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Abstract

We present an algorithm to predict landmarks on 3D hu-
man scans in varying poses. Our method is based on learn-
ing bending-invariant landmark properties. We also learn
the spatial relationships between pairs of landmarks using
canonical forms. The information is modeled by a Markov
network, where each node of the network corresponds to
a landmark position and where each edge of the network
represents the spatial relationship between a pair of land-
marks. We perform probabilistic inference over the Markov
network to predict the landmark locations on human body
scans in varying poses. We evaluated the algorithm on 200
models with different shapes and poses. The results show
that most landmarks are predicted well.

1 Introduction

Currently, full human bodies can be digitized efficiently
using off the shelf body scanners. This results in tremen-
dous amounts of information about the shape of the human
body. This data can potentially be used to aid in ergonomic
design and statistical analysis.

However, processing the surface data collected by body
scanners continues to be challenging. To process the data
efficiently, intrinsic correspondence information between
the body shapes is required. That is, for each point on one
surface, one needs to know the corresponding points on the
other surfaces. Computing the correspondence information
is hard due to incomplete and noisy data and due to pose
variations.

Many methods have been proposed to compute intrinsic
correspondence information automatically. Methods that do
not assume prior information about the shape or pose of
the objects [7, 15, 22, 3] are not accurate enough to per-
form statistical analysis. If a template shape and marker
positions are available, reliable correspondences can be ob-
tained. Allen et al. [1] used a template model and marker
positions to compute reliable correspondences between hu-
man models in similar poses. Xi et al. [21] used a variation

of this approach for statistical analysis. Allen et al. [2] ex-
tended their previous approach to allow for changes in pose.
Hasler et al. [13] extended Allen et al.’s approach [1] to al-
low for pose-invariant registration.

Unfortunately, marker positions are not readily available
because the marking process significantly increases the time
of measurements; from under one minute to over 30 min-
utes. Hence, this step raises the cost of data collection and
is avoided in most projects.

Ben Azouz et al. [5] proposed a method to automatically
predict the locations of anthropometric landmarks on hu-
man body scans in similar poses. This approach relies heav-
ily on the similarity of poses and fails if the poses vary. This
paper introduces a novel method to compute the locations of
a small set of landmarks on human body scans in different
poses. These landmarks can be used in the landmark-based
algorithms, such as Hasler et al. [13] or Allen et al. [2], to
compute intrinsic correspondences.

Our method is based on the assumption that different
poses of a human model are approximately isometric. This
property can be exploited to map an arbitrary pose to a
bending-invariant shape, called canonical form [11]. Con-
sequently, the problem can be reduced to a single-pose set-
ting. In our method, the single-pose landmark prediction is
solved using statistical learning. We model the positions
of the landmarks as random variables of a Markov net-
work. The statistical characteristics of the landmarks can
be learned through training data. The locations of the land-
marks are found by maximizing a joint probability over all
possible configurations. This problem can be solved effi-
ciently by using belief propagation [18].

The main contributions of this work are as follows.

e We use bending-invariant canonical forms [11] to learn
and predict the positions of landmarks in a posture-
invariant way. This results in a semi-automatic way
to predict the positions of landmarks on human scans
in different poses. The only user-intervention that is
required by the algorithm is the choice of the best of
eight candidates for the result.

e We propose and use a novel local shape descriptor that



is invariant with respect to isometric deformations of
a surface. The descriptor at a vertex v of a triangu-
lar mesh S is related to the area of a geodesic circle
on S of fixed radius centered at v. The descriptor is
related to the descriptor used by Tierny et al. [19] to
represent a Reeb chart. However, unlike Tierny et al.,
we propose to use the geodesic circle for local shape
description.

2 Related Work

Many methods have been proposed to automatically
compute point-to-point correspondences between triangu-
lar surfaces. Recently, methods were proposed that do not
assume prior marker positions [7, 15, 22, 3]. Some of these
methods align bending-invariant canonical forms directly to
obtain dense point-to-point correspondences [16, 7]. These
methods are currently not accurate enough to perform sta-
tistical analysis. When canonical forms are aligned directly,
there is no guarantee that close-by points in one shape
match close-by points in the other shape.

If a template shape and marker positions are known a pri-
ori, accurate correspondences can be computed [1, 2]. The
correspondences computed using marker based approaches
have the property that close-by points in one shape match
close-by points in the other shape, which is desirable. Allen
et al. [1] deform a known template mesh of a generic human
body to fit a range scan of a human body. The deformation
is guided by a small set of known marker positions on the
object and it is ensured that the deformation is smooth in
the neighborhood of each vertex. Allen et al. [2] extend
this approach to work for varying poses by using a skeleton
model.

Unfortunately, marker positions are often not available.
Ben Azouz et al. [5] propose to find reliable correspon-
dences by automatically predicting marker positions and by
using these marker positions to find correspondences. Their
method is based on statistical learning. It works for models
in similar poses, but fails if the pose variation is large.

This paper introduces a novel method to semi-
automatically compute the locations of a small set of land-
marks on human body scans in different poses. These semi-
automatically placed landmarks can be combined with the
algorithm by Hasler et al. [13] or Allen et al. [2] to compute
intrinsic correspondences that have the property that close-
by points in one shape match close-by points in the other
shape.

Our approach makes use of canonical forms [11]. Elad
and Kimmel define the canonical form X of a surface S as
the mapping of S to R3, such that the Euclidean distances
between the mapped vertices approximate the geodesic dis-
tances between the original vertices well. The canonical
form is computed via multi-dimensional scaling with the

geodesic distances between vertices on the triangular mani-
fold as dissimilarities. Hence, the canonical form of a non-
rigid body is pose-invariant. We use fast marching [17] to
compute geodesic distances on .S. We then use least-squares
multi-dimensional scaling [6, p.146-155] to compute the
canonical form in R3. For increased space efficiency, we
compute the canonical form using a coarse-to-fine strategy
as outlined by Wuhrer et al. [20]. The approach by Wuhrer
et al. consists of two steps. First, n’ vertices of S are used
to compute a canonical form at low resolution. Second, the
remaining vertices of S are added to the canonical form one
by one by minimizing a least-squares energy function.

We use the database of humans in varying poses by
Hasler et al. [13] to learn and predict the landmarks. The
database contains 550 laser scans of 114 subjects in up to
35 poses. Hasler et al. computed the correspondences be-
tween the subjects of the database using a variation of the
approach by Allen et al. [1] by manually placing landmarks
on the scans. We use the registered database to manually
select eight landmarks. We use the selected landmarks for
training and as ground truth.

Our approach is conceptually similar to the approach by
Fergus et al. [12] to locate features in two-dimensional im-
ages for object recognition in that a Bayesian approach is
used to model the properties of features and the spatial re-
lationship between features. While we only model pair-
wise spatial relationships between features, it is possible to
model spatial relationships between features using the star
model by Crandall et al. [9].

3 Overview

We model the problem of predicting the locations of
landmarks as an inference problem on a Markov network.
We first learn the properties of a small set of manually
placed landmarks. With this knowledge, we can then pre-
dict the locations of the landmarks on a surface .S using sta-
tistical inference.

To learn the location of the landmarks on a surface S
in a pose-invariant way, we use the canonical form of S.
To learn the properties of the landmarks on a surface S in
a pose-invariant way, we represent each vertex of S by a
descriptor that depends on the intrinsic geometry of .S. The
descriptor at a vertex v of S uses a measure related to the
area of the geodesic circle of radius r centered at v.

4 Markov Network

We model the problem of predicting the locations of a
set of k£ landmarks on the surface S of a human body as
a probabilistic inference problem on a pairwise Markov
network [10]. A Markov network is an undirected graph



G(V, E) that models the joint probability distribution of the
set of random variables. In our case, the random variables
are the locations of the k landmarks L. = [y, ..., l;x—1. Each
node v in V represents one of the random variables. Each
edge e in E represents a dependency between the random
variables represented by the endpoints of e. We associate
a potential ¢;(l;) corresponding to the likelihood that land-
mark /; is located at a given vertex of S with each node v;
in V. Furthermore, we associate a potential ¢; ;(I;, ;) cor-
responding to the joint likelihood that landmark [; is located
at one given vertex of .S and that landmark /; is located at
another given vertex of S with each edge e = (I;,1;) in E.
The joint probability of the network is

1
p(L) = 7 [T o) [T wistis1y), (1)
i i,

where Z is a normalizing factor.

In this paper, we consider the landmarks shown as red
spheres in Figure 1. That is, we consider as landmarks the
hands, elbows, feet, head, and crotch of the models. These
landmarks are usually sufficient to allow a satisfactory reg-
istration [14]. We model the correlations between the po-
sitions of the landmarks using the graph structure G(V, E)
shown as black lines in Figure 1. This graph is obtained
manually and is not necessarily optimal with respect to the
correlations between the landmarks. Note that the proposed
method does not consider the graph on the original mesh,
but on the bending-invariant canonical form of the original
mesh.

Figure 1. Landmarks and structure of landmark
graph.

It remains to define the potentials ¢;(l;) and v; ;(1;,1;).

4.1 Node Potential

Our goal is to construct a node potential that character-
izes the surface properties of the location of a landmark in
a pose-invariant way. We achieve this goal by using a novel
local surface descriptor that is based on the intrinsic geom-
etry of S. That is, we choose as node potential

(rbz(lz = vj) = N(D(vj)a Mzr_wde’ Z?Ode)a (2)

where A is a multivariate Gaussian distribution with mean
p°% and covariance X%, and D(v;) is a pose-invariant
surface descriptor. The mean p['°% and the covariance
yrode are learned based on a training set as outlined in Sec-
tion 5.

We use as surface descriptor D(vy) a measure related to
the area A(c) of the geodesic circle ¢ of radius r centered at
vg. The geodesic circle c is topologically either equivalent
to a disk or to a torus. Following Tierny et al. [19], we
compute the distortion

Tr2
A(c)

T((Fr)z=1) Otherwise.

d(r) { Ald) ifcis topologically equivalent to a disk,
The surface descriptor D(vy) is a vector of distortions d(r;)
obtained by varying the radius of the geodesic circle. In our
experiments, D(vy) has dimension twenty. Figure 2 visual-
izes the node descriptor at the elbow of one of the models.
The node descriptor is obtained by computing the distortion
of the geodesic disks shown in red with respect to the corre-
sponding Euclidean disks shown in blue. Note that we use
d(r) to locally describe landmark locations while Tierny et
al. use a set of distortions d(r) to globally characterize a
shape.

The left of Figure 3 shows the geodesic isolines at the
landmark positions on one of the human models. The
right of Figure 3 shows projections of the descriptor values
D(vy) on 50 models of the database in different postures.
We project along a fixed random direction to obtain this fig-
ure. Descriptors of corresponding landmarks are shown in
the same color. We can see that points of the same color
form clusters. This shows that the descriptor describes the
landmark positions well.

4.2 Edge Potential

We choose an edge potential based on spatial relation-
ships between vertices on the canonical form X. That is,

cdge wedge
Yij(li = v, lj = vm) = N(D(vi,vm), iy, 2057°),
(3)
where A is a multivariate Gaussian distribution with mean

d ) d . .
pi* and covariance 377, and D(vi, vy, ) is a descriptor



Figure 3. Properties of node potential. Left: geodesic isolines at the landmark positions. Middle: detail view of
geodesic isolines at right elbow. Right: projections of descriptor values on 50 human models. Descriptors of corre-

sponding landmarks are shown in the same color.

Figure 2. Visualization of the node descriptor.
Geodesic circles are shown in red and Euclidean cir-
cles are shown in blue.

d : d
on X . The mean y;;°“ and the covariance ¥ are learned

based on a training set as outlined in Section 5.

The descriptor D(vy, v,,) consists of the distance and
the difference vector between the vertices correspond-
ing to v; and v,, on X. Let X(v;) be the vertex

—

of X corresponding to v; and let X(v;) be the posi-
tion vector of that vertex. The descriptor D(v;,v,,) =

(120 () = X (o)l (X o) ~ X(F))T] s of dimen-

sion four, where | X (v;) — X (vy,)|| denotes the Euclidean
distance between X (v;) and X (v,,,).

Note that the edge potential is purely based on the

canonical form X and that the node potential is isometry-
invariant. This has the effect that the potentials are invari-
ant with respect to deformations that preserve geodesic dis-
tances.

5 Learning

We use 200 models Sy,...,S199 of the database by
Hasler et al. [13] to learn the variables of the node and edge
potentials given in Equations 2 and 3. The training set con-
tains models in all 35 poses. We learn all of the means
1209 and pi£%9¢ and covariances $7°% and 3% using
maximum likelihood estimation [10].

Furthermore, we learn the average positions p(l;) of the
landmarks on the canonical forms Xy, ..., X199. These po-
sitions are helpful to restrict the search space. To learn the
average positions, we need to align the canonical forms. A
canonical form is invariant with respect to translation, rota-
tion, and reflection [8]. Hence, we need to consider mul-
tiple alignments. We do this by aligning all of the canon-
ical forms X, ..., Xj99 by their respective eigenvectors
and by normalizing the height of the canonical forms. It
remains to consider eight alignments because each canoni-
cal form X; in R? is invariant with respect to reflection and
because there are 2 = 8 possible reflections of X. We
align X1,..., X199 to Xg in turn as follows. For X;, we
consider all eight sign assignments of the eigenvectors. For
each sign assignment, we compute the sum of squared dif-
ferences between the corresponding landmark positions on
X; and X. We find the best alignment as the one that mini-
mizes the sum of squared differences. The learned positions
p(l;) are shown in Figure 4. Note that the graph is nearly



symmetric in three dimensions. The legs in the graph are
almost contained in the z, y-plane and the arms in the graph
are almost contained in the x, z-plane.

Figure 4. Left: a model in the database. Middle:
canonical form of the model. Right: Projected land-
mark graph obtained using 200 subjects.

6 Predicting Locations of Landmarks

When predicting landmarks on the surface S of a hu-
man body, our goal is to compute the landmark locations
that maximize Equation 1. We use Bayesian belief propa-
gation to find a solution. The Bayesian belief propagation
algorithm was introduced by Pearl [18]. The algorithm can
be applied to a Markov network G(V, E) if each node v;
in V is associated with a discrete number of possible la-
bels F;. The labels of node v; represent candidate locations
on S for landmark /,. When running Belief propagation on
a Markov network, beliefs, or probabilities of certain hy-
potheses given some evidence, are propagated through the
network by local update rules. Note that if the Markov net-
work has a tree structure as in our application, the Bayesian
belief propagation algorithm finds the exact solution to the
problem of finding landmark locations that maximize Equa-
tion 1. The size of the label sets F; has a significant influ-
ence on the efficiency of the belief propagation algorithm.
It is therefore important to choose appropriate label sets F;.

We use the learned average positions p(l;) to find label
sets F; as follows. We first align the canonical form X
along its eigenvectors. As X is invariant with respect to ro-
tation, translation, and reflection, we need to consider eight
possible alignments. We predict the locations of the land-
marks using all eight possibilities and let the user choose the
correct result. Note that this is the only user-intervention re-
quired by the algorithm.

For each of the eight alignments, we project the canoni-
cal form X of S into the plane 7, defined by the first two
principal components of X and into the plane 7, . defined
by the first and the third principal components of X. Fur-
thermore, we project p(l;) into 7., and 7, .. Denote the

projected canonical forms by X ™ and X"=-> and the pro-
jected average positions by p(l;)™=v and p(l;)™=. For the
crotch landmark, we compute the label set F; as the nearest
neighbors of p(l;) in X. For the landmarks at the heels, we
compute a label set F; as the nearest neighbors of p(l;)™=v
in X™=v. For all the other landmarks, we compute a label
set F; as the nearest neighbors of p({;)™ = in X™=-=. We use
three kd-trees to speed up the nearest neighbor search [4].

We compute F; in 7, and 7, . for most of the land-
marks to avoid problems due to canonical forms that are not
rigid to each other. For some models, the left leg is in the
front in the canonical form and for other models, the left
leg is in the back. When computing F;; using nearest neigh-
bors in three dimensions, the label set for a landmark on the
left leg may therefore only include vertices on the right leg.
A similar problem may happen with the arms of the model.
These problems are avoided when computing F; in 75 ,, and
T,z

Figure 5 illustrates the label sets F;. Figure 5(a) shows
the landmarks on a model of the database. Each landmark
l; is assigned a unique color. Figure 5(b) shows the label
sets F; on a model in a different pose. Each vertex of the
mesh belonging to F; is shown in the same color as /; in
Figure 5(a). If a vertex belongs to more than one label set,
the corresponding colors are interpolated.

7 Experiments

We predict the landmarks on 200 models of the database
in different poses that were not used for learning. Figure
6 shows the predicted landmarks on five different models.
Red spheres correspond to the manually marked true land-
marks and green spheres correspond to the predicted land-
marks. For some landmarks, only the green spheres are vis-
ible. In these cases, the learned and predicted landmarks are
identical.

We use node descriptors D(vg) of dimension twenty.
Experimentally, we found that the higher the dimension of
the node descriptor, the higher the accuracy of the result and
the higher the running time of the algorithm. This gives a
way to trade off accuracy and running time.

Table 1 shows the average, the standard deviation, and
the maximum of the location errors for each landmark. We
notice that for all of the landmarks, the average error is less
than 10cm.

8 Conclusions

This paper presented a new approach to predict the loca-
tions of landmarks in a pose-invariant way. The approach
combines statistical learning, bending-invariant canonical
forms, and a novel local surface descriptor.

We leave the following ideas for future work:



(b)

Figure 5. Iliustration of label sets F;.

Landmark Average | Standard | Maximum
(mm) Deviation (mm)
(mm)
1 Head 58.28 3.128 147.3
2 Crotch 77.34 0.315 205.6
3 Right Hand 14.92 1.277 66.7
4 Right Elbow | 85.65 1.136 200.3
5 Left Hand 10.12 2.091 57.06
6 Left Elbow 93.83 0.4291 197.7
7 Right Heel 42.59 0.7731 165.2
8 Left Heel 37.88 0.5053 148.3

Table 1. Error of prediction computed over 200 test

human scans.

e The canonical forms of two human bodies with differ-

ent topologies, large holes, or additional parts are not
similar. Hence, manual preprocessing may be required
in these cases. It is possible to automatically compute
a label set in these cases.

We designed a graph that connects the landmarks man-
ually. This graph may be computed automatically.

We model the node and edge potentials as Gaussian
distributions. Other distributions may be considered.
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