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Abstract

Geometric models created from range sensors are usu-
ally incomplete. Considerable effort has been made to fix
this problem, ranging from manual repairing to geometric
interpolation. We propose using multi-view stereo to com-
plete such models. Our approach is practical and conve-
nient because when scanning and object or environment one
usually takes photographs to texture the resulting model. By
using the incomplete scan data as a boundary condition, we
use a variational multi-view approach to estimate the miss-
ing data.

1 Introduction

The wide use of laser range sensors and other modal-
ities of 3D sensing device has produced increasingly de-
tailed 3D models. However, one problem that has plagued
3D modeling since its beginning is the incompleteness of
the models. Holes, due to a variety of reasons, are usu-
ally present in the models built from range scans. Some
holes are caused by intrinsic limitations of the sensors. For
example, a triangulation-based sensor requires that every
reconstructed point to be visible from two different view
points of the sensor. Others are the results of object self-
occlusion, insufficient view coverage, and shallow grazing
angles. Davis et al. [5] gave an account of holes and their
causes in different situations.

Many methods have been proposed for hole-filling. The
majority of them fill holes by interpolating the nearby ge-
ometry [5]. This method is only effective when the holes
are small. Manual, interactive tools are often used to fix
large holes. For keeping the surface smoothness the same

as the nearby areas, interactive methods were proposed in
a way that imitates image touch-up tools such as found in
the Adobe Photoshop where users “cut and paste” surface
geometry from nearby area [19].

In practice, we usually take colour digital images for
recording the textures while digitizing objects and environ-
ment. These 2D images can also be used to improve the ge-
ometry of the 3D models. Image-based reconstruction tech-
niques such as stereo [7], photogrammetry [1], and shape
from shading [20], were used to augment the scan models.

In this paper, we propose a new image-based method for
filling holes in the 3D models. The method is based on
multi-view stereo. The key observation is that the bound-
aries of the holes are easily identifiable. This allows us
to solve a constrained problem which is more manageable
than the general multi-view stereo problem. We start with
an initial filling of the hole using a geometric interpolation
method. Then the initial filling surface is deformed to fit the
image data using a surface-oriented multi-view stereo ap-
proach. This problem has a variational formulation – find-
ing a surface such that it optimizes the photoconsistency en-
ergy function [11]. It has been solved previously by PDE-
based method using either the level-set method [11] or mesh
deformation [8]. In both cases, an initial, closed surface that
enclose the object to be modeled is assumed and the algo-
rithm evolves until it converges to a minimal energy solu-
tion. However, the problem is an ill-posed one and often the
algorithm is trapped in local minima. Unlike the classical
solutions, we make use of the known boundary of the sur-
face and solve a boundary-value problem. This makes the
solution easy to reach because the boundaries impose strong
constraints. Furthermore, as we always maintain a smooth
surface, occlusion and specularity, the two most prominent
problems for stereo, are alleviated.
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We demonstrate in this paper that 2D images can be used
as geometry recording data complementary to the range
data. Since we can take digital images with much more
flexible viewpoint selections, we can record those areas of
the object that are difficult for the range sensors to reach.

2 Related Work

Geometric methods for filling holes in a mesh model
interpolate hole boundary or extrapolate surface geometry
from the surrounding areas. Two types of representations
are used. One works directly on the surface mesh. Bare-
quet and Sharir [3] give an O(n3) algorithm for triangulat-
ing a 3D polygonal boundary which represents the bound-
ary of a hole. Liepa [14] extends this method to include
a surface fairing step. Dey and Goswami [6] use a De-
launay triangulation-based method, called Tight Cocone, in
which tetrahedrons are labeled as in or out. The advantage
of working directly with the surface mesh is that the rest
of the surface is unchanged when the holes are filled. This
class of algorithms usually only deal with holes with a sin-
gle boundary.

The other type of representation is the volumetric repre-
sentation, where the surface mesh is discretized into regu-
lar 3D grids or an octree structure either locally or globally.
Davis et al. [5] diffuse the geometry from the hole boundary
to the interior until the fronts meet. This method handles
complex topological configurations such as holes with is-
lands. However, it may change the existing mesh. Podolak
and Rusinkiewicz [16] embed the incomplete mesh in an oc-
tree and use a graph cut method to decide the connections
between pairs of the hole boundaries. It resolves difficult
boundary topologies globally.

A number of authors have used 2D images to enhance
the quality of the 3D models generated from range scans.
Dias et al. [7] fuse stereo reconstruction with 3D points
obtained from range sensors. Abdelhafiz et al. [1] and El-
Hakim et al. [9] combine range image with photogrammet-
ric reconstructions. The vision-based approach of Dias et
al. needs points from range images to be close to the re-
constructed stereo points. Therefore it does not work well
with large holes. The photogrammetric approach needs a
lot of manual interactions. Recently, Xu et al. [20] use 2D
images captured for textures to fill holes in a shape-from-
shading scheme. They learn the surface normal from the ex-
isting mesh geometry. However, the single-view approach
to reconstruction has intrinsic limitations in handling non-
Lambertian surface and difficult lighting conditions.

There is an extensive literature for multi-view stereo.
Seitz et al. [18] give a recent survey. Our work is closely re-
lated to the surface-based approaches such as in [8, 10, 11],
whereas the difference is that we explicitly use boundary
conditions.

3 Initial Mesh

In this Section, we describe how to obtain an initial man-
ifold that can be deformed by multi-view stereo. Given a
triangular manifold S with partially missing data obtained
from a laser range scanning device, we aim to fill the holes
of S by an initial triangular mesh. Section 4 discusses how
a sequence of calibrated images can then be used to effi-
ciently deform the initial triangular mesh using multi-view
stereo methods.

We first identify the boundaries of holes of S. Since S is
a manifold, we can find the edges of S tracing a hole of S as
edges of degree less than two, since every edge not adjacent
to a hole of S has degree two. We compute an initial mesh
for each loop of boundary edges of S separately. Filling a
hole bounded by m edges with a triangulation that does not
have self-intersections may require an exponential number
of Steiner points in m [13]. Furthermore, the problem of
deciding whether a non-self-intersecting triangulation fill-
ing a hole on the boundary of S exists is an NP -complete
problem [2]. Hence, we do not require that the initial mesh
avoids self-intersection.

To obtain a coarse initial mesh filling a hole of S
bounded by m edges, we compute a triangulation of the
boundary loop that does not add Steiner points and that
minimizes the total area of the resulting triangulation. The
approach used to find this triangulation was first proposed
by Barequet and Sharir [3] and generalized to an arbitrary
weighting scheme by Barequet et al. [2]. The approach pro-
ceeds by dynamic programming and takes O(m3) time and
O(m2) space. Note that this approach yields a non-self-
intersecting initial mesh in non-pathological cases.

Before multi-view stereo can be applied to the initial
mesh, the initial mesh needs to be refined to have the
same resolution as the mesh surrounding the hole. We re-
fine the mesh using the approach by Chew [4] that adds
Steiner points and computes the Delaunay triangulation of
the added points. The technique is guaranteed to find a tri-
angulation where all the angles are between 300 and 1200

and where the edge lengths are at most twice as long as the
edges of the mesh surrounding the hole. The running time
of the algorithm is linear in the number of generated trian-
gles.

For an illustration of the initial mesh, refer to Figure 1.
Figure 1(a) shows the model of a chicken with a region
synthetically removed to create a hole, Figure 1(b) shows
a close view of the boundary of the hole, Figure 1(c) shows
the filled hole without Steiner points, and Figure 1(d) shows
the initial mesh used start the deformation.
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Figure 1. Illustration of the initial mesh.

4 Image-based Surface Deformation

This Section describes how we deform the initial mesh
using a multi-view stereo method. The main contribution of
this paper is using the hole boundary information given by
the laser range data to formulate the multi-view stereo prob-
lem as a boundary value problem for constrained surface de-
formation under photoconsistency and Laplacian smoothing
energy terms.

The input to the deformation algorithm is a watertight
surface consisting of the scan S with H holes filled using
initial meshes Ph for h = 0, . . . ,H − 1 generated using the
method described in Section 3, and a set of k pre-calibrated
input images I1, . . . , Ik. For simplicity of notation, and
without loss of generality, let us consider only a single miss-
ing surface P , which we deform to minimize the following
energy function:

E(P ) = αM(P ) + βL(P ) (1)

where M(P ) is the matching cost of P for the set of input
images, L(P ) is the smoothing cost of P , and α and β are
weights for the respective cost functions.

We take our matching cost from Pons et al. [17]. The
matching cost of P is the sum over all pairs of input images
of a pair-wise matching term:

M(P ) =
∑

i

∑
j 6=i

Mij(P ). (2)

The matching term for images Ii and Ij is computed by
reprojecting the matching image Ij into camera i and mea-
suring the dissimilarity of the two. That is, for the surface
P

Mij (P ) = M |Ωi∩Πi(Pj)

(
Ii, Ij ◦Πj ◦Π−1

i,P

)
(3)

where M is a dissimilarity measure, Ωi is the domain of
Ii, Pj is the portion of P that is visible in Ij , Πi is the
perspective projection calibrated for camera i, and Π−1

i,P is
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the reprojection from camera i onto P . The final term,
Ij ◦ Πj ◦ Π−1

i,P , is the image predicted by reprojecting Ij

into camera i via the surface P . Henceforth, we will de-
note the predicted reprojection of the matching image by Ĩ .
We use as our dissimilarity measure the sum of the squared
differences over a small window surrounding each pixel lo-
cation. Pons et al. derive the gradient ∇Mij (P ) (x) of the
matching term for a location x on P as

∇Mij = −δPi∩Pj
(x)

[
∂2M (xi) DIj (xj) DΠj (x)

di

z3
i

]
N

(4)
where ∂2M (xi) is the derivative of the dissimilarity mea-
sure with respect to its second argument, DIj and DΠj

indicate the Jacobian matrices of the respective functions,
di and zi are the displacement and depth relative to cam-
era i, and N is the outward surface normal. The Kro-
necker delta δPi∩Pj maintains that the gradient is zero in
regions not visible from both cameras. From (2) we have
∇M (P ) (x) =

∑
i

∑
j 6=i∇Mij (P ) (x).

While minimizing the matching cost, we also apply
Laplacian smoothing to P to encourage a smooth deforma-
tion of the surface patch. Laplacian smoothing aims to find
a deformation of the surface to satisfy LX = 0, where X is
a n× 3 matrix containing the 3 coordinates of each of the n
vertices of P and L is an n× n matrix with elements

Li,j =


1, if i = j

−ωi,j , if xi is a neighbor of xj

0, otherwise

.

The weight ωi,j for pairs of neighboring vertices in the
mesh can be set in different ways. In our implementation,
we set ωi,j as a uniform weight that only depends on the
degree of xi. We achieve Laplacian smoothing by defining
a Laplacian cost as

L(P ) = trace((LX)(LX)T ).

The gradient∇L (P ) of this term with respect to all vertices
on P is

∇L(P ) = 2LT (LX).

During minimization, we restrict the boundary vertices
of P not to move. Since we know the derivative of the
cost function in closed form, we can formulate the prob-
lem as a boundary value problem and solve it using a quasi-
Newton method. The method we use to minimize our
energy function is the limited-memory Broyden-Fletcher-
Goldfarb-Shanno (LSBFGS) scheme [15].

We efficiently implemented the calculation of the pre-
dicted image, the matching cost, and the matching gradient
using GPU programming in DirectX’s HLSL (High Level
Shading Language). Our implementation scales well with
the size of the hole, and with some minor modifications

could be made virtually insensitive to the number of holes
in the mesh. The main bottleneck is rendering the bound-
ary mesh (i.e. the scan data which are not missing) O(k2)
times per LSBFGS iteration, which could be further opti-
mized by storing the depth relative to each image (at the
cost of higher texture requirements). Another optimization
would be to only match images from nearby viewpoints. We
achieve nearly minimal data transfer from graphics memory
to main memory by using reduction-summation operations
to sum the matching cost over each Ωi ∩ Πi (Pj) on the
GPU, and therefore only have to read back a single floating
point value for the matching cost of a given image pair. This
gives an efficient interface between computing the matching
cost and gradient, and a FORTRAN LSBFGS solver [21].
There remains, however, some bottleneck in transfering the
input images from main memory to texture memory, which
could be alleviated at the cost of greater texture memory
needs. In its current form, each LSBFGS iteration takes
about one minute for the model used in the experiments for
this paper.

5 Experimental Results

We tested the algorithm using the scanned surface of the
chicken shown in Figure 2. The model was scanned using a
ShapeGrabber laser range scanner. We obtained 11 images
of the model using a Canon Powershot A520 4 mega-pixel
camera. We calibrated the images by manually selecting
features on the model and in the images and computing the
projection matrix using the direct linear transform (DLT)
algorithm [12, Chapter 6].

In our experiments, we set α = 10−6 and β = 1 when
minimizing the energy function. These values were set em-
pirically through experimentation.

Figure 2. Scanned model.

The scanned model consists of 194491 vertices and
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Mesh Min Error Max Error Mean Error
Initial mesh 1 0.0031 1.9346 0.2302
Deformation 1 0.0021 1.8151 0.2256
Initial mesh 2 0.0024 1.1857 0.1645
Deformation 2 0.0007 0.8930 0.1588

Table 1. Errors of the initial meshes and
the deformed surfaces with respect to the
ground truth, respectively.

302930 triangles. We added artificial holes to the model
in order to compare the result of our algorithm to the true
surface. The first hole that was added is shown in Figure
1(a) and (b). The original model before the addition of the
synthetic hole is shown in Figure 3(a). The result of our de-
formation algorithm on the artificial hole is shown in Figure
3(b). Note that the regularity of the mesh is preserved due
to the smoothing factor while the mesh is deformed.

The second hole that was added is shown in Figure 4(b).
The original model before the addition of the synthetic hole
is shown in Figure 4(a) and (c). The result of our defor-
mation algorithm on the artificial hole is shown in Figure
4(d).

Table 1 shows the errors of mesh patches with respect to
the scanned model. The error between a vertex v of a mesh
M and the scanned surface is computed as the squared dis-
tance between v and v’s nearest neighbour in the scan. We
report the minimum error, the maximum error, and the mean
error over all vertices in M. The meshes used to measure
the error are the initial meshes and the results of our defor-
mation algorithm for the two holes. Table 1 shows that the
error decreases during the deformation. This is true in spite
of the fact that the model is slightly specular.

6 Conclusions and Future Work

Traditional surface based stereo algorithms assume the
surface is closed. Since the problem is ill-posed, the op-
timization problem can be hard to solve – often the algo-
rithm is trapped in local minima. In our case, since we know
the boundary of the surface, we can solve a boundary-value
problem. Since this is a much better conditioned problem,
the method will be more robust to conditions such as noise
and specularity that plague the general stereo algorithms.

Future work on this project includes improving the cali-
bration using a non-linear method, which should help both
the matching cost and its gradient. Future work also in-
cludes more advanced methods for creating an initial mesh,
which are more robust to complex hole boundaries. Further,
there are several areas where algorithmic and implementa-
tional optimizations can be made.
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Figure 4. Deformation of the first hole in the model of a chicken compared to the original mesh.
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