canonical form of S similar
to the one introduced by Elad and Kimmel [2]. Third,
we compute an estimate of the true geodesic distance
between two arbitrary vertices pi and pj on S by pro-
jecting pi and pj to the canonical form of S using an
extension of the technique devised by Gower [5]. The
Euclidean distance between the embedded points ap-
proximates the true geodesic distance between the orig-
inal points. A detailed description of the approach is
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available in the full version of the paper [12].

Figure 1: Paths computed via FMM tracing holes.

2 Preliminaries

Let S denote an incomplete triangular manifold with n
vertices. Let Ŝ denote the complete surface partially
represented by S. Let δ̂i,j be the geodesic distance be-
tween the vertices pi and pj on Ŝ and let δi,j be the
geodesic distance between the vertices pi and pj on S.
Note that δi,j equals δ̂i,j if the geodesic path between pi

and pj on S does not trace a hole of S. Let d̂i,j denote
the Euclidean distance between pi and pj .

We aim to preprocess S, such that given any pair of
query vertices pi and pj on S, we can report an estimate
of δ̂i,j along with error bounds of the estimate.

We propose a heuristic solution based on multi-
dimensional scaling (MDS). MDS is used to compute
a mapping of pi, i = 1, . . . , n to a set of points X =
{Xi, i = 1, . . . , n} in a low-dimensional Euclidean space,
such that the Euclidean distance di,j(X) between Xi

and Xj approximates the geodesic distances between pi

and pj well for 1 ≤ i, j ≤ n. This mapping has previ-
ously been called canonical form by Elad and Kimmel
[2].

2.1 Multi-Dimensional Scaling

MDS is a commonly used technique to reduce the di-
mensionality of high-dimensional data. Given a set of n
objects O1, . . . , On in d dimensions as well as the pair-
wise dissimilarities δi,j , 1 ≤ i, j ≤ n with δi,j = δj,i

between objects Oi and Oj , the aim is to find points
X = {X1, . . . , Xn} in k dimensions with k < d, such
that the Euclidean distance di,j(X) between Xi and Xj

equals δi,j for 1 ≤ i, j ≤ n. This aim can be shown
to be too ambitious, since in general it is not possible
to find positions X1, . . . , Xn in k dimensions such that
di,j(X) = δi,j for all i, j. To find a good approximation,
different related optimality measures can be used. Clas-
sical MDS [4], also called Principal Coordinate Analysis
(PCO), is a method closely related to Principal Com-
ponent Analysis. It assumes that the dissimilarities are
Euclidean distances in a high dimensional space and
aims to minimize EPCO =

∑n
i=1

∑n
j=i+1(δ

2
i,j−di,j(X)2)

by finding a mapping as eigenvectors of a matrix. Least-
Squares MDS (LSMDS) [1, p.146-155] aims to minimize
ELS =

∑n
i=1

∑n
j=i+1 ωi,j (δi,j − di,j(X))2, where ωi,j is

a non-negative weight that can be viewed as a confidence
value corresponding to the dissimilarity δi,j . Therefore,
MDS can be viewed as a mapping from arbitrary objects
Oi in d dimensions to points Xi in k dimensions with the
constraint that an objective function E is minimized.

A question that arises in MDS is how to treat an
additional object On+1 in d-dimensional space with
corresponding dissimilarities δn+1,1, . . . , δn+1,n that be-
comes available only after the objects O1, O2, . . . , On

have been mapped to points X1, X2, . . . , Xn in k-
dimensional space. Gower [5] proposed an efficient ap-
proach to add an object to the PCO embedding. To
add an object On+1 to the LSMDS embedding, we are
also given the corresponding weights ωn+1,1, . . . , ωn+1,n.
The technique by Gower does not yield satisfying re-
sults, since the objective function minimized for the
embedding of the objects O1, . . . , On is ELS . Instead,
we try to minimize the least-squares function E∗

LS =∑n
i=1 ωn+1,i (δn+1,i − dn+1,i(X))2 . We can compute the

gradient of this objective function w.r.t. the point
~xn+1 analytically as ∇E∗

LS =
∑n

i=1 2ωn+1,i(~xT
n+1 −

~xT
i )

(
1− δn+1,i

dn+1,i

)
. This allows us to add the object

On+1 to the MDS embedding by minimizing E∗
LS using

the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(LSBFGS) scheme, a quasi-Newton approach. Al-
though we are not aware that this addition to the
LSMDS embedding was discussed previously, this is not
the main contribution of this work.

3 Geodesic Distance Estimation

We use the canonical form to estimate the geodesic dis-
tance between a given pair pi and pj with 1 ≤ i, j ≤ n
of vertices on a triangular manifold S with partially
missing data. The main idea is to compute the canon-
ical form of the manifold based on weighted geodesic
distances on S. That is, we use geodesic distances as
dissimilarities δi,j and we use confidence values ωi,j =

1 − mh
i,j

mi,j
, where mi,j is the number of edges on the

geodesic path from pi to pj on S and where mh
i,j is the

number of edges on the geodesic path on S from pi to pj

that pass through triangles of S which share at least one
vertex with the boundary of a hole. Since S is a mani-
fold, we can find the vertices of S adjacent to a hole of S
as endpoints of edges of degree less than two, since ev-
ery edge not adjacent to a hole of S has degree two. We
chose this measure for ωi,j , since it can be computed
more efficiently than the fraction of the length of the
path that does not trace the boundary of a hole. When
working with data obtained from laser range scanners,
ωi,j is a good approximation of the fraction of the path
that does not trace the boundary of a hole, because all
of the triangles of S have good aspect ratio. If paths
that trace holes of S obtain weight 0, it can be proven
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that Euclidean distances in embedding space approx-
imate the original geodesics well [10]. Since we wish
to extrapolate information using the metric property of
the manifold, we give distances tracing a hole of S less
weight, but we do not disregard those distances.

The geodesic distances δ̂i,j form a metric. That is,
δ̂i,j is non-negative, symmetric, and satisfies the triangle
inequality. If Ŝ = S, the set of dissimilarities δ̂i,j con-
tains redundant information. When S is a true subset
of Ŝ, we take advantage of this redundancy by weigh-
ing well approximated geodesic distances higher than
geodesic distances tracing around a hole of S. We use
the geodesic distances with confidence values to com-
pute a canonical form of a sample set P of size nP .
This sample set is necessary for objects with hundreds
of thousands of vertices, since computing the canoni-
cal form is not only computationally expensive but also
requires quadratic storage in the number of vertices to
embed due to the quadratic number of dissimilarities
and weights. Since taking a sample set P of vertices
for the embedding has a negative effect on the quality
of the results, the sample set should be large enough to
represent the overall shape of S well. We use Voronoi
sampling [3], also called Farthest Point Sampling (FPS),
to choose the sample set P . FPS provides uniformly dis-
tributed samples with respect to the geodesic distances
in an iterative way. FPS and FMM can elegantly be
combined [8] to obtain nP uniformly distributed sample
points, δi,j , and ωi,j , in O(nP n log n) time.

The canonical form has the property that Euclidean
distances in the canonical form approximate geodesic
distances on S well according to the optimality mea-

sure
∑

i∈P

∑
j∈P

(
1− mh

i,j

mi,j

)
(δi,j − di,j(X))2. Hence,

we expect di,j to be a good approximation of δ̂i,j on
Ŝ even if δi,j is obtained by a path tracing a hole of
S. The error made by approximating δ̂i,j by di,j can
be bounded as follows. A lower bound δ̂lower

i,j on δ̂i,j

is given by the Euclidean distance d̂i,j between pi and
pj . Note that δ̂lower

i,j is not necessarily worst-case op-
timal. An upper bound δ̂upper

i,j on δ̂i,j is given by δi,j .
The upper bound δ̂upper

i,j is optimal in the worst case,
since a path tracing a hole of S can be the shortest
path on Ŝ if Ŝ has a high mountain where the hole is lo-
cated on S. Note that δ̂upper

i,j only exists if pi and pj are
located on a connected component of S. The relative
error e of the approximation of δ̂i,j by di,j is computed

as e =
max(|di,j−δ̂lower

i,j |,|di,j−δ̂upper
i,j |)

di,j
.

3.1 Algorithm Overview and Analysis

We now describe the algorithm used to estimate
geodesic distances on the incomplete surface S. First,
we compute the canonical form of S. A set P of indices

of sample points on S is obtained via FPS.

FMM is performed to obtain all of the pairwise
geodesic distances δi,j on S along with confidence values
ωi,j . FMM does not compute exact geodesic distances
on S, but approximations. However, the geodesic dis-
tances computed via FMM approximate δi,j well for sur-
faces obtained using a laser range scanner in practice.
The minor theoretical flaw of using geodesic distances
computed via FMM instead of the exact geodesic dis-
tances on S can be overcome by either using known
exact algorithm to compute geodesic distances on S [9]
or by adjusting the error bounds to include the error
caused by FMM. The main advantages of FMM are its
efficiency and simplicity.

The pairwise geodesic distances δi,j on S along with
confidence values ωi,j are then used to perform LSMDS
and to obtain a canonical form in the embedding space.
Instead of starting with a random point set, we initialize
the canonical form to the canonical form computed us-
ing classical MDS. This reduces the risk of getting stuck
in a local minimum when performing the iterations re-
quired for LSMDS, since classical MDS cannot get stuck
in local extrema. Computing the

(
nP

2

)
geodesic paths

on the surface S consisting of n vertices via FMM takes
O(nP n log n) time and computing the canonical form
given the weights and dissimilarities takes O(n2

P t) time
for LSMDS, where t is the number of iterations required
for convergence. Hence, this algorithm is computation-
ally expensive. However, computing the canonical form
once per surface S can be viewed as a preprocessing
step.

Second, we estimate the geodesic distance between
any pair pi and pj of vertices on S. Note that i and
j do not have to be elements of P . To estimate the
geodesic distance, we first compute the geodesic dis-
tance δi,j between pi and pj via FMM and analyze the
resulting geodesic path. If the path does not trace a hole
of S, a valid geodesic path was found. We report the
result along with an error bound of zero, since the exact
geodesic path was found. Otherwise, the path traces a
hole of S. If i 6∈ P (j 6∈ P respectively), pi (pj respec-
tively) is projected to the canonical form. To project
pi to the canonical form, all of the geodesic distances
δi,r, r ∈ P and weights ωi,r, r ∈ P are computed via
FMM in O(n log n) time and an optimization problem
with k variables is solved using a quasi-Newton method.
Once the embedded points Xi and Xj are known, we
use the Euclidean distance di,j(X) in embedding space
to approximate the geodesic distance between pi and pj

on S. The approximation error of di,j(X) is bounded by

max(
∣∣∣d̂i,j − di,j(X)

∣∣∣ , |δi,j − di,j(X)|). This error bound
is finite iff there exists a path from pi to pj on S.
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4 Experimental Results

The accuracy of the approximation was evaluated using
a synthetic data set. The complete data set of an artist-
created human body consisting of 20002 vertices shown
in Figure 2 was modified to contain holes as shown in
Figure 2. In the Figure, holes are shown in blue, points
used to compute the canonical form are shown in red,
and test vertices are shown in green. We chose 509 test-
ing samples on the incomplete model. We consider pairs
of sample points pi and pj where the geodesic path be-
tween pi and pj crosses at least 20 triangles of S that
have a vertex on the boundary of a hole. The follow-
ing distances are examined: the true geodesic distance
δ̂i,j computed via FMM on the complete surface, the
upper bound δ̂upper

i,j computed via FMM on the incom-
plete surface, and the estimate di,j along with a relative
error bound ei,j computed as proposed in this paper us-
ing 4000 samples to compute the canonical form in R3.
We used these distances to find the true relative errors
e(δ̂upper

i,j ) of δ̂upper
i,j and e(di,j) of di,j . Figure 3 shows the

percentage of distances where e(di,j) is smaller than or
equal to e(δ̂upper

i,j ). We can see that δ̂upper
i,j is more accu-

rate than di,j for small relative error bounds. For larger
relative error bounds, di,j is more accurate than δ̂upper

i,j .

Figure 2: Left: Complete model. Middle: Modified
model. Right: Canonical form.

Figure 3: Blue column shows the percentage of distances
where e(di,j) is smaller than or equal to e(δ̂upper

i,j ).

5 Conclusion

Taken together, the preceding discussion proves the
main theorem. Let n denote the number of vertices
of S, let nP denote the number of sample points com-
puted via FPS, and let t denote the number of iterations
performed to compute the canonical form.

Theorem 1 An incomplete triangular manifold S can
be preprocessed in O(nP (n log n + nP t)) time, such that
given any pair of query vertices pi and pj with 1 ≤ i, j ≤
n on S, we can report an estimate of δ̂i,j along with
error bounds δ̂lower

i,j and δ̂upper
i,j in O(n log n) time. The

upper bound δ̂upper
i,j is worst-case optimal.

An interesting open question is to find an easily com-
putable worst-case optimal lower bound of δ̂i,j . Another
open question is how to choose the confidence values ωi,j

to optimize the quality of the estimate.
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